ViennaCL - The Vienna Computing Library  1.7.0
Free open-source GPU-accelerated linear algebra and solver library.
nmf.cpp
Go to the documentation of this file.
1 /* =========================================================================
2  Copyright (c) 2010-2015, Institute for Microelectronics,
3  Institute for Analysis and Scientific Computing,
4  TU Wien.
5  Portions of this software are copyright by UChicago Argonne, LLC.
6 
7  -----------------
8  ViennaCL - The Vienna Computing Library
9  -----------------
10 
11  Project Head: Karl Rupp rupp@iue.tuwien.ac.at
12 
13  (A list of authors and contributors can be found in the PDF manual)
14 
15  License: MIT (X11), see file LICENSE in the base directory
16  ============================================================================= */
17 
26 #include "viennacl/matrix.hpp"
27 #include "viennacl/linalg/nmf.hpp"
28 
29 // feel free to change this to 'double' if supported by your hardware.
30 typedef float ScalarType;
31 
36 template<typename MajorT>
38 {
39  for (std::size_t i = 0; i < A.size1(); i++)
40  for (std::size_t j = 0; j < A.size2(); ++j)
41  A(i, j) = static_cast<ScalarType>(rand()) / ScalarType(RAND_MAX);
42 }
43 
48 int main()
49 {
50  std::cout << std::endl;
51  std::cout << "------- Tutorial NMF --------" << std::endl;
52  std::cout << std::endl;
53 
57  unsigned int m = 7; //size1 of W and size1 of V
58  unsigned int n = 6; //size2 of V and size2 of H
59  unsigned int k = 3; //size2 of W and size1 of H
60 
64 
68  fill_random(V);
69  fill_random(W);
70  fill_random(H);
71 
72  std::cout << "Input matrices:" << std::endl;
73  std::cout << "V" << V << std::endl;
74  std::cout << "W" << W << std::endl;
75  std::cout << "H" << H << "\n" << std::endl;
76 
81  conf.print_relative_error(false);
82  conf.max_iterations(50); // 50 iterations are enough here
83 
87  std::cout << "Computing NMF" << std::endl;
88  viennacl::linalg::nmf(V, W, H, conf);
89 
90  std::cout << "RESULT:" << std::endl;
91  std::cout << "V" << V << std::endl;
92  std::cout << "W" << W << std::endl;
93  std::cout << "H" << H << "\n" << std::endl;
94 
98  std::cout << "W*H:" << std::endl;
100  std::cout << resultCorrect << std::endl;
101 
102  std::cout << std::endl;
103  std::cout << "------- Tutorial completed --------" << std::endl;
104  std::cout << std::endl;
105 
106 }
int main()
Definition: nmf.cpp:100
Implementation of the dense matrix class.
Configuration class for the nonnegative-matrix-factorization algorithm. Specify tolerances, maximum iteration counts, etc., here.
A dense matrix class.
Definition: forwards.h:375
VectorT prod(std::vector< std::vector< T, A1 >, A2 > const &matrix, VectorT const &vector)
Definition: prod.hpp:102
vcl_size_t max_iterations() const
Returns the maximum number of iterations for the NMF algorithm.
size_type size2() const
Returns the number of columns.
Definition: matrix_def.hpp:226
size_type size1() const
Returns the number of rows.
Definition: matrix_def.hpp:224
void nmf(viennacl::matrix_base< ScalarType > const &V, viennacl::matrix_base< ScalarType > &W, viennacl::matrix_base< ScalarType > &H, viennacl::linalg::nmf_config const &conf)
The nonnegative matrix factorization (approximation) algorithm as suggested by Lee and Seung...
Definition: nmf.hpp:57
float ScalarType
Definition: fft_1d.cpp:42
void fill_random(viennacl::matrix_base< ScalarType > &v)
Definition: nmf.cpp:53
float ScalarType
Definition: nmf.cpp:29
bool print_relative_error() const
Returns the flag specifying whether the relative tolerance should be printed in each iteration...
Provides a nonnegative matrix factorization implementation. Experimental.