ViennaCL - The Vienna Computing Library  1.7.0
Free open-source GPU-accelerated linear algebra and solver library.
least-squares.cpp
Go to the documentation of this file.
1 /* =========================================================================
2  Copyright (c) 2010-2015, Institute for Microelectronics,
3  Institute for Analysis and Scientific Computing,
4  TU Wien.
5  Portions of this software are copyright by UChicago Argonne, LLC.
6 
7  -----------------
8  ViennaCL - The Vienna Computing Library
9  -----------------
10 
11  Project Head: Karl Rupp rupp@iue.tuwien.ac.at
12 
13  (A list of authors and contributors can be found in the PDF manual)
14 
15  License: MIT (X11), see file LICENSE in the base directory
16 ============================================================================= */
17 
25 // activate ublas support in ViennaCL
26 #define VIENNACL_WITH_UBLAS
27 
28 //
29 // include necessary system headers
30 //
31 #include <iostream>
32 
33 // Boost headers
34 #include <boost/numeric/ublas/triangular.hpp>
35 #include <boost/numeric/ublas/vector.hpp>
36 #include <boost/numeric/ublas/vector_proxy.hpp>
37 #include <boost/numeric/ublas/matrix.hpp>
38 #include <boost/numeric/ublas/matrix_proxy.hpp>
39 #include <boost/numeric/ublas/lu.hpp>
40 #include <boost/numeric/ublas/io.hpp>
41 
42 
43 // ViennaCL headers
44 #include "viennacl/vector.hpp"
45 #include "viennacl/matrix.hpp"
47 #include "viennacl/linalg/qr.hpp"
48 #include "viennacl/linalg/lu.hpp"
50 
51 
59 int main (int, const char **)
60 {
61  typedef float ScalarType; //feel free to change this to 'double' if supported by your hardware
62 
63  typedef boost::numeric::ublas::matrix<ScalarType> MatrixType;
64  typedef boost::numeric::ublas::vector<ScalarType> VectorType;
66  typedef viennacl::vector<ScalarType> VCLVectorType;
67 
71  VectorType ublas_b(4);
72  ublas_b(0) = -4;
73  ublas_b(1) = 2;
74  ublas_b(2) = 5;
75  ublas_b(3) = -1;
76 
77  MatrixType ublas_A(4, 3);
78 
79  ublas_A(0, 0) = 2; ublas_A(0, 1) = -1; ublas_A(0, 2) = 1;
80  ublas_A(1, 0) = 1; ublas_A(1, 1) = -5; ublas_A(1, 2) = 2;
81  ublas_A(2, 0) = -3; ublas_A(2, 1) = 1; ublas_A(2, 2) = -4;
82  ublas_A(3, 0) = 1; ublas_A(3, 1) = -1; ublas_A(3, 2) = 1;
83 
87  VCLVectorType vcl_b(ublas_b.size());
88  VCLMatrixType vcl_A(ublas_A.size1(), ublas_A.size2());
89 
90  viennacl::copy(ublas_b, vcl_b);
91  viennacl::copy(ublas_A, vcl_A);
92 
93 
101  std::cout << "--- Boost.uBLAS ---" << std::endl;
107  std::vector<ScalarType> ublas_betas = viennacl::linalg::inplace_qr(ublas_A);
108 
113  viennacl::linalg::inplace_qr_apply_trans_Q(ublas_A, ublas_betas, ublas_b);
114 
119  boost::numeric::ublas::range ublas_range(0, 3);
120  boost::numeric::ublas::matrix_range<MatrixType> ublas_R(ublas_A, ublas_range, ublas_range);
121  boost::numeric::ublas::vector_range<VectorType> ublas_b2(ublas_b, ublas_range);
122  boost::numeric::ublas::inplace_solve(ublas_R, ublas_b2, boost::numeric::ublas::upper_tag());
123 
124  std::cout << "Result: " << ublas_b2 << std::endl;
125 
133  std::cout << "--- ViennaCL (hybrid implementation) ---" << std::endl;
134  std::vector<ScalarType> hybrid_betas = viennacl::linalg::inplace_qr(vcl_A);
135 
140 
145  viennacl::range vcl_range(0, 3);
146  viennacl::matrix_range<VCLMatrixType> vcl_R(vcl_A, vcl_range, vcl_range);
149 
150  std::cout << "Result: " << vcl_b2 << std::endl;
151 
155  std::cout << "!!!! TUTORIAL COMPLETED SUCCESSFULLY !!!!" << std::endl;
156 
157  return EXIT_SUCCESS;
158 }
159 
endcode *compute modified RHS of the minimization vcl_b
void inplace_solve(matrix_base< NumericT > const &A, matrix_base< NumericT > &B, SolverTagT tag)
Direct inplace solver for triangular systems with multiple right hand sides, i.e. A \ B (MATLAB notat...
void inplace_solve(const matrix_base< NumericT > &A, matrix_base< NumericT > &B, SolverTagT)
Direct inplace solver for triangular systems with multiple right hand sides, i.e. A \ B (MATLAB notat...
std::vector< T > inplace_qr(viennacl::matrix< T, F, ALIGNMENT > &A, vcl_size_t block_size=16)
Overload of inplace-QR factorization of a ViennaCL matrix A.
Definition: qr.hpp:647
Implementation of the dense matrix class.
endcode *Final viennacl::matrix_range< VCLMatrixType > vcl_R(vcl_A, vcl_range, vcl_range)
int main()
Definition: bisect.cpp:91
A dense matrix class.
Definition: forwards.h:375
basic_range range
Definition: forwards.h:424
std::cout<< "--- ViennaCL (hybrid implementation) ---"<< std::endl;std::vector< ScalarType > hybrid_betas
Class for representing non-strided subvectors of a bigger vector x.
Definition: forwards.h:434
A tag class representing an upper triangular matrix.
Definition: forwards.h:854
Provides a QR factorization using a block-based approach.
viennacl::vector_range< VCLVectorType > vcl_b2(vcl_b, vcl_range)
Implementations of LU factorization for row-major and column-major dense matrices.
Implementations of dense direct solvers are found here.
Proxy classes for matrices.
The vector type with operator-overloads and proxy classes is defined here. Linear algebra operations ...
void copy(std::vector< NumericT > &cpu_vec, circulant_matrix< NumericT, AlignmentV > &gpu_mat)
Copies a circulant matrix from the std::vector to the OpenCL device (either GPU or multi-core CPU) ...
A range class that refers to an interval [start, stop), where 'start' is included, and 'stop' is excluded.
Definition: forwards.h:424
float ScalarType
Definition: fft_1d.cpp:42
Class for representing non-strided submatrices of a bigger matrix A.
Definition: forwards.h:440
void inplace_qr_apply_trans_Q(MatrixType const &A, VectorType1 const &betas, VectorType2 &b)
Computes Q^T b, where Q is an implicit orthogonal matrix defined via its Householder reflectors store...
Definition: qr.hpp:608