ViennaCL - The Vienna Computing Library  1.7.0
Free open-source GPU-accelerated linear algebra and solver library.
eigen-with-viennacl.cpp

This tutorial shows how data can be directly transferred from the Eigen Library to ViennaCL objects using the built-in convenience wrappers.

The first step is to include the necessary headers and activate the Eigen convenience functions in ViennaCL:

// System headers
#include <iostream>
// Eigen headers
#include <Eigen/Core>
#include <Eigen/Sparse>
// IMPORTANT: Must be set prior to any ViennaCL includes if you want to use ViennaCL algorithms on Eigen objects
#define VIENNACL_WITH_EIGEN 1
// ViennaCL includes
// Helper functions for this tutorial:
#include "vector-io.hpp"

The following is a set of auxiliary dispatchers for obtaining the right Eigen types for a given floating point type. This is merely an implementation detail, so feel free to skip over it.

//dense matrix:
template<typename T>
struct Eigen_dense_matrix
{
typedef typename T::ERROR_NO_EIGEN_TYPE_AVAILABLE error_type;
};
template<>
struct Eigen_dense_matrix<float>
{
typedef Eigen::MatrixXf type;
};
template<>
struct Eigen_dense_matrix<double>
{
typedef Eigen::MatrixXd type;
};
//sparse matrix
template<typename T>
struct Eigen_vector
{
typedef typename T::ERROR_NO_EIGEN_TYPE_AVAILABLE error_type;
};
template<>
struct Eigen_vector<float>
{
typedef Eigen::VectorXf type;
};
template<>
struct Eigen_vector<double>
{
typedef Eigen::VectorXd type;
};

The following function contains the main code for this tutorial. It consists of the following steps:

template<typename ScalarType>
void run_tutorial()
{

Get Eigen matrix and vector types for the provided ScalarType. Involves a little bit of template-metaprogramming.

typedef typename Eigen_dense_matrix<ScalarType>::type EigenMatrix;
typedef typename Eigen_vector<ScalarType>::type EigenVector;

Create and fill dense matrices from the Eigen library:

EigenMatrix eigen_densemat(6, 5);
EigenMatrix eigen_densemat2(6, 5);
eigen_densemat(0,0) = 2.0; eigen_densemat(0,1) = -1.0;
eigen_densemat(1,0) = -1.0; eigen_densemat(1,1) = 2.0; eigen_densemat(1,2) = -1.0;
eigen_densemat(2,1) = -1.0; eigen_densemat(2,2) = -1.0; eigen_densemat(2,3) = -1.0;
eigen_densemat(3,2) = -1.0; eigen_densemat(3,3) = 2.0; eigen_densemat(3,4) = -1.0;
eigen_densemat(5,4) = -1.0; eigen_densemat(4,4) = -1.0;
Eigen::Map<EigenMatrix> eigen_densemat_map(eigen_densemat.data(), 6, 5); // same as eigen_densemat, but emulating user-provided buffer

Create and fill sparse matrices from the Eigen library:

Eigen::SparseMatrix<ScalarType, Eigen::RowMajor> eigen_sparsemat(6, 5);
Eigen::SparseMatrix<ScalarType, Eigen::RowMajor> eigen_sparsemat2(6, 5);
eigen_sparsemat.reserve(5*2);
eigen_sparsemat.insert(0,0) = 2.0; eigen_sparsemat.insert(0,1) = -1.0;
eigen_sparsemat.insert(1,1) = 2.0; eigen_sparsemat.insert(1,2) = -1.0;
eigen_sparsemat.insert(2,2) = -1.0; eigen_sparsemat.insert(2,3) = -1.0;
eigen_sparsemat.insert(3,3) = 2.0; eigen_sparsemat.insert(3,4) = -1.0;
eigen_sparsemat.insert(5,4) = -1.0;
//eigen_sparsemat.endFill();

Create and fill a few vectors from the Eigen library:

EigenVector eigen_rhs(5);
Eigen::Map<EigenVector> eigen_rhs_map(eigen_rhs.data(), 5);
EigenVector eigen_result(6);
EigenVector eigen_temp(6);
eigen_rhs(0) = 10.0;
eigen_rhs(1) = 11.0;
eigen_rhs(2) = 12.0;
eigen_rhs(3) = 13.0;
eigen_rhs(4) = 14.0;

Create the corresponding ViennaCL objects:

