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ABSTRACT

This Guide shows how to use the computer package EMM, which implements the estimator

described in Gallant and Tauchen (1996a) “Which Moments to Match.” The term EMM

refers to Efficient Method of Moments. The Guide provides an overview of the estimator,

instructions on how to install the software, and a description of the package. It also walks

the reader through some examples.

This implementation of EMM adapts the MCMC estimator proposed by Chernozhukov

and Hong (2003) “An MCMC Approach to Classical Estimation,” to simulation estimators.

The Chernozhukov-Hong approach is substantially superior to conventional derivative based

hill climbing optimizers for this class of problems.

The EMM package is actually a general purpose implementation of the Chernozhukov-

Hong estimator and is therefore not restricted to simulation estimators. An MLE option

allows the code to be used for maximum likelihood or any statistical criterion function

that can be given the pseudo likelihood interpretation described in Chernozhukov and Hong

(2003). GMM is an example; it is illustrated by a VAR example included in the distribution.

MLE is illustrated with a translog consumer demand system with demand shares distributed

as the logistic normal taken from Gallant (1987). It shows off the Chernozhukov-Hong

estimator to good advantage because a vexing problem with hill climbers is to keep model

parameters in the region where predicted shares are positive for every observation, which

is nearly impossible with conventional hill climbing algorithms but is easy using the the

Chernozhukov-Hong estimator.

The EMM package can also be used for Bayesian estimation because the user can supply

a prior distribution. One is not restricted to a maximum likelihood objective function in

Bayesian estimation. GMM and EMM can be given a Bayesian interpretation. See Gallant

and Hong (2007) for details. Three asset pricing examples illustrating Bayesian EMM are

in the distribution: the habit persistence model of Campbell and Cochrane (1999), the long

run risks model of Bansal and Yaron (2004), and the prospect theory model of Barberis,

Huang, and Santos (2001) implemented on the data of Bansal, Gallant, and Tauchen (2007)

using the prior of Aldrich and Gallant (2010).

The code and this guide are available at http://econ.duke.edu/webfiles/arg/emm.
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1 Introduction

1.1 Overview

Gallant and Tauchen (1996a, 2002a) developed a systematic approach to generating moment

conditions for the generalized method of moments (GMM) estimator (Hansen, 1982) of the

parameters of a structural model. The approach, termed Efficient Method of Moments

(EMM), is an alternative to the common practice of selecting a few low order moments on

an ad hoc basis and then proceeding with GMM. The EMM methodology has proved useful

and practical. An early version was used for estimating asset pricing models (Bansal, Gallant,

Hussey, and Tauchen, 1993, 1995). Some recent applications include, among others, Gallant,

Hong, and Khwaja (2010) for estimation of a dynamic game with a serially correlated,

endogenous, unobserved state, Gallant and Hong (2007) for assessment of the plausibility

of recursive utility, Chernov and Ghysels (2000), Chernov, Gallant, Ghysels, and Tauchen

(2003), and Gallant and Tauchen (2001) for assessment of stochastic volatility models, Dai

and Singleton (2000), Bansal and Zhou (2001), Ahn, Gallant, and Dittmar (2002), and

Tauchen (1997) for interest rate modeling, Gallant and Long (1997) and Chung and Tauchen

(2001) for exchange rate modeling.

The idea behind EMM is simple: Use the expectation under the structural model of the

score from an auxiliary model as the vector of moment conditions. This score is the derivative

of the log density of the auxiliary model with respect to the parameters of the auxiliary model.

Thus, the moment conditions depend upon both the parameters of the auxiliary model and

the parameters of the structural model. The dependence on the parameters of the auxiliary

model is eliminated by replacing them by their maximum likelihood estimates, which are

computed by maximizing the likelihood of the auxiliary model.

The auxiliary model is called the score generator. The score generator need not encompass

(nest) the structural model. If it does, then the estimator is as efficient as the maximum

likelihood estimator. Hence the approach ensures efficiency against a given parametric model.

If the score generator closely approximates the actual distribution of the data, even though

it does not encompass it, then the estimator is nearly fully efficient (Gallant and Tauchen,

1996a, 2001, 2002a; Tauchen 1997; Gallant and Long, 1997), which motivates the term
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Efficient Method of Moments (EMM).

The estimation context is one where the structural model defines a data generation

process. The key feature of this data generation process is that it is relatively easy to

compute the expectation of a nonlinear function given values for the structural parameters.

An expectation may be computed by simulation, by numerical quadrature, or by analytic

expressions, whichever is the most convenient. In the case of simulation, one averages the

nonlinear function over simulated realization for given values of the structural parameters.

Denote the simulation by

ρ 7→ {ŷτ (ρ), x̂τ−1(ρ)}N

τ=1

where ρ is the of vector structural parameters to be estimated, ŷτ are endogenous vari-

ables, and x̂τ are lagged endogenous variables. Lagged endogenous variables are generated

through the internal structural model, hence the dependence on ρ. Usually we abbreviate

to {ŷt, x̂t}N
t=1.

Examples of this estimation context are the panel data models motivating the simulated

method of moments approach of Pakes and Pollard (1989) and McFadden (1989). Another is

the asset pricing model that motivates the dynamic method of moments estimator of Duffie

and Singleton (1993). In these examples, the likelihood is difficult to compute, so maximum

likelihood is infeasible. Simulation and moment matching thus naturally arise. The EMM

estimator has some computational advantages relative to Indirect Inference (Smith, 1993;

Gourieroux, Monfort, and Renault, 1993). EMM does not require computation of the binding

function and it does not require estimation of the Hessian matrix of the auxiliary model.

Tauchen (1997) provides a general overview of EMM and references to current applications,

while Tauchen (1998) analyzes the behavior of the EMM objective function. A recent review

article is Gallant and Tauchen (2009).

There is one important case that the EMM package does not cover. That is the case where

one wishes to do classical Bayesian inference but no expression for the likelihood is available

although the model can be simulated. The EMM package would require that one substitute a

GMM or EMM criterion function for the likelihood. Gallant and McCulloch (2009) propose

a method for handling this case. They also propose methods for both absolute and relative

Bayesian model assessment. Code implementing the Gallant and McCulloch method and a
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User’s Guide are available at http://econ.duke.edu/webfiles/arg/gsm.

1.2 The EMM Estimator

This guide shows how to use a C++ package that implements the EMM estimator for the

case in which the structural model defines a strictly stationary Markovian process and there

are no covariates. The structural model is that of CASE 2 of Gallant and Tauchen (1996a).

The setup subsumes a wide variety of situations in macroeconomics and finance. The SNP

model is the score generator. A user should be able to modify the code to accommodate

other score generators and to accommodate covariates, as in CASE 1 or CASE 3 of Gallant

and Tauchen (1996a).

Let {ỹt, x̃t−1}n
t=1 denote the observed data set, where x̃t−1 = (ỹt−1, . . . , ỹt−L), L ≥ 1. The

first step is maximum likelihood estimation of the score generator

θ̃n =
θ∈Θ

argmax
1

n

n
∑

t=1

ln ft(ỹt | x̃t−1, θ)

For the second step, the moment criterion is

mn(ρ, θ̃n) =
1

N

N
∑

τ=1

(∂/∂θ) ln f [ŷτ (ρ) | x̂τ−1(ρ), θ̃n],

and the GMM estimator of the structural parameter vector is

ρ̂n =
ρ∈R

argmin m′

n(ρ, θ̃n)(Ĩn)−1mn(ρ, θ̃n),

where (Ĩn)−1 is the weighting matrix.

The computations necessary to form Ĩn depend upon how well one thinks that the score

generator approximates the true data generating process. If one is confident that the score

generator is a good statistical approximation to the data generating process, then the esti-

mator

Ĩn =
1

n

n
∑

t=1

[

(∂/∂θ) ln ft(ỹt|x̃t−1, θ̃n)
][

(∂/∂θ) ln ft(ỹt|x̃t−1, θ̃n)
]′

.

can be used. This estimator only entails an outer-product-of-the-gradient computation and

no weighted covariance matrix estimation. Conditions under which this estimator is valid

are given in Gallant and Tauchen (1996a). To the extent the score generator provides a
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less good approximation a weighted covariance matrix estimator, i.e, a “HAC” estimator as

reviewed in Andrews (1991), should be used for Ĩn.

Regardless of what is used for Ĩn, the sandwich standard errors computed by this adap-

tation of Chernozhukov and Hong (2003) are asymptotically correct. However, accurate

computation of the sandwich standard errors is difficult and certain tuning parameters need

to be chosen carefully to get reasonable results as discussed later in this guide. Using an

accurate score generator so that sandwich standard errors do not have to be used is a better

approach when feasible.

