1 #ifndef VIENNACL_ELL_MATRIX_HPP_
2 #define VIENNACL_ELL_MATRIX_HPP_
52 template<
typename NumericT,
unsigned int AlignmentV >
67 #ifdef VIENNACL_WITH_OPENCL
70 coords_.opencl_handle().context(ctx.opencl_context());
71 elements_.opencl_handle().context(ctx.opencl_context());
100 handle_type &
handle() {
return elements_; }
101 const handle_type &
handle()
const {
return elements_; }
104 const handle_type &
handle2()
const {
return coords_; }
106 #if defined(_MSC_VER) && _MSC_VER < 1500 //Visual Studio 2005 needs special treatment
107 template<
typename CPUMatrixT>
108 friend void copy(
const CPUMatrixT & cpu_matrix,
ell_matrix & gpu_matrix );
110 template<
typename CPUMatrixT,
typename T,
unsigned int ALIGN>
120 handle_type elements_;
123 template<
typename CPUMatrixT,
typename NumericT,
unsigned int AlignmentV>
129 if (cpu_matrix.size1() > 0 && cpu_matrix.size2() > 0)
133 for (
typename CPUMatrixT::const_iterator1 row_it = cpu_matrix.begin1(); row_it != cpu_matrix.end1(); ++row_it)
136 for (
typename CPUMatrixT::const_iterator2 col_it = row_it.begin(); col_it != row_it.end(); ++col_it)
139 max_entries_per_row =
std::max(max_entries_per_row, num_entries);
143 gpu_matrix.maxnnz_ = max_entries_per_row;
144 gpu_matrix.rows_ = cpu_matrix.size1();
145 gpu_matrix.cols_ = cpu_matrix.size2();
150 std::vector<NumericT> elements(nnz, 0);
155 for (
typename CPUMatrixT::const_iterator1 row_it = cpu_matrix.begin1(); row_it != cpu_matrix.end1(); ++row_it)
159 for (
typename CPUMatrixT::const_iterator2 col_it = row_it.begin(); col_it != row_it.end(); ++col_it)
161 coords.set(gpu_matrix.
internal_size1() * data_index + col_it.index1(), col_it.index2());
162 elements[gpu_matrix.
internal_size1() * data_index + col_it.index1()] = *col_it;
180 template<
typename IndexT,
typename NumericT,
unsigned int AlignmentV>
181 void copy(std::vector< std::map<IndexT, NumericT> >
const & cpu_matrix,
193 template<
typename CPUMatrixT,
typename NumericT,
unsigned int AlignmentV>
199 if (gpu_matrix.
size1() > 0 && gpu_matrix.
size2() > 0)
201 std::vector<NumericT> elements(gpu_matrix.
internal_nnz());
214 if (val <= 0 && val >= 0)
217 if (coords[offset] >= gpu_matrix.
size2())
219 std::cerr <<
"ViennaCL encountered invalid data " << offset <<
" " << ind <<
" " << row <<
" " << coords[offset] <<
" " << gpu_matrix.
size2() << std::endl;
223 cpu_matrix(row, coords[offset]) = val;
235 template<
typename NumericT,
unsigned int AlignmentV,
typename IndexT>
237 std::vector< std::map<IndexT, NumericT> > & cpu_matrix)
254 template<
typename T,
unsigned int A>
255 struct op_executor<vector_base<T>,
op_assign, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> >
257 static void apply(vector_base<T> & lhs, vector_expression<
const ell_matrix<T, A>,
const vector_base<T>, op_prod>
const & rhs)
271 template<
typename T,
unsigned int A>
272 struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> >
274 static void apply(vector_base<T> & lhs, vector_expression<
const ell_matrix<T, A>,
const vector_base<T>, op_prod>
const & rhs)
282 template<
typename T,
unsigned int A>
283 struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const ell_matrix<T, A>, const vector_base<T>, op_prod> >
285 static void apply(vector_base<T> & lhs, vector_expression<
const ell_matrix<T, A>,
const vector_base<T>, op_prod>
const & rhs)
295 template<
typename T,
unsigned int A,
typename LHS,
typename RHS,
typename OP>
296 struct op_executor<vector_base<T>,
op_assign, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
298 static void apply(vector_base<T> & lhs, vector_expression<
const ell_matrix<T, A>,
const vector_expression<const LHS, const RHS, OP>, op_prod>
const & rhs)
306 template<
typename T,
unsigned int A,
typename LHS,
typename RHS,
typename OP>
307 struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
309 static void apply(vector_base<T> & lhs, vector_expression<
const ell_matrix<T, A>,
const vector_expression<const LHS, const RHS, OP>, op_prod>
const & rhs)
319 template<
typename T,
unsigned int A,
typename LHS,
typename RHS,
typename OP>
320 struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const ell_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
322 static void apply(vector_base<T> & lhs, vector_expression<
const ell_matrix<T, A>,
const vector_expression<const LHS, const RHS, OP>, op_prod>
const & rhs)
scalar< typename viennacl::tools::CHECK_SCALAR_TEMPLATE_ARGUMENT< NumericT >::ResultType > value_type
Helper class implementing an array on the host. Default case: No conversion necessary.
vcl_size_t element_size() const
This class represents a single scalar value on the GPU and behaves mostly like a built-in scalar type...
void clear()
Resets all entries in the matrix back to zero without changing the matrix size. Resets the sparsity p...
const handle_type & handle2() const
vcl_size_t size1(MatrixType const &mat)
Generic routine for obtaining the number of rows of a matrix (ViennaCL, uBLAS, etc.)
This file provides the forward declarations for the main types used within ViennaCL.
void memory_read(mem_handle const &src_buffer, vcl_size_t src_offset, vcl_size_t bytes_to_read, void *ptr, bool async=false)
Reads data from a buffer back to main RAM.
T max(const T &lhs, const T &rhs)
Maximum.
viennacl::backend::mem_handle handle_type
result_of::size_type< MatrixType >::type size2(MatrixType const &mat)
Generic routine for obtaining the number of columns of a matrix (ViennaCL, uBLAS, etc...
vcl_size_t internal_size1() const
Represents a generic 'context' similar to an OpenCL context, but is backend-agnostic and thus also su...
Main namespace in ViennaCL. Holds all the basic types such as vector, matrix, etc. and defines operations upon them.
const handle_type & handle() const
vcl_size_t internal_nnz() const
Sparse matrix class using the ELLPACK format for storing the nonzeros.
friend void copy(const CPUMatrixT &cpu_matrix, ell_matrix< T, ALIGN > &gpu_matrix)
Implementations of operations using sparse matrices.
vcl_size_t maxnnz() const
vector_expression< const matrix_base< NumericT, F >, const unsigned int, op_row > row(const matrix_base< NumericT, F > &A, unsigned int i)
viennacl::memory_types memory_type() const
void switch_active_handle_id(memory_types new_id)
Switches the currently active handle. If no support for that backend is provided, an exception is thr...
viennacl::context context(T const &t)
Returns an ID for the currently active memory domain of an object.
The vector type with operator-overloads and proxy classes is defined here. Linear algebra operations ...
void copy(std::vector< NumericT > &cpu_vec, circulant_matrix< NumericT, AlignmentV > &gpu_mat)
Copies a circulant matrix from the std::vector to the OpenCL device (either GPU or multi-core CPU) ...
Main abstraction class for multiple memory domains. Represents a buffer in either main RAM...
vcl_size_t raw_size() const
Returns the number of bytes of the currently active buffer.
void memory_create(mem_handle &handle, vcl_size_t size_in_bytes, viennacl::context const &ctx, const void *host_ptr=NULL)
Creates an array of the specified size. If the second argument is provided, the buffer is initialized...
vcl_size_t internal_size2() const
void prod_impl(const matrix_base< NumericT > &mat, const vector_base< NumericT > &vec, vector_base< NumericT > &result)
Carries out matrix-vector multiplication.
viennacl::backend::mem_handle & handle(T &obj)
Returns the generic memory handle of an object. Non-const version.
vcl_size_t internal_maxnnz() const
ell_matrix(viennacl::context ctx)