Directly copy the Eigen objects to ViennaCL objects

viennacl::copy(&(eigen_rhs[0]), &(eigen_rhs[0]) + 5, vcl_rhs.begin()); // Method 1: via iterator interface (cf. std::copy())
viennacl::copy(eigen_rhs, vcl_rhs); // Method 2: via built-in wrappers (convenience layer)
viennacl::copy(eigen_rhs_map, vcl_rhs); // Same as method 2, but for a mapped vector
viennacl::copy(eigen_densemat, vcl_densemat);
viennacl::copy(eigen_densemat_map, vcl_densemat); //same as above, using mapped matrix
viennacl::copy(eigen_sparsemat, vcl_sparsemat);
std::cout << "VCL sparsematrix dimensions: " << vcl_sparsemat.size1() << ", " << vcl_sparsemat.size2() << std::endl;
// For completeness: Copy matrices from ViennaCL back to Eigen:
viennacl::copy(vcl_densemat, eigen_densemat2);
viennacl::copy(vcl_sparsemat, eigen_sparsemat2);

Run dense matrix-vector products and compare results:

eigen_result = eigen_densemat * eigen_rhs;
vcl_result = viennacl::linalg::prod(vcl_densemat, vcl_rhs);
viennacl::copy(vcl_result, eigen_temp);
std::cout << "Difference for dense matrix-vector product: " << (eigen_result - eigen_temp).norm() << std::endl;
std::cout << "Difference for dense matrix-vector product (Eigen->ViennaCL->Eigen): "
<< (eigen_densemat2 * eigen_rhs - eigen_temp).norm() << std::endl;

Run sparse matrix-vector products and compare results:

eigen_result = eigen_sparsemat * eigen_rhs;
vcl_result = viennacl::linalg::prod(vcl_sparsemat, vcl_rhs);
viennacl::copy(vcl_result, eigen_temp);
std::cout << "Difference for sparse matrix-vector product: " << (eigen_result - eigen_temp).norm() << std::endl;
std::cout << "Difference for sparse matrix-vector product (Eigen->ViennaCL->Eigen): "
<< (eigen_sparsemat2 * eigen_rhs - eigen_temp).norm() << std::endl;
}

In the main() routine we only call the worker function defined above with both single and double precision arithmetic.

int main(int, char *[])
{
std::cout << "----------------------------------------------" << std::endl;
std::cout << "## Single precision" << std::endl;
std::cout << "----------------------------------------------" << std::endl;
run_tutorial<float>();
#ifdef VIENNACL_HAVE_OPENCL
#endif
{
std::cout << "----------------------------------------------" << std::endl;
std::cout << "## Double precision" << std::endl;
std::cout << "----------------------------------------------" << std::endl;
run_tutorial<double>();
}

That's it. Print a success message and exit.

std::cout << std::endl;
std::cout << "!!!! TUTORIAL COMPLETED SUCCESSFULLY !!!!" << std::endl;
std::cout << std::endl;
}