1.3 The Chernozhukov and Hong Method

The computational methods discussed here and implemented by the EMM package apply

to any discrepancy function sn(ρ) that produces asymptotically normal estimates; i.e., any

discrepancy function for which there exist ρo, I and J such that

J√
n(ρ̂n − ρo) =

√
n

∂

∂ρ
sn(ρ) + op(1) and

√
n

∂

∂ρ
sn(ρ)

L→ N(0, I) (1)

The I matrix discussed in this subsection pertains to ρ̂n and is not the Ĩn weighting function

of the immediately preceding subsection.

Quasi maximum likelihood estimation requires the computation of the estimator itself,

ρ̂n =
ρ

argmin sn(ρ), an estimate of the Hessian

J =
∂

∂ρ∂ρ ′
so(ρo),

where so(ρ) = limn→∞ sn(ρ), and an estimate of Fisher’s information

I = Var

[

∂

∂ρ ′

√
n sn(ρo)

]

= E
[

∂

∂ρ ′

√
n sn(ρo)

] [

∂

∂ρ ′

√
n sn(ρo)

]′

.

The variance of
√

n(ρ̂n − ρo) is then of the sandwich form

Vn = Var [
√

n(ρ̂n − ρo)] = J −1IJ −1

Put ℓ(ρ) = e−n sn(ρ). Apply Bayesian MCMC methods with ℓ(ρ) as the likelihood. From the

resulting MCMC chain {ρi}R
i=1 put

ρ̂n = ρ̄R =
1

R

R
∑

t=1

ρi and Ĵ −1 =
(

n

R

) R
∑

t=1

(ρi − ρ̄R) (ρi − ρ̄R)′
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Alternatively, and definitely for EMM, use the mode of ℓ(ρ) as the estimator ρ̂n. The EMM

package computes and reports both the mean and the mode.

Actually, the mode is the better choice of an estimator in most applications because the

parameter values in the mode actually have generated a simulation. The parameter values

in the mean vector may not even satisfy the support conditions of the structural model.

The strategy used to estimate I is the following. For ρ set to the mode, simulate the

model, and generate I approximately independent bootstrap data sets {ŷt,i}n
t=1, i = 1, . . . , I,

each of exactly the same sample size n as the original data. Keeping the size to exactly

n and using model simulations makes the estimator below a heteroskedastic autocovariance

consistent (HAC) estimator. Keeping the size to exactly n does not imply that the simulation

size N should be set to n when using the program. The simulation size N should be set

much larger than n in most instances. One way to get a bootstrap sample is to split this long

simulation into blocks of size n. With this approach, the estimate of I would be a parametric

bootstrap estimate. Alternatively, a Politis and Romano (1994) stationary bootstrap or some

other method could be used to construct the blocks. The bootstrap generating mechanism

is coded by the user. The worked examples in Section 6 provide examples of two different

approaches. The code automatically prepends the data as the first bootstrap sample to

whatever the user supplies.

Let ŝn,i(ρ) denote the criterion function corresponding to the ith bootstrap data set

{ŷt,i}n
t=1 and let ρ̂n denote mode of ℓ(ρ). Compute ∂

∂ρ ′

√
n ŝn,i(ρ̂n) numerically. An estimate

of the information matrix is the average

Î =
1

I

I
∑

i=1

[

∂

∂ρ ′

√
n ŝn,i(ρ̂n)

] [

∂

∂ρ ′

√
n ŝn,i(ρ̂n)

]′

(2)

Note that for the EMM estimator one must compute the likelihood of the auxiliary model

from the ith bootstrap sample and optimize it in order to get the ith EMM objective function

ŝn,i(ρ). This is done using the BFGS method. This is the step that makes computing

an accurate numerical derivative accurately both difficult and costly for EMM. The code

attempts to detect failure of the optimizer and failure to compute an accurate derivative and

discard those instances. An objective function such as mle or GMM that does not rely on

a preliminary optimization is not as much of a challenge to differentiate numerically. With
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these one can have more confidence that the code provides the correct answer.

If the SNP model is a good approximation to the true data generating process, the

computation of Î is not necessary because I = J . This issue is discussed in detail in

Gallant and Tauchen (1996a). The same is true for maximum likelihood if the model is

correctly specified. The code provides a switch, kilse, to turn off the computation of I
when it is unnecessary.

The code provides the option of putting the parameter ρ on a grid. This increases

speed by allowing sn(ρ) and related variables to be obtained by table lookup thus avoiding

recomputation for a value of ρ that has already been visited in the MCMC chain. This is a

useful feature when the objective function sn(ρ) is costly to compute.

Note that Sn(ρ) = τsn(ρ) is also a valid criterion according to the theory. This gives one

a temperature parameter τ to use for tuning the chain. This feature is implemented in the

package.

A random walk, single move, normal proposal is the workhorse of the EMM package.

When parameters are put on a grid, a discrete proposal density is used instead that has

probabilities assigned to grid points proportionally to this normal. Group moves are also

supported. It is easy to substitute an alternative proposal density and a conditional normal

that implements an automated Metropolis within Gibbs strategy is included in the package

as a proof of concept. It is best regarded as a proof of concept because it doesn’t seem to

work all that well.

Simulated method of moments is exactly the same as the foregoing but with a GMM

criterion replacing sn(ρ). An VAR example is included in the distribution. As with EMM, if

the correct weight function is used with the GMM criterion function, then I = J so that I
need not be computed and there is no need for any numerical differentiation. But often the

effectiveness of the GMM weighting function is doubtful and it can cloud the interpretation

of results. One may prefer sandwich standard errors regardless. With GMM there is usually

no numerical optimization to compute moments as with EMM so better accuracy can be

expected.

The MCMC method described here makes the imposition of support restrictions, in-

equality restrictions, and informative prior information exceptionally convenient. These
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restrictions and prior information can be imposed on model parameters or on (nonlinear)

functionals of the model that can only be known via simulation. This feature is implemented

in the EMM package. Three asset pricing models are included in the distribution that use

these features: the habit persistence model of Campbell and Cochrane (1999), the long run

risks model of Bansal and Yaron (2004), and the prospect theory model of Barberis, Huang,

and Santos (2001) implemented on the data of Bansal, Gallant, and Tauchen (2007) us-

ing the prior of Aldrich and Gallant (2010). A dynamic game application is available at

http://www.econ.duke.edu/∼arg/compecon.

For some structural models it is difficult to check the validity of parameters without first

substantially altering the internal state of the model. As it is wasteful to do this twice, pa-

rameters are set before member support of the user’s implementation of the structural model

is called. The user should be aware of this fact when writing code for the structural model

because one is not guaranteed that ρ will be valid. Member support is called immediately

after ρ is set. If it returns false, then no other member of the user’s implementation of the

structural model is called.

As mentioned earlier, these ideas are not restricted to simulation estimators. The EMM

package is actually a general purpose implementation of the Chernozhukov-Hong estima-

tor. An illustration of how the code may be used to implement maximum likelihood is

included with the package and described in the Guide. The application used for this illus-

tration is a translog consumer demand system for electricity by time of day with demand

shares distributed as the logistic normal that is taken from Gallant (1987). It shows off

the Chernozhukov-Hong estimator to good advantage because a vexing problem with hill

climbers is trying to keep model parameters in the region where predicted shares are posi-

tive for every observed price/expenditure vector. This is nearly impossible to achieve when

using conventional derivative based hill climbing algorithms but is trivially easy to achieve

using the the Chernozhukov-Hong estimator as implemented in the EMM package.

1.4 GARCH-SNP

The most recent version of SNP is 9.0, which permits a GARCH specification for the condi-

tional variance of the leading term of the score generator that has the BEKK multivariate
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form with modifications to directly incorporate variance structures exhibiting level and lever-

age effects. See the SNP User’s Guide for more details.

1.5 Using this Guide

New users should work through the simple stochastic volatility model developed in Sections 4

through 6. Use Section 3 for reference purposes.

2 Building and Running EMM

2.1 Availability

C++ code and this Guide as a PostScript or PDF file are available at http://econ.duke.edu/

webfiles/arg/emm.

This program is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation; either

version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this

program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,

Boston, MA 02110-1301 USA.

Since this implementation of EMM uses SNP model as the score generator, SNP is

included in the distribution.

2.2 Building and Running EMM

Download emm.tar from http://econ.duke.edu/webfiles/arg/emm. On a Unix machine

use tar -xf emm.tar to expand the tar archive into a directory that will be named emm.

On a Windows machine use unzip; i.e., Windows recognizes a Unix tar archive as a zip file.

The distribution has the following directory structure:

emm
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elec

emmman

emmrun

emmsrc

hab

lib

libscl

libsmm

libsnp

lrr

pro

self

snpman

snprun

snpsrc

svfx

utility

var

Often one changes the name emm of the parent directory to a name that represents the project

one is working on.

First the three libraries libscl, libsnp, and libsmm must be built, in that order. On a

Unix machine change directory to lib/libscl/gpp and type make. For Microsoft Windows,

a batch file supplied by Microsoft with their compiler must be executed first. The following

is an example:

C:"\Program Files\Microsoft Visual Studio .NET\Vc7\bin\"vcvars32.bat

The exact syntax will depend on where the Microsoft C++ compiler is installed. Change

directory to lib\libscl\ms and type nmake. Building libsnp and libsmm is similar.

To run the SNP example that comes with the distribution on a Unix machine within

the directory snprun copy makefile.gpp to makefile, type make and then ./snp. Sim-

ilarly for EMM, within emmrun copy makefile.gpp to makefile, type make and then

./emm sv.ctrl.000. For Microsoft copy makefile.ms to makefile, type C:"\...\"

vcvars32.bat, nmake, then snp, etc.
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At http://econ.duke.edu/webfiles/arg/djgpp is a free C++ compiler that runs un-

der Windows. Using the djgpp compiler is similar to using the Microsoft compiler. There is

a batch file gppsetup.bat included with the distribution that must be executed first. Then

all else is for Microsoft except one uses the subdirectory gpp rather than ms for compila-

tion of libraries, copies (overwrites) makefile.djgpp to makefile, and uses make instead of

nmake.

3 The Structure of the EMM Distribution

The structure in the discussion of the example distributed with the distribution is presumed

to be as above. The user is free to set up another file structure provided that the references

in the makefiles are changed to correspond. Indeed, we often redo the file structure to suit

a particular application. Below we will use the Unix file naming conventions. For Windows

substitute a back slash directory separator for a forward slash.

3.1 User Supplied Class

As described in the worked examples farther on, the user supplies a class, which here we shall

call sv_usrmod. The declaration for the class is in file emmusr.h, the code implementing

it is in file emmusr.cpp. The functionality that sv_usrmod must provide is dictated by

inheritance from class usrmod_base declared in libsmm/src/libsmm_base.h. Here is the

relevant portion of libsmm/libsmm_base.h

#include "libscl.h"

namespace libsmm {

/* Now in libscl

struct den_val {
bool positive;
REAL log_den;

den_val() : positive(false), log_den(-REAL_MAX) { }
den_val(bool p, REAL l) : positive(p), log_den(l) { }

};

*/

class usrmod_base {
public:
virtual INTEGER len_rho() = 0;
virtual INTEGER len_stats() = 0;
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virtual bool gen_sim(scl::realmat& sim, scl::realmat& stats) = 0;
//Same seed every call

virtual void get_rho(scl::realmat& rho) = 0;
virtual void set_rho(const scl::realmat& rho) = 0;
virtual bool support(const scl::realmat& rho) = 0;
virtual den_val prior(const scl::realmat& rho,

const scl::realmat& stats) = 0;
virtual void write_usrvar(const char* filename) { return; }
virtual ~usrmod_base() {}
virtual bool gen_bootstrap(std::vector<scl::realmat>& bs)

//New seed each call
{return false;}

virtual void set_data(const scl::realmat& dat) {}
virtual libsmm::den_val likelihood(scl::realmat& predicted,

scl::realmat& residuals)
{return den_val(false,-REAL_MAX);}

};

}

and here is the corresponding emmusr.h

#ifndef __FILE_EMMUSR_H_SEEN__
#define __FILE_EMMUSR_H_SEEN__
#include "libsnp.h"
#include "libsmm.h"
#include "emm_base.h"
#include "snp.h"

namespace emm {

class sv_usrmod;

typedef sv_usrmod usrmod_type;

const INT_32BIT fixed_seed = 770116;

class sv_usrmod : public libsmm::usrmod_base {
private:
scl::realmat data;
scl::realmat rho;
INTEGER slen;
INTEGER spin;
INTEGER lrho;
INTEGER lstats;
INT_32BIT variable_seed;
bool sv_simulate (INT_32BIT& seed, INTEGER len,

scl::realmat& sim, scl::realmat& stats, scl::realmat& latent);
public:
sv_usrmod (const scl::realmat& dat, INTEGER len_mod_parm,

INTEGER len_mod_func, const std::vector<std::string>& mod_pfvec,
const std::vector<std::string>& mod_alvec, std::ostream& detail);

INTEGER len_rho() {return lrho;}
INTEGER len_stats() {return lstats;}
bool gen_sim(scl::realmat& sim, scl::realmat& stats)

//Same seed every call
{

scl::realmat latent;
INT_32BIT seed = fixed_seed;
return sv_simulate(seed,slen,sim,stats,latent);
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}
bool gen_bootstrap(std::vector<scl::realmat>& bs);

//Different seed each call
void get_rho(scl::realmat& parm) { parm = rho; }
void set_rho(const scl::realmat& parm) { rho = parm; }
bool support(const scl::realmat& rho);
scl::den_val prior(const scl::realmat& rho, const scl::realmat& stats);
void write_usrvar(const char* filename)

{
scl::realmat sim, stats, latent;
INT_32BIT seed = fixed_seed;
if ( sv_simulate(seed,slen,sim,stats,latent) ) {

scl::vecwrite(filename, scl::rbind(sim,latent));
}

}
};

}
#endif

Class sv_usrmod gets bound to program emm via the statement

typedef sv_usrmod usrmod_type;

as shown.

The types REAL, INTEGER, and INT_32BIT are defined by typedef’s in scltypes.h which

gets included with libscl.h. On most machines these are double, int, and int, respec-

tively. Class realmat is presented in realmat.h which gets included with libscl.h. This is

a fairly complete matrix class that supports most linear algebra related to statistical appli-

cations including equation solving, inversion, and singular value decomposition. In general

there is much in libscl that will aid the user in writing sv_usrmod, including a nonlinear

equation solver and a nonlinear optimizer.

The idea behind stats is that there is more information about a simulation that the user

needs to know besides the value of rho that generated it. A moment of a latent variable is

an obvious example. The realmat stats of length lstats gets written to a file by program

emm as does rho and much else as described later.

Also, stats may need to be computed to know if the simulation is useable. For instance,

if usrmod simulates an asset pricing model, the real rate may be a latent variable and one

may want to hold its average over the simulation fixed at about 1%. If rho generates a

real rate that is not near 1%, then that rho should be rejected by the Metropolis-Hastings

algorithm in mcmc. To determine usability, stats gets passed by mcmc to member prior

which makes the decision and returns the verdict as a den_val. If den_val.positive is
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false, then the rho that generated the simulation is rejected by the Metropolis-Hastings

algorithm. If den_val.positive is true and den_val.log_den==0, then the Metropolis-

Hastings considers rho in the usual way as determined by the proposal and objective function.

If den_val.positive is true and den_val.log_den!=0, then the value returned is added

to the log objective function before the Metropolis-Hastings accept/reject decision is made;

i.e. acts as an informative prior.

Stated differently, prior can be used exactly as in Bayesian inference. If a model is

estimated by maximum likelihood, as discussed in Section 7, this is just classical Bayesian

inference. However, it is possible to give EMM a Bayesian interpretation; see Gallant and

Hong (2007).

Member support plays a similar role: it returns false if if rho is to be rejected. The

difference between support and prior is that support is called before the simulation and

prior after. The intent is to save the cost of an unnecessary simulation if rho violates

support conditions that can be cheaply determined. Be aware that set_rho is always called

before support.

In this example, we simulate the model in three member functions (methods): gen_sim,

gen_bootstrap, and write_usrvar. We shall write one simulator, the private member

function sv_simulate, and call it for these three methods. Note that stats is actually

only needed by gen_sim. In most situations the cost of computing stats is trivial and

so class usrmod can be structured so that stats is computed for every simulation. With

this structure, the methods functions gen_sim and write_usrvar become trivial and can

be coded in the header emmusr.h as shown. This leaves the constructor and members

sv_simulate, gen_bootstrap, and usrvar as the items remaining to discuss and code in

emmusr.cpp.

The constructor gets passed the data, lengths of the parameter and stat vectors, two

std::vector of std::string named mod_pfvec and mod_alvec that the user controls

through the parmfile as described immediately below and a std::ostream named detail to

which to write if desired. For most applications this constructor argument list is sufficiently

general and no modification to the constructor call in emm.cpp will be required.
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The role of sv_simulate is to compute a simulated data set sim of dimension lrho

by len, a vector of additional variables latent of the user’s choice that has slen columns

and however many rows the user’s choice dictates, and the stats described above. (If one

changes how the files are written from that coded in method write_usrvar, then latent can

have any desired number of rows and columns.) Member sv_simulate is called in turn by

members gen_sim, by member gen_bootstrap, and by member write_usrvar as shown. If

stats is costly to compute because, e.g., a nonlinear optimization is required, then one would

arrange the structure differently so stats is only computed when gen_sim(sim,stats) is

called.

Member write_usrvar gets called with ρ set to the mode. It will get called each time

the mode is recomputed, which is nfile+1 times. As written, write_usrvar, writes the

simulation and the latent variable, which is log volatility in this instance, joined together as

a single matrix to a file. However, write_usrvar can be changed to write anything internal

to class usrmod to a file. An example where one might write something different is when

a model is simulated at a monthly frequency but sim is annual data computed from the

monthly simulation. One may want to write the monthly data to a file. Also, one can use

the input variable filename as a stem, add suffixes, and write multiple files.

The job of bootstrap is to break a simulation from sv_simulate into blocks stored as

a std::vector of realmat, each block of which is exactly the size of data.

3.2 The Input Parameter File

The EMM input parameter file contains several blocks of control information. An example,

from Section 6, is

PARMFILE HISTORY (optional)
#
# This parmfile was written by EMM Version 2.5 using the following line from
# control.dat, which was read as char*, char*
# --------------------------------------------------------------------------
# sv.parm.004 sv
# --------------------------------------------------------------------------
#
ESTIMATION DESCRIPTION (required)

SpotRate Project name, pname, char*
2.6 EMM version, defines format of this file, emmver, float

0 Objfun type, 0 EMM, 1 MLE, 2 usr, objtype, int
0 Proposal type, 0 group_move, 1 cond_move, 2 usr, proptype, int
1 Write detailed output if print=1, int

14



457 Seed for MCMC simulations, iseed, int
5000 Number of MCMC simulations per file, lchain, int

5 Number of MCMC simulation files beyond the first, nfile, int
1.0 Rescale proposal scaling by this value, sclfac, float
1.0 Rescale parameter increments by this value, incfac, float
1.0 Rescale objfun by this value, temperature, float

1 Sandwich variance not computed if kilse=1, int
1 The stride used to write MCMC simulations, stride, int
0 Draw from prior if draw_from_prior=1, int
0 Max cache size, max_cache_size, int

DATA DESCRIPTION (required) (mod and obj constructors see realmat data(M,n))
1 Dimension of the data, M, int

834 Number of observations, n, int
dmark.dat File name, any length, no embedded blanks, dsn, string
4 Read these white space separated fields, fields, intvec
MODEL DESCRIPTION (required)

6 Number of modal parameters, len_mod_parm, int
8 Number of model functionals, len_mod_func, int

MODEL PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
__none__ File name, code __none__ if none, mod_parmfile, string
#begin additional lines

5000 Number of observations in simulated data, slen (=N), int
500 Initial simulations to eliminate transients, spin, int

#end additional lines
OBJFUN PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
11114000.fit File name, code __none__ if none, obj_parmfile, string
#begin additional lines
#end additional lines
PARAMETER START VALUES (required)

8.14895773998386974e-02 1
2.60176173224806462e-02 1
7.28064108382113773e-02 1
9.34458288546352378e-01 1
1.82976626342656323e-01 1
1.54595167239619968e-01 1

PROPOSAL SCALING (required)
1.56250000000000000e-02
1.56250000000000000e-02
1.56250000000000000e-02
1.56250000000000000e-02
1.56250000000000000e-02
3.12500000000000000e-02

PARAMETER INCREMENTS (optional) (fractional powers of two recommended)
1.56250000000000000e-02
1.56250000000000000e-02
3.12500000000000000e-02
3.12500000000000000e-02
3.12500000000000000e-02
3.12500000000000000e-02

PROPOSAL GROUPING (optional) (frequencies are relative)
0.1 1

1 1.0
0.1 2

2 1.0
0.2 3 4 5

3 1.0 0.7 -0.6
4 0.7 1.0 -0.8
5 -0.6 -0.8 1.0

0.1 6
6 1.0
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A description of each block of the input file follows.

3.2.1 PARMFILE HISTORY

This block is optional. It is written by emm to the output parmfile parmfile.fit at the end

of every run. It consists of seven lines that begin with # that should be left alone. After

these seven lines, the user can add additional lines that begin with a # and these will get

copied from the input parmfile to the output parmfile.

3.2.2 ESTIMATION DESCRIPTION

Under the block labeled ESTIMATION DESCRIPTION, there are parameters that govern the

computations:

pname: Project name. Chosen by the user for identification purposes.

emmver: Version of EMM. Versions 2.1 through 2.4 parmfiles will work with Version 2.6.

objtype: The objective function to be used in the estimation. The code is set up so the user

can code an alternative and select it by setting objtype=2. One would code it in emmusr.h

and emmusr.cpp. At the beginning of emmusr.h one would need to insert the compiler

directive

#define USR_OBJFUN_TYPE_IMPLEMENTED

and at the beginning of namespace emm add a binding such as

class usr_objfun;
typedef usr_objfun objfun_type;

Examples are emmusr.h and emmusr.cpp in directory var of the distribution.

proptype: Standard is the group move proposal which defaults to a single move proposal

when the optional block PROPOSAL GROUPING is missing from the parmfile. How to specify

group moves in the parmfile is discussed in Subsection 6.3. When the PROPOSAL GROUPING

block is missing, the proptype=0 proposal randomly selects an element of ρ to move and the

draws from a normal; i.e. a move-one-at-a-time random walk. When PROPOSAL GROUPING

block is present the proposal randomly selects one of the groups defined therein to move

and draws from a user specified multivariate normal. Setting proptype=1 selects a proposal

that attempts to automate group moves with indifferent success. It serves as an example

to show how a alternative proposal is coded. A user coded proposal would be selected by
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setting proptype=2. One would code it in emmusr.h and emmusr.cpp. At the beginning of

emmusr.h one would need to insert the compiler directive

#define USR_PROPOSAL_TYPE_IMPLEMENTED

and at the beginning of namespace emm add a binding such as

class usr_proposal;
typedef usr_proposal proposal_type;

Examples are in proposal.cpp in libsmm/src.

print: If print=1, then voluminous debugging information is written to file detail.dat.

Setting print=0 suppresses printing. To completely suppress printing, the control variable

print in the SNP parmfile should be set to 0 also.

seed: Seed for the MCMC chain.

lchain: The MCMC chain is broken up into pieces and written to files rho.000.dat,

rho.001.dat, etc. The variable lchain determines the number of draws per file.

nfile: Determines how many files in addition to rho.000.dat are generated. The total length

of the MCMC chain is R = lchain*(nfile+1). Many other files are produced to describe

the chain such as reject.000.dat, pi.000.dat, stats.000.dat as well as summary files,

files containing variance matrices, etc.

incfac: To increase speed, the chain is cached. The cache is emmcache.dat. After every

run, a new cache emmcache.new is produced which the user should copy to emmcache.dat

if the run was successful. To generate the cache, ρ is put on grid as determined by the

PARAMETER INCREMENTS block described below. The variable incfac allows one to make

this grid coarser or finer without changing the relative increments; it should be a power of

two, e.g. 8 or 0.125.

sclfac: Rescales the proposal standard deviations that are set in the PROPOSAL SCALING

block without changing relative values.

temperature: This variable controls the peakedness of the objective function. Putting

temperature= 2 is like doubling the number of observations from which the SNP score was

computed, which makes the objective function more peaked. Putting temperature= 0.5

would be like halving them. For Bayesian inference it is essential that temperature= 1.

kilse : Computing sandwich standard errors is costly and often unnecessary, as discussed in

Subsection 1.3. Setting kilse= 1 will stop them from being computed. When kilse= 1,
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bootstrap is not called and does not need to be coded. Even for an estimator that does

require the computation of sandwich standard errors, one should set kilse= 1 during the

early hill climbing phase of the chain . When the objective function has reached its plateau

and the stationary portion of the chain has been reached, kilse can be set to 0. This point

is determined graphically as discussed in Section 6.

stride : EMM writes the MCMC chains to files of length lchain as explained above. If

stride=1, every element of the chain is written. If stride=2, every other element is written

and the length of an output files becomes lchain/2. Similarly for higher values of stride.

Stride greater than one reduces memory requirements because values not written are not

stored anywhere. One consequence of this is that statistics such as the Hessian are computed

only from the elements of the MCMC chain that are written, not from all that are generated.

The exceptions are that the mode and the rejection count are computed from all elements

that were generated.

draw from prior : When EMM is used for Bayesian estimation and the prior is proper, it

is useful to be able to draw from the prior for at least two purposes. The first is to be able to

compare the prior and posterior distribution of estimates of parameters and functionals. The

other is as an intermediate step in computing posterior probabilities for model selection as

discussed in, e.g., Gamerman and Lopes (2006, Section 7.2.1). The essential information for

model selection is in the output files named pi.000.dat, pi.001.dat, etc. (to which a user

defined prefix is prepended). Their structure is discussed in more detail later but, breifly, the

information one needs are the likelihood draws, in the second row, and the prior draws in the

third row. When draw_from_prior=0 these will be draws made by comparing the posterior

at the accept/reject step of the MCMC chain, as will be true of all other output files such as

rho.000.dat, rho.001.dat, etc. When draw_from_prior=1 these will be draws made by

comparing the prior at the accept/reject step of the MCMC chain, as will be true of all other

output files. Setting draw_from_prior=1 when the prior is not proper is a ghastly error.

max cache size: EMM caches past values so that rather than compute the objective func-

tion and stats afresh they can be gotten by table lookup. If either of these are costly to

compute then using a cache can reduce run times significantly provided that the param-

eters are put on a grid using the PARAMETER INCREMENTS block described below. At the
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conclusion of a run a file emmcache.new is written. This can be renamed emmcache.dat

and it will be read in and used in the next run. The variable max_cache_size limits the

internal size of this cache and hence the size of emmcache.new. The number of lines in

emmcache.new is max_cache_size times the sum of the number of parameters and the num-

ber of stats, plus one. The cache hit rate is printed to file detail.dat to help guide the

choice of max_cache_size. If the parameters are not put on a grid, the hit rate will be so

low as to make using a cache pointless. Therefore, when the the PARAMETER INCREMENTS

block is missing, set max_cache_size=0.

3.2.3 DATA DESCRIPTION

In the block labeled DATA DESCRIPTION are parameters that specify the dimension of the

data, the number of observations, and govern reading of the data. The data are presumed to

be stored in a file containing rows that have values separated by blanks containing the data

for each observation yt and perhaps additional values such as dates or the index t. There

should be one line for each t = 1, . . . , n. The presence of the line terminating character is

important because the C++ function getline does the reading.

M: The dimension of the vector yt.

n: The number of observations to be read. The value can be smaller than the number of

observations in the file in which case those at the end will not be read.

dsn: The name of the file from which the data are to be read.

fields : Lastly, one has fields. One must use care here because errors can cause the pro-

gram to crash with misleading diagnostic messages, if any at all. As just mentioned, the

presumptions is that the data are arranged in a table with time t as the row index and the

elements of yt in the columns. The blank separated numbers here specify the fields (columns)

of the data in the order in which they are to be assigned to the elements y1t, y2t, . . . , yMt of

yt. It does not hurt to have too many fields listed because only the first M are read. The

disaster is when there are too few (less than M) or one of them is larger than the actual

number of columns in the data set. A few of the first and last values of yt read in are printed

in the file detail.dat which should be checked to make sure the data were read correctly.

Fields can be specified as a single digit or as a range. Thus, one can enter either “1 2 3 5” or
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“1:3 5”. (At time of writing, neither SNP nor GSM permit fields to be entered as a range.)

3.2.4 MODEL DESCRIPTION

The MODEL DESCRIPTION block is straightforward, it gives the dimensions of the pa-

rameters of the model.

len mod parm : The dimension of rho, which is the parameter vector of the model.

len mod func: The dimension of stats, which is the vector of statistics (functionals) of

the model that are computed from a simulation of the model.

3.2.5 MODEL PARMFILE

The vectors mod_pfvec and mod_alvec of type vector<string> that are passed to the

usrmod constructor are defined in the MODEL PARMFILE block. Note that the size of the

simulation computed by sv_simulate is determined by the user supplied usrmod constructor.

If the user wants the simulation size to be a value specified in the parmfile, then that value

goes in this block as in our sample parmfile.

mod parmfile: This is the name of a file containing lines of the user’s choosing. This file is

read and passed to the usrmod constructor as the std::vector of std::string mod_pfvec.

If there is no mod_parmfile then code __none__ as the filename. In the distributed code,

the example self reads the SNP parmfile so that 11114000.fit is entered here instead of

__none__ for that example.

#begin additional lines, #end additional lines: Lines between these two markers

are read and passed to the usrmod constructor as mod_alvec of type vector<string>.

The two marker lines are passed as well so that the first user line is mod_alvec[1] and

not mod_alvec[0]. In the distributed code, many examples use the two lines that set the

simulation length via the variables slen and spin. Even if they are not simulation estimators

as the example elec, these values might still be useful to determine the bootstrap simulation.

3.2.6 OBJFUN PARMFILE

The objfun constructor sees everything that the usrmod constructor sees plus the two vec-

tors obj_pfvec and obj_alvec of type vector<string> that are defined in the OBJFUN

PARMFILE block. The reason that objfun sees everything that usrmod sees is that objfun

20



may have to construct an instance of usrmod to compute the objective function as does the

maximum likelihood example elec.

obj parmfile: This is the name of a file containing lines of the user’s choosing. For our

sample parmfile this file is 11114000.fit which is the output parmfile written by SNP.

This file is read and passed to the objfun constructor as the std::vector of std::string

obj_pfvec. If there is no obj_parmfile then code __none__ as the filename. In the dis-

tributed code, the SNP parmfile is read when the EMM objective function (objtype=0) is

selected.

#begin additional lines, #end additional lines: Lines between these two markers are

read and passed to the usrmod constructor as obj_alvec of type vector<string>. The

two marker lines are passed as well so that the first user line is obj_alvec[1] and not

obj_alvec[0]. In the distributed code, the EDF objfun (objtype=1) uses the variable

lag.

3.2.7 PARAMETER START VALUES

The block labeled PARAMETER START VALUES specifies the first value for the chain. The

simulation it generates must satisfy the support conditions; i.e. sv_usrmod::gen_sim must

return true, sv_usrmod::support must return true, and sv_usrmod::prior must return

scl::dev_val.positive= true for this initial value of ρ. The numbers to the right, 0 or

1, determine whether that element is held fixed or is active. If 0, then the proposal never

moves that element of ρ. To the right of this 0 or 1 the user may add text such as the name

of the parameter. New files parmfile.fit, parmfile.end and parmfile.alt are written

as the MCMC chain progress with the current putative mode of the objective function

replacing the values in PARAMETER START VALUES for .fit and .alt and the last value of ρ

in the chain in the case of .end. The parmfile.end is used to recommence where one left

off; parmfile.fit is used to recommence starting at the mode, which is what one usually

wants to do; and parmfile.alt is used when switching to the conditional move proposal

(proptype=1). If the number of parameters exceeds 20, then parmfile.alt will not be

written. Once the mode has been found, it will not change. Therefore if a parmfile.fit is

used to recommence and nothing in the parmfile is changed, then it may happen that the
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previous run is just reproduced. If the purpose of the new run is to try and improve the

mode, then change seed in block ESTIMATION DESCRIPTION or use parmfile.end.

3.2.8 PARAMETER INCREMENTS

The block labeled PARAMETER INCREMENTS determines the grid for caching. These increments

should be determined by scientific relevance and be as coarse as possible. This is the ideal,

which may not be achievable as discussed below. The increments should be either integer or

fractional powers of two.

These increments determine a grid for the parameters. The proposal will propose moves of

size one or more grid increments. The probability assigned to an increment is proportional to

the ordinate of the normal density with scale as specified in the PROPOSAL SCALING block. For

the case when the proposal scale is the same as the parameter increment, the moves will be (-

2, -1 ,0 ,1 ,2) with probabilities (0.0912128, 0.4087872, 0.0, 0.4087872, 0.0912128). When the

proposal scale is half the parameter increment the moves will be (-1, 0, 1) with probabilities

(0.5, 0.0, 0.5). With a group move, the number of possible moves grows exponentially with

the group size. Thus, if increment and scale are set so that (-1, 0, 1) would be the possibilities

for move-one-at-a-time, then there would be 3len mod parm group move possibilities.

These facts limit the practical choice of grid increments. The minimum effective proposal

scale is one grid increment. If this scale causes the rejection rate to be too large, then

the increment must be reduced regardless of the scientific considerations that dictated the

increment size. If the number of increments that are assigned positive probability becomes

too large, then then there will be little improvement to speed. The fact that the number of

possible moves increases exponentially with group size limits the size of groups that one can

consider.

Here are some fractional powers of two.

5.00000000000000000e-01 = 0.50000000000000000000000
2.50000000000000000e-01 = 0.25000000000000000000000
1.25000000000000000e-01 = 0.12500000000000000000000
6.25000000000000000e-02 = 0.06250000000000000000000
3.12500000000000000e-02 = 0.03125000000000000000000
1.56250000000000000e-02 = 0.01562500000000000000000
7.81250000000000000e-03 = 0.00781250000000000000000
3.90625000000000000e-03 = 0.00390625000000000000000
1.95312500000000000e-03 = 0.00195312500000000000000
9.76562500000000000e-04 = 0.00097656250000000000000
4.88281250000000000e-04 = 0.00048828125000000000000
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2.44140625000000000e-04 = 0.00024414062500000000000
1.22070312500000000e-04 = 0.00012207031250000000000
6.10351562500000000e-05 = 0.00006103515625000000000
3.05175781250000000e-05 = 0.00003051757812500000000
1.52587890625000000e-05 = 0.00001525878906250000000
7.62939453125000000e-06 = 0.00000762939453125000000
3.81469726562500000e-06 = 0.00000381469726562500000
1.90734863281250000e-06 = 0.00000190734863281250000
9.53674316406250000e-07 = 0.00000095367431640625000
4.76837158203125000e-07 = 0.00000047683715820312500
2.38418579101562500e-07 = 0.00000023841857910156250
1.19209289550781250e-07 = 0.00000011920928955078125

3.2.9 PROPOSAL SCALING

These are the standard deviations of the proposal. They should be roughly proportional to

the standard errors of the estimate of ρ if such is known. If not, they can be easily determined

as discussed in Section 6.

3.2.10 PROPOSAL GROUPING

How to specify group moves in the parmfile is discussed in Subsection 6.3. Briefly, in each

matrix, the first element of the first row gives the relative probability with which this group

is selected. In the remaining columns of the first row are the indexes of the parameters in

that group. The first column is the same as the first row. The submatrix bounded by the

first row and column is a correlation matrix. The multivariate normal to move the group is

determined by this correlation matrix and the values in the PROPOSAL SCALING block. Within

the PROPOSAL GROUPING block, the index of every parameter must be accounted for. Those

parameters that are not moved (i.e. have a 0 to their right in the PARAMETER START VALUES

block) are collected into a group that is assigned zero probability of being selected. If the

PROPOSAL GROUPING block is not present, then one is synthesized. One can view EMM’s

interpretation of either the synthesized or user specified PROPOSAL GROUPING block in the

file detail.dat, presuming print=1 in the ESTIMATION DESCRIPTION block.

3.3 Directory Structure

The directory structure of the EMM distribution is as follows:
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3.3.1 snpsrc

The directory snpsrc contains all source code for program snp. Classes that the user can

modify are presented in snpusr.h and defined in snpusr.cpp.

3.3.2 emmsrc

The directory emmsrc contains all source code for program emm, excepting emmusr.h and

emmusr.cpp, which contain headers and code for class usrmod and reside in their own direc-

tory.

3.3.3 svfx

This directory contains the code for stochastic volatility model applied to foreign exchange

data that is used for an example in this Guide. For the svfx example, the class usrmod that

the user must supply is presented in emmusr.h and defined in emmusr.cpp. Also present are

makefiles and data for that example.

3.3.4 self

This directory contains the files emmusr.h and emmusr.cpp for fitting an SNP model model

to itself by EMM. The GSM (General Scientific Models) package runs an MCMC subchain

on an SNP statistical model. The easiest way to tune that chain is to fit SNP to itself using

EMM. The relevant blocks from the EMM parmfile can be used directly in the GSM parmfile

once the chain is tuned. The example in directory self is the one that appears in the GSM

User’s Guide. Also present are makefiles and data for that example.

3.3.5 elec

This directory contains the files emmusr.h and emmusr.cpp for fitting a translog electricity

demand system by maximum likelihood. When it is run, set objtype=1.

3.3.6 var

This directory contains the files emmusr.h and emmusr.cpp for fitting a var by simulated

method of moments. It’s purpose is to illustrate how to code a user’s objective function.

When it is run, set objtype=2.
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3.3.7 hab, lrr, pro

These directories contains the files emmusr.h and emmusr.cpp for fitting three asset pric-

ing models by Bayesian EMM. They illustrate the use of prior information with an EMM

objective function.

3.3.8 lib

The directory lib contains the three libraries libscl, libsnp, and libsmm. The source

code is in libscl/src, the makefiles are in libscl/gpp or libscl/ms, depending on the

compiler. Compilation is done within libscl/gpp for Linux or libscl/ms for Windows with

the result that the library and headers reside in libscl/gpp or libscl/ms after compilation.

Similarly for libsnp, and libsmm.

3.3.9 snprun

The directory snprun contains the makefile to build the snp executable and input files to

run the example. Type make (or nmake for Microsoft) and the snp executable will be built

and ready to run.

3.3.10 emmrun

The directory emmrun contains the makefile to build the emm executable and input files to

run the example. Type make (or nmake for Microsoft) and the emm executable will be built

and ready to run. This folder also contains certain key files described as follows.

control.dat: A file that contains the names of the input parmfile and the prefix for the

output files. Here is an example of a one line control.dat file:

sv.parmfile.in0 sv

The input parmfile is named sv.parmfile.in0 and all output files such as detail.dat,

rho.000.dat, etc. are named sv.detail.dat, sv.rho.000.dat, etc. To prefix control.dat

itself, execute emm with sv.control.dat as a command line argument, i.e.

emm sv.control.dat.
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detail.dat: Voluminous detailed output from the run.

summary.dat: This file summarizes the output giving mean, mode, and standard errors,

provided kilse= 0

rho.000.dat, stats.000.dat, pi.000.dat, reject.000.dat: The file rho.000.dat contains

the MCMC chain for ρ. The file stats.000.dat contains the corresponding values of stats;

Let τ denote the temperature parameter, let ℓ(ρ) = exp(−nsn(ρ)), and let p(ρ) denote the

prior. The file pi.000.dat contains three items corresponding to the MCMC chain for ρ :

(1) log ℓ(ρ) + log p(ρ). (2) log ℓ(ρ). (3) log p(ρ). The file reject.000.dat contains a matrix

whose first column contains the rejection rate for each parameter followed by the overall

rejection rate. The other columns of reject.000.dat are discussed later. There will also

be files rho.001.dat, rho.002.dat, etc. up to the limit specified by nfile.

emmcache.new: Written only if max_cache_size>0. If the run was successful, copy

sv.emmcache.new to sv.emmcache.dat. If a mistake is made and a emmcache for a dif-

ferent project, different seed, different spin (= N0), different slen (= N), etc., the emm will

detect the error and reject the cache.

parmfile.fit : A copy of the input parmfile with the parameter start values replaced by the

mode and scaling variables recomputed so that incfac and sclfac are 1.0. All else is the

same as the input parmfile.

parmfile.end : A copy of the input parmfile with the parameter start values and seed

replaced by the the last value of ρ and seed in the MCMC chain and scaling variables re-

computed so that incfac and sclfac are 1.0. All else is the same as the input parmfile.

parmfile.alt : A copy of the input parmfile with the parameter start values replaced

by the mode and scaling variables recomputed so that incfac and sclfac are 1.0. A

PROPOSAL GROUPING block is inserted and proptype is put to 1. All else is the same as the

input parmfile.

rho mode, rho mode, V hat hess, etc.: Statistics from the run in the form expected for

reading with member vecread of class realmat in library libscl.

The user is free to modify the directory structure to suit the application, but the makefiles

will need to be altered accordingly. We now proceed to the worked examples.
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Figure 1. Changes in Weekly $/DM Spot Exchange Rates, SNP-GARCH. The first panel

is a plot of the data, which are each Friday’s quote over the years 1975 to 1990 expressed as per-

centage change from the previous week. The second panel is a simulation from an SNP fit with

(Lu, Lg, Lr, Lp,Kz, Iz,Kx, Ix) = (1, 0, 0, 1, 0, 0, 0, 0); the third with (1,1,1,1,0,0,0,0), the fourth with

(1,1,1,1,4,0,0,0), and the fifth with (1,1,1,1,4,0,1,0). The parameters Lv and Lw are set to zero. The

parameters Iz, maxIz, and Ix have no effect when M = 1. The parameter maxKz = Kz in each

instance that Kx > 0.

4 The Elementary Stochastic Volatility Model

In Section 6 we use the EMM method to estimate a simple form of the stochastic volatility

model. The data set consists of 834 observations on the daily US dollar to German mark

exchange rate over the years 1975 to 1990 expressed as a percentage change from the previous

week. This is the same series used in the SNP User’s Guide. The data together with

simulations from SNP-GARCH fits are shown in Figure 1.
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Let yt denote the percent change. The stochastic volatility model with a leverage effect

(correlation between return innovations and volatility innovations) is

u1t = z1t (3)

u2t = s
(

r z1t +
√

1 − r2 z2t

)

(4)

vt − b0 = b1(vt−1 − b0) + u2t (5)

yt − a0 = a1(yt−1 − a0) + exp (vt) u1t (6)

where z1t, z2t are iid Gaussian random variables. The parameter vector is

ρ = (a0, a1, b0, b1, s, r)

Early references are Clark (1973) and Tauchen and Pitts (1983). More recent references

are Gallant, Hsieh, and Tauchen (1991, 1997), Andersen (1994), and Durham (2006). See

Shephard (2004) for more background and references.

There is controversy regarding the timing convention in equation (6) and the references

above are not in agreement. The alternative timing convention is

yt − a0 = a1(yt−1 − a0) + exp (vt−1) u1t (7)

which is consistent with an Euler discretization of the continuous time stochastic volatility

model. See Yu (2005) for more details but be aware that his specifications do not include

an autoregressive term to account for the well known slight predictability in daily returns so

that his empirical results may not be relevant.

5 Fitting the Score Generator

The first step to implement the EMM estimator is to estimate the score generator model.

Statistical efficiency requires that the score generator should provide a reasonably good

statistical description of the data. We employ the SNP model described in Gallant and

Tauchen (1992) and in the SNP User’s Guide (Gallant and Tauchen, 2004a). Other score

generators could be used, though this would require more coding.

Change directory to the folder snprun and make the snp executable. Instead of working

through a full SNP specification search, which is described in detail for this example in the
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SNP User’s Guide, we show how to implement the estimator using the best score found

there, namely 11114000.fit.

The settings for the score generator are Lu = 1, Lg = 1, Lr = 1, Lp = 1, Kz = 4, Kx = 0.

These settings define an AR(1) model for {yt} with a GARCH(1,1) conditional scale function

and a time homogeneous nonparametric innovation density with fat tails accommodated via

Kz = 4 . The dependence on the past is through the linear location function and GARCH

scale function. This model is optimal under the Schwarz criterion. It defines the EMM

criterion function for estimation of the stochastic volatility model.

6 Worked Example

We begin with an example to show the user the basics of running the program. The purpose

of these sample runs is to show the user the basic aspects of using the package. At the

outset, to make runs execute quickly, the simulation size, N, and the length of the initial

period to let transients die off, N0, are set to low values. They will be set larger after the

MCMC chain has been tuned. In the code N and N0 are called slen and spin respectively.

6.1 User-Supplied Classes and Files

The user supplies the C++ class usrmod, a control file, and an input parameter file. The

basic task of usrmod to implement the data generation process ρ 7→ {ŷτ (ρ), xτ−1(ρ)}N
τ=1,

which takes a parameter vector ρ and generates a simulated realization from the structural

model. In the example ρ = (a0, a1, b0, b1, s, r) .

To keep a record of our work, we will separately name each control file which means we

will have to use a command line argument when we execute emm. The control file is called

sv.ctrl.000. In our example, this has one line, which is

sv.parm.000 sv

Here, sv.parm.000 is the name of the input parameter file and sv is the prefix to be added

to all output files. The control file can have additional similar lines which allow different

parmfiles for the same or different projects to be run at one time. The prefix must be different

for every line or results will be overwritten.
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In the example, the input parameter file parm.000 is

ESTIMATION DESCRIPTION (required)
SpotRate Project name, pname, char*

2.6 EMM version, defines format of this file, emmver, float
0 Objfun type, 0 EMM, 1 MLE, 2 usr, type, int
0 Proposal type, 0 group_move, 1 cond_move, 2 usr, proptype, int
1 Write detailed output if print=1, int

457 Seed for simulations, iseed, int
1000 Number of MCMC simulations per file, lchain, int

5 Number of MCMC simulation files, nfile, int
1.0 Rescale proposal scaling by this value, sclfac, float
1.0 Rescale parameter increments by this value, incfac, float
1.0 Rescale objfun by this value, temperature, float

1 Sandwich variance not computed if kilse=1, int
1 The stride used to write MCMC simulations, stride, int
0 Draw from prior if draw_from_prior=1, int
0 Max cache size, max_cache_size, int

DATA DESCRIPTION (required) (mod and obj constructors see realmat data(M,n))
1 Dimension of the data, M, int

834 Number of observations, n, int
dmark.dat File name, any length, no embedded blanks, dsn, string
4 Read these white space separated fields, fields, intvec
MODEL DESCRIPTION (required)

6 Number of model parameters, num_mod_parms, int
8 Number of model functionals, num_mod_funcs, int

MODEL PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
__none__ File name, code __none__ if none, mod_parmfile, string
#begin additional lines

5000 Number of observations in simulated data, slen (=N), int
500 Initial simulations to eliminate transients, spin, int

#end additional lines
OBJFUN PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
11114000.fit File name, code __none__ if none, obj_parmfile, string
#begin additional lines
#end additional lines
PARAMETER START VALUES (required)

0.05 1
0.0 1
1.5 1
0.0 1
0.1 1
0.0 1

PROPOSAL SCALING (required)
1.95312500000000000e-03
1.95312500000000000e-03
1.95312500000000000e-03
1.95312500000000000e-03
1.95312500000000000e-03
1.95312500000000000e-03

This file was described in detail in Subsection 3.2 and there is little more about it that

needs to be said here except where the numbers came from. The parameter start values are

set so the stochastic volatility model will reproduce the mean and variance of the data. We

could have done much better but we’ll see if emm can recover from our laziness.

The proposal scalings are set to a power of two near 0.001. This is just a guess. Once
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again we are being lazy. When in doubt, err by setting these values too small.

Looking at the header emmusr.h in Subsection 3.1, we see that there are five member

functions that need to be written: the constructor, the private member that does the sim-

ulation, the member that breaks a simulation up into bootstrap samples, the member that

checks that a proposed ρ satisfies the model’s support conditions, and the prior. Specifically,

code must be supplied in emmusr.cpp to implement these lines from emmusr.h

sv_usrmod
(const scl::realmat& dat, INTEGER len_mod_parm, INTEGER len_mod_func,
const std::vector<std::string>& mod_pfvec,
const std::vector<std::string>& mod_alvec,
std::ostream& detail);

bool gen_bootstrap(std::vector<scl::realmat>& bs);
bool support(const scl::realmat& rho);
libsmm::den_val prior

(const scl::realmat& rho, const scl::realmat& stats);

Everything else has been coded in the header emmusr.h.

The job of the constructor is to initialize the private members of usrmod by parsing

mod_pfvec and mod_alvec We will not write anything to the output stream detail. Here

is the constructor

emm::sv_usrmod::sv_usrmod
(const realmat& dat, INTEGER len_mod_parm, INTEGER len_mod_func,
const std::vector<std::string>& mod_pfvec,
const std::vector<std::string>& mod_alvec,
std::ostream& detail)

: data(dat), lrho(6), lstats(8), variable_seed(740726)
{

vector<string>::const_iterator usr_ptr = mod_alvec.begin();
++usr_ptr;
slen = atoi((usr_ptr++)->substr(0,12).c_str());
spin = atoi((usr_ptr++)->substr(0,12).c_str());

if (lrho != len_mod_parm) {
error("Error, usrmod, constructor, len_mod_parm is set wrong in parmfile");

}

if (lstats != len_mod_func) {
error("Error, usrmod, constructor, len_mod_parm is set wrong in parmfile");

}
}

We will compute four stats for the generated data, min, max, mean, and standard deviation,

and the same four for the latent volatility factor; a total of eight. Otherwise the code

that implements sv_simulate below is a straightforward implementation of Equations 4

through 6 with precaution taken to force class mcmc of mcmc to reject the simulation when

the exp function overflows by returning false when it happens. The documentation for the

31



matrix class realmat is in its header realmat.h which is in the libscl distribution. Here

is the code.

bool emm::sv_usrmod::sv_simulate(INT_32BIT& seed, INTEGER len,
realmat& sim, realmat& stats, realmat& latent)

{
if (sim.get_rows() != 1 && sim.get_cols() != len) {
sim.resize(1,len);

}
if (latent.get_rows() != 1 && latent.get_cols() != len) {
latent.resize(1,len);

}

REAL a0 = rho[1];
REAL a1 = rho[2];
REAL b0 = rho[3];
REAL b1 = rho[4];
REAL s = rho[5];
REAL r = rho[6];

REAL rr2 = sqrt(1.0 - pow(r,2));

REAL vlag = 0.0;
REAL ylag = 0.0;
errno = 0;

for (INTEGER t=1; t<=spin; ++t) {
REAL z1 = unsk(seed);
REAL z2 = unsk(seed);
REAL u1 = z1;
REAL u2 = s*(r*z1 + rr2*z2);
REAL v = b0 + b1*(vlag - b0) + u2;
REAL y = a0 + a1*(ylag - a0) + u1*exp(v); // or u1*exp(vlag)
vlag = v; // see User’s Guide
ylag = y;

}

if (errno == ERANGE) return false;

REAL ymin = REAL_MAX;
REAL ymax = -REAL_MAX;
REAL ymean = 0.0;
REAL ysdev = 0.0;
REAL vmin = REAL_MAX;
REAL vmax = -REAL_MAX;
REAL vmean = 0.0;
REAL vsdev = 0.0;

for (INTEGER t=1; t<=len; ++t) {
REAL z1 = unsk(seed);
REAL z2 = unsk(seed);
REAL u1 = z1;
REAL u2 = s*(r*z1 + rr2*z2);
REAL v = b0 + b1*(vlag - b0) + u2;
REAL y = a0 + a1*(ylag - a0) + u1*exp(v); // or u1*exp(vlag)
vlag = v; // see User’s Guide
ylag = y;
sim[t] = y;
latent[t] = v;
ymin = y < ymin ? y : ymin;
ymax = y > ymax ? y : ymax;
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ymean += y;
ysdev += pow(y,2);
vmin = v < vmin ? v : vmin;
vmax = v > vmax ? v : vmax;
vmean += v;
vsdev += pow(v,2);

}

if (errno == ERANGE) return false;

if (lstats != 8) error("Error, emmusr, wrong size for stats");
if (stats.size() != lstats) stats.resize(lstats,1);

ymean = ymean/REAL(len);
ysdev = sqrt( (ysdev - REAL(len)*pow(ymean,2))/REAL(len) );

vmean = vmean/REAL(len);
vsdev = sqrt( (vsdev - REAL(len)*pow(vmean,2))/REAL(len) );

stats[1] = ymin;
stats[2] = ymax;
stats[3] = ymean;
stats[4] = ysdev;
stats[5] = vmin;
stats[6] = vmax;
stats[7] = vmean;
stats[8] = vsdev;

return true;
}

We have two support conditions to check. The absolute value of r, which is rho[6], must

be less than one. Also, we will require that s, which is rho[5], be positive. Here is the

code that checks them. We could also force the autoregressive parameters a1 and b1 to have

absolute value less than one, but this usually is not necessary for EMM as discussed in

Tauchen (1998).

bool emm::sv_usrmod::support(const realmat& parm)
{

if (parm[5] < 0.0) return false;
if (fabs(parm[6]) > 1.0) return false;
return true;

}

We have no reason to reject a completed simulation other than exp overflow, which we have

already checked for during the simulation itself, so the prior is trivial. Here it is.

den_val emm::sv_usrmod::prior(const realmat& parm, const realmat& stats)
{

return den_val(true, 0.0);
}

If we had wanted to reject simulations for which, say, vmax was too large, we could code

something like this
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den_val emm::sv_usrmod::prior(const realmat& parm, const realmat& stats)
{

if (stats[6] > 1.0e+10) return den_val(false, -REAL_MAX);
return den_val(true, 0.0);

}

REAL_MAX is the largest value that type REAL can hold. Putting -REAL_MAX as the second

member of struct den_val has no effect if den_val’s first member is checked before the

second is used, as it should be. If one forgets to do so, -REAL_MAX approximates the log of

0. The documentation is in header scltypes.h which is in the libscl distribution. With

the prior written thus, the estimation would be subject to the constraint that log volatility

never exceeds 1.0e+10. By using stats and prior in this fashion, it is easy to estimate models

subject to potentially quite complicated nonlinear constraints.

6.2 Running the Program

The EMM program runs alongside the SNP package, which is described in the SNP User’s

Guide. The makefile supplied with the example will build the executable for the example,

though it might need to be edited to suit the user’s preferences and system. To build it,

change directory to emmrun, copy makefile.gpp to makefile, and enter the command make.

The executable program built by the makefile is emm. We now execute emm by typing

./emm sv.ctrl.000

We get a warning messages.

Warning, emm_objfun, 11114000.fit value for toler invalid, reset to root EPS

The warning is because the value of toler in the SNP parmfile, while correct for SNP, is

usually not correct for use in computing I in class asymptotics so program emm resets it.

This message can be disregarded.

EMM writes the following set of files. There would be more if max_cache_size > 0 and

kilse=0 .

sv.V_hat_hess.dat sv.pi.004.dat sv.rho.001.dat sv.stats.001.dat
sv.detail.dat sv.pi.005.dat sv.rho.002.dat sv.stats.002.dat
sv.parmfile.alt sv.reject.000.dat sv.rho.003.dat sv.stats.003.dat
sv.parmfile.fit sv.reject.001.dat sv.rho.004.dat sv.stats.004.dat
sv.pi.000.dat sv.reject.003.dat sv.rho.005.dat sv.stats.005.dat
sv.pi.001.dat sv.reject.004.dat sv.rho_mean.dat sv.summary.dat
sv.pi.002.dat sv.reject.005.dat sv.rho_mode.dat sv.diagnostics.dat
sv.pi.003.dat sv.rho.000.dat sv.stats.000.dat
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The most informative diagnostic is a plot of the MCMC chain for ρ in the files rho.000.dat

through rho.005.dat together with a plot of the first row of files pi.000.dat through

pi.005.dat. The first row is

π = −temperature× n × sn(ρ, θ̃n) + log(prior).

The next two rows are −n × sn(ρ, θ̃n) and log(prior). Figure 2 plots these files at every

tenth point.

The file sv.reject.000.dat looks like this:

Col 1 Col 2 Col 3 Col 4

Row 1 0.039548 0.17700 7.00000 177.000
Row 2 0.072368 0.15200 11.00000 152.000
Row 3 0.17365 0.16700 29.00000 167.000
Row 4 0.0 0.16900 0.0 169.000
Row 5 0.042781 0.18700 8.00000 187.000
Row 6 0.020270 0.14800 3.00000 148.000
Row 7 0.058000 1.00000 58.00000 1000.00

The fourth column gives the number of moves for each parameter with the last row being the

total. The third column gives the number of rejections. The second column is the proportion

that each parameter was moved; i.e. the elements of the fourth column divided by the last

element of the fourth column. The first column gives the rejection rates, by parameter and

in total; i.e. the elements of the third column divided by the corresponding elements of the

fourth column.

It would be more useful to have the aggregate of the files reject.000.dat through

reject.005.dat. There is a program reject.cpp in directory utility with usage “reject

sv.reject.*.dat > reject.out” that does this. The file reject.out looks like this:

Col 1 Col 2 Col 3 Col 4

Row 1 0.011976 0.16700 12.00000 1002.00
Row 2 0.052156 0.16617 52.00000 997.000
Row 3 0.13126 0.16633 131.000 998.000
Row 4 0.0 0.17183 0.0 1031.00
Row 5 0.038974 0.16250 38.00000 975.000
Row 6 0.030090 0.16617 30.00000 997.000
Row 7 0.043833 1.00000 263.000 6000.00

Rejection rates are usually smaller when one is far from the mode than when one is near it.

One way to judge this is by inspecting plots such as Figure 2. The R code, plot.r, that

produced them is included in the distribution. The lines in the plots are too smooth. They
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should be choppier. The rejection rates need to be increased by increasing the scale of the

proposal.

We continue the chain by copying sv.parmfile.fit to sv.parm.001 and changing

sclfac from 1.0 to 2.0 in sv.parm.001. We copy sv.ctrl.000 to sv.ctrl.001 and change

sv.parm.000 to sv.parm.001 in sv.ctrl.001. Finally, we type ./emm sv.ctrl.001 at the

command prompt.

This run produced results much as above. The overall rejection rate went up to 0.067

and π moved from -164.0 to -47.29. We’ll do the same as the above and increase the proposal

scaling by 4.0. Recall that sv.parmfile.fit readjusts the proposal scaling so that sclfac

is 1.0 before we change it to 4.0. Therefore we are now at 8.0 times our original proposal

scaling.

The results are shown in Figure 3. The aggregate rejection rates from files reject.000

through reject.005 are

Col 1 Col 2 Col 3 Col 4

Row 1 0.20858 0.16700 209.000 1002.00
Row 2 0.15246 0.16617 152.000 997.000
Row 3 0.11323 0.16633 113.000 998.000
Row 4 0.25606 0.17183 264.000 1031.00
Row 5 0.30872 0.16250 301.000 975.000
Row 6 0.088265 0.16617 88.00000 997.000
Row 7 0.18783 1.00000 1127.00 6000.00

which are reasonable except for the last, which is r.

We double the scale of the last parameter and run again. The results are shown in

Figure 4. The aggregate rejection rates from files reject.000.dat through reject.005.dat

are

Col 1 Col 2 Col 3 Col 4

Row 1 0.22255 0.16700 223.000 1002.00
Row 2 0.15246 0.16617 152.000 997.000
Row 3 0.10521 0.16633 105.000 998.000
Row 4 0.34045 0.17183 351.000 1031.00
Row 5 0.32615 0.16250 318.000 975.000
Row 6 0.12538 0.16617 125.000 997.000
Row 7 0.21233 1.00000 1274.00 6000.00

The autocorrelation functions are shown in Figure 5. They appear reasonable but do indicate

that longer chains will be required for reliable inference.

We increase the number of MCMC simulations per file, lchain, to 5000 and run again.
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Figure 2. MCMC Chain from Parameter File sv.parm.000. The panels are from top to bottom

a0, a1, b0, b1, s, r, and π. Every tenth point is plotted. R = 6000.
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Figure 3. MCMC Chain from Parameter File sv.parm.002. The panels are from top to bottom

a0, a1, b0, b1, s, r, and π. Every tenth point is plotted. R = 6000.
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Figure 4. MCMC Chain from Parameter File sv.parm.003. The panels are from top to bottom

a0, a1, b0, b1, s, r, and π. Every tenth point is plotted. R = 6000.
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Figure 5. Autocorrelation of Chain from Parameter File sv.parm.003. The panels are from

top to bottom a0, b0, b1, c1, s, and r. Every tenth point is sampled; lag 100 of sampled chain corresponds

to lag 1000 of original chain. R = 6000.
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Figure 6. MCMC Chain from Parameter File sv.parm.004. The panels are from top to bottom

a0, a1, b0, b1, s, r, and π. Every twenty-fifth point is plotted. R = 30000.
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Figure 7. Scatter Plots of Chain from Parameter File sv.parm.004. The variables V1 through

V6 are a0, a1, b0, b1, s, and r respectively. Every twenty-fifth point is plotted. R = 30000.
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6.3 Group Move Proposal

The longer chain is shown in Figure 6, The chain looks like it is starting to stabilize. