18 #ifndef TEST_MATRIX_PRODUCT_FLOAT_DOUBLE_HPP_
19 #define TEST_MATRIX_PRODUCT_FLOAT_DOUBLE_HPP_
22 #define BOOST_UBLAS_NDEBUG
30 #include "boost/numeric/ublas/matrix.hpp"
31 #include "boost/numeric/ublas/matrix_proxy.hpp"
32 #include "boost/numeric/ublas/io.hpp"
36 template<
typename ScalarType,
typename VCLMatrixType>
37 ScalarType diff(boost::numeric::ublas::matrix<ScalarType>
const & mat1, VCLMatrixType
const & mat2)
39 boost::numeric::ublas::matrix<ScalarType> mat2_cpu(mat2.size1(), mat2.size2());
45 for (
unsigned int i = 0; i < mat2_cpu.size1(); ++i)
47 for (
unsigned int j = 0; j < mat2_cpu.size2(); ++j)
49 act = std::fabs(mat2_cpu(i,j) - mat1(i,j)) /
std::max( std::fabs(mat2_cpu(i, j)), std::fabs(mat1(i,j)) );
59 template<
class UBlasType,
class F>
62 template<
class T,
class F>
74 template<
class MatrixT,
class F>
75 struct matrix_maker< boost::numeric::ublas::matrix_range<MatrixT>, F>
77 typedef typename MatrixT::value_type
T;
84 result_type result(M, r0, r1);
90 template<
class MatrixT,
class F>
91 struct matrix_maker< boost::numeric::ublas::matrix_slice<MatrixT>, F>
93 typedef typename MatrixT::value_type
T;
98 viennacl::slice s0(base.start1(), std::size_t(base.stride1()), base.size1());
100 result_type result(M, s0,
s1);
106 template<
typename T,
typename CType,
typename AType,
typename BType>
107 int test_layout(CType & C, AType
const & A, AType
const & AT, BType
const & B, BType
const & BT,
108 boost::numeric::ublas::matrix<T>
const & ground, T epsilon,
bool with_composite)
113 std::cout <<
"C = A.B" << std::endl;
115 if (
diff(ground, C)>epsilon)
118 std::cout <<
"C = A'.B" << std::endl;
120 if (
diff(ground, C)>epsilon)
123 std::cout <<
"C = A.B'" << std::endl;
125 if (
diff(ground, C)>epsilon)
128 std::cout <<
"C = A'.B'" << std::endl;
130 if (
diff(ground, C)>epsilon)
136 boost::numeric::ublas::matrix<T> ground2 = T(2) * ground;
138 std::cout <<
"C = (A + A).B" << std::endl;
140 if (
diff(ground2, C)>epsilon)
143 std::cout <<
"C = A.(B + B)" << std::endl;
144 C =
prod(A, T(2) * B);
145 if (
diff(ground2, C)>epsilon)
148 std::cout <<
"C = (A + A).(B + B)" << std::endl;
149 C = T(0.25) *
prod(A + A, B + B);
150 if (
diff(ground, C)>epsilon)
157 template<
typename T,
typename RefAType,
typename RefBType,
typename RefCType>
159 std::size_t AM, std::size_t AK, RefAType & cA, RefAType & cAT,
160 std::size_t BK, std::size_t BN, RefBType & cB, RefBType & cBT,
191 #define TEST_LAYOUT(Clayout, Alayout, Blayout, composite) \
192 std::cout << "> " #Clayout " = " #Alayout "." #Blayout << std::endl; \
193 if (test_layout(C ## Clayout, A ## Alayout, AT ## Alayout, B ## Blayout, BT ## Blayout, ground, epsilon, composite) != EXIT_SUCCESS) \
194 return EXIT_FAILURE; \
210 template<
class MatrixType>
213 typedef typename MatrixType::value_type T;
217 for (
unsigned int i = 0; i < A.size1(); ++i)
218 for (
unsigned int j = 0; j < A.size2(); ++j)
219 A(i, j) =
static_cast<T
>(0.1) * randomNumber();
227 typedef boost::numeric::ublas::matrix<T> matrix_type;
228 typedef boost::numeric::ublas::matrix_range<matrix_type> matrix_range_type;
229 typedef boost::numeric::ublas::matrix_slice<matrix_type> matrix_slice_type;
231 typedef typename matrix_type::difference_type difference_type;
233 std::size_t matrix_holder_M = 143;
234 std::size_t matrix_holder_N = 124;
235 std::size_t matrix_holder_K = 184;
237 std::size_t start_M = 14;
238 std::size_t start_N = 20;
239 std::size_t start_K = 73;
241 std::size_t range_holder_M = start_M + matrix_holder_M;
242 std::size_t range_holder_N = start_N + matrix_holder_N;
243 std::size_t range_holder_K = start_K + matrix_holder_K;
245 range_type range_M(start_M, range_holder_M);
246 range_type range_N(start_N, range_holder_N);
247 range_type range_K(start_K, range_holder_K);
249 difference_type stride_M = 9;
250 difference_type stride_N = 13;
251 difference_type stride_K = 4;
253 std::size_t slice_holder_M = start_M + std::size_t(stride_M)*matrix_holder_M;
254 std::size_t slice_holder_N = start_N + std::size_t(stride_N)*matrix_holder_N;
255 std::size_t slice_holder_K = start_K + std::size_t(stride_K)*matrix_holder_K;
257 slice_type slice_M(start_M, stride_M, matrix_holder_M);
258 slice_type slice_N(start_N, stride_N, matrix_holder_N);
259 slice_type slice_K(start_K, stride_K, matrix_holder_K);
261 #define DECLARE(NAME, size1, size2) \
262 matrix_type NAME ## _matrix(matrix_holder_ ## size1, matrix_holder_ ## size2);\
263 init_rand(NAME ## _matrix);\
264 matrix_type NAME ## T_matrix = boost::numeric::ublas::trans(NAME ## _matrix);\
266 matrix_type NAME ## _range_holder(range_holder_ ## size1, range_holder_ ## size2);\
267 init_rand(NAME ## _range_holder);\
268 matrix_range_type NAME ## _range(NAME ## _range_holder, range_ ## size1, range_ ## size2);\
269 matrix_type NAME ## T_range_holder = boost::numeric::ublas::trans(NAME ## _range_holder);\
270 matrix_range_type NAME ## T_range(NAME ## T_range_holder, range_ ## size2, range_ ## size1);\
272 matrix_type NAME ## _slice_holder(slice_holder_ ## size1, slice_holder_ ## size2);\
273 init_rand(NAME ## _slice_holder);\
274 matrix_slice_type NAME ## _slice(NAME ## _slice_holder, slice_ ## size1, slice_ ## size2);\
275 matrix_type NAME ## T_slice_holder = boost::numeric::ublas::trans(NAME ## _slice_holder);\
276 matrix_slice_type NAME ## T_slice(NAME ## T_slice_holder, slice_ ## size2, slice_ ## size1);\
283 #define TEST_ALL_LAYOUTS(C_TYPE, A_TYPE, B_TYPE)\
284 std::cout << ">> " #C_TYPE " = " #A_TYPE "." #B_TYPE << std::endl;\
285 if (test_all_layouts<T>(C_TYPE ## _holder_M, C_TYPE ## _holder_N, C_ ## C_TYPE,\
286 A_TYPE ## _holder_M, A_TYPE ## _holder_K, A_ ## A_TYPE, AT_ ## A_TYPE,\
287 B_TYPE ## _holder_K, B_TYPE ## _holder_N, B_ ## B_TYPE, BT_ ## B_TYPE, epsilon) != EXIT_SUCCESS)\
288 return EXIT_FAILURE;\
329 #undef TEST_ALL_LAYOUTS
viennacl::enable_if< viennacl::is_any_sparse_matrix< M1 >::value, matrix_expression< const M1, const M1, op_trans > >::type trans(const M1 &mat)
Returns an expression template class representing a transposed matrix.
Class for representing strided submatrices of a bigger matrix A.
void trans(matrix_expression< const matrix_base< NumericT, SizeT, DistanceT >, const matrix_base< NumericT, SizeT, DistanceT >, op_trans > const &proxy, matrix_base< NumericT > &temp_trans)
Generic interface for matrix-vector and matrix-matrix products. See viennacl/linalg/vector_operations...
Implementation of the dense matrix class.
void finish()
Synchronizes the execution. finish() will only return after all compute kernels (CUDA, OpenCL) have completed.
viennacl::scalar< float > s1
T max(const T &lhs, const T &rhs)
Maximum.
#define DECLARE(NAME, size1, size2)
#define TEST_ALL_LAYOUTS(C_TYPE, A_TYPE, B_TYPE)
ScalarType diff(boost::numeric::ublas::matrix< ScalarType > const &mat1, VCLMatrixType const &mat2)
VectorT prod(std::vector< std::vector< T, A1 >, A2 > const &matrix, VectorT const &vector)
int test_all_layouts(std::size_t CM, std::size_t CN, RefCType &cC, std::size_t AM, std::size_t AK, RefAType &cA, RefAType &cAT, std::size_t BK, std::size_t BN, RefBType &cB, RefBType &cBT, T epsilon)
void init_rand(MatrixType &A)
static result_type make(viennacl::matrix< T, F > const &, boost::numeric::ublas::matrix< T > &base)
#define TEST_LAYOUT(Clayout, Alayout, Blayout, composite)
vector_expression< const matrix_base< NumericT, F >, const unsigned int, op_row > row(const matrix_base< NumericT, F > &A, unsigned int i)
Proxy classes for matrices.
static result_type make(viennacl::matrix< T, F > &M, boost::numeric::ublas::matrix_slice< MatrixT > &base)
viennacl::matrix_slice< viennacl::matrix< T, F > > result_type
void prod(std::vector< std::map< IndexT, NumericT > > const &stl_A, std::vector< std::map< IndexT, NumericT > > const &stl_B, std::vector< std::map< IndexT, NumericT > > &stl_C)
static result_type make(viennacl::matrix< T, F > &M, boost::numeric::ublas::matrix_range< MatrixT > &base)
void copy(std::vector< NumericT > &cpu_vec, circulant_matrix< NumericT, AlignmentV > &gpu_mat)
Copies a circulant matrix from the std::vector to the OpenCL device (either GPU or multi-core CPU) ...
A small collection of sequential random number generators.
A range class that refers to an interval [start, stop), where 'start' is included, and 'stop' is excluded.
Class for representing non-strided submatrices of a bigger matrix A.
A slice class that refers to an interval [start, stop), where 'start' is included, and 'stop' is excluded.
viennacl::matrix_range< viennacl::matrix< T, F > > result_type
int test_layout(CType &C, AType const &A, AType const &AT, BType const &B, BType const &BT, boost::numeric::ublas::matrix< T > const &ground, T epsilon, bool with_composite)
viennacl::matrix< T, F > result_type