Full Example Code

/* =========================================================================
Copyright (c) 2010-2015, Institute for Microelectronics,
Institute for Analysis and Scientific Computing,
TU Wien.
Portions of this software are copyright by UChicago Argonne, LLC.
-----------------
ViennaCL - The Vienna Computing Library
-----------------
Project Head: Karl Rupp rupp@iue.tuwien.ac.at
(A list of authors and contributors can be found in the PDF manual)
License: MIT (X11), see file LICENSE in the base directory
============================================================================= */
// System headers
#include <iostream>
// Eigen headers
#include <Eigen/Core>
#include <Eigen/Sparse>
// IMPORTANT: Must be set prior to any ViennaCL includes if you want to use ViennaCL algorithms on Eigen objects
#define VIENNACL_WITH_EIGEN 1
// ViennaCL includes
// Helper functions for this tutorial:
#include "vector-io.hpp"
//dense matrix:
template<typename T>
struct Eigen_dense_matrix
{
typedef typename T::ERROR_NO_EIGEN_TYPE_AVAILABLE error_type;
};
template<>
struct Eigen_dense_matrix<float>
{
typedef Eigen::MatrixXf type;
};
template<>
struct Eigen_dense_matrix<double>
{
typedef Eigen::MatrixXd type;
};
//sparse matrix
template<typename T>
struct Eigen_vector
{
typedef typename T::ERROR_NO_EIGEN_TYPE_AVAILABLE error_type;
};
template<>
struct Eigen_vector<float>
{
typedef Eigen::VectorXf type;
};
template<>
struct Eigen_vector<double>
{
typedef Eigen::VectorXd type;
};
template<typename ScalarType>
void run_tutorial()
{
typedef typename Eigen_dense_matrix<ScalarType>::type EigenMatrix;
typedef typename Eigen_vector<ScalarType>::type EigenVector;
EigenMatrix eigen_densemat(6, 5);
EigenMatrix eigen_densemat2(6, 5);
eigen_densemat(0,0) = 2.0; eigen_densemat(0,1) = -1.0;
eigen_densemat(1,0) = -1.0; eigen_densemat(1,1) = 2.0; eigen_densemat(1,2) = -1.0;
eigen_densemat(2,1) = -1.0; eigen_densemat(2,2) = -1.0; eigen_densemat(2,3) = -1.0;
eigen_densemat(3,2) = -1.0; eigen_densemat(3,3) = 2.0; eigen_densemat(3,4) = -1.0;
eigen_densemat(5,4) = -1.0; eigen_densemat(4,4) = -1.0;
Eigen::Map<EigenMatrix> eigen_densemat_map(eigen_densemat.data(), 6, 5); // same as eigen_densemat, but emulating user-provided buffer
Eigen::SparseMatrix<ScalarType, Eigen::RowMajor> eigen_sparsemat(6, 5);
Eigen::SparseMatrix<ScalarType, Eigen::RowMajor> eigen_sparsemat2(6, 5);
eigen_sparsemat.reserve(5*2);
eigen_sparsemat.insert(0,0) = 2.0; eigen_sparsemat.insert(0,1) = -1.0;
eigen_sparsemat.insert(1,1) = 2.0; eigen_sparsemat.insert(1,2) = -1.0;
eigen_sparsemat.insert(2,2) = -1.0; eigen_sparsemat.insert(2,3) = -1.0;
eigen_sparsemat.insert(3,3) = 2.0; eigen_sparsemat.insert(3,4) = -1.0;
eigen_sparsemat.insert(5,4) = -1.0;
//eigen_sparsemat.endFill();
EigenVector eigen_rhs(5);
Eigen::Map<EigenVector> eigen_rhs_map(eigen_rhs.data(), 5);
EigenVector eigen_result(6);
EigenVector eigen_temp(6);
eigen_rhs(0) = 10.0;
eigen_rhs(1) = 11.0;
eigen_rhs(2) = 12.0;
eigen_rhs(3) = 13.0;
eigen_rhs(4) = 14.0;
viennacl::matrix<ScalarType> vcl_densemat(6, 5);
viennacl::copy(&(eigen_rhs[0]), &(eigen_rhs[0]) + 5, vcl_rhs.begin()); // Method 1: via iterator interface (cf. std::copy())
viennacl::copy(eigen_rhs, vcl_rhs); // Method 2: via built-in wrappers (convenience layer)
viennacl::copy(eigen_rhs_map, vcl_rhs); // Same as method 2, but for a mapped vector
viennacl::copy(eigen_densemat, vcl_densemat);
viennacl::copy(eigen_densemat_map, vcl_densemat); //same as above, using mapped matrix
viennacl::copy(eigen_sparsemat, vcl_sparsemat);
std::cout << "VCL sparsematrix dimensions: " << vcl_sparsemat.size1() << ", " << vcl_sparsemat.size2() << std::endl;
// For completeness: Copy matrices from ViennaCL back to Eigen:
viennacl::copy(vcl_densemat, eigen_densemat2);
viennacl::copy(vcl_sparsemat, eigen_sparsemat2);
eigen_result = eigen_densemat * eigen_rhs;
vcl_result = viennacl::linalg::prod(vcl_densemat, vcl_rhs);
viennacl::copy(vcl_result, eigen_temp);
std::cout << "Difference for dense matrix-vector product: " << (eigen_result - eigen_temp).norm() << std::endl;
std::cout << "Difference for dense matrix-vector product (Eigen->ViennaCL->Eigen): "
<< (eigen_densemat2 * eigen_rhs - eigen_temp).norm() << std::endl;
eigen_result = eigen_sparsemat * eigen_rhs;
vcl_result = viennacl::linalg::prod(vcl_sparsemat, vcl_rhs);
viennacl::copy(vcl_result, eigen_temp);
std::cout << "Difference for sparse matrix-vector product: " << (eigen_result - eigen_temp).norm() << std::endl;
std::cout << "Difference for sparse matrix-vector product (Eigen->ViennaCL->Eigen): "
<< (eigen_sparsemat2 * eigen_rhs - eigen_temp).norm() << std::endl;
}
int main(int, char *[])
{
std::cout << "----------------------------------------------" << std::endl;
std::cout << "## Single precision" << std::endl;
std::cout << "----------------------------------------------" << std::endl;
run_tutorial<float>();
#ifdef VIENNACL_HAVE_OPENCL
#endif
{
std::cout << "----------------------------------------------" << std::endl;
std::cout << "## Double precision" << std::endl;
std::cout << "----------------------------------------------" << std::endl;
run_tutorial<double>();
}
std::cout << std::endl;
std::cout << "!!!! TUTORIAL COMPLETED SUCCESSFULLY !!!!" << std::endl;
std::cout << std::endl;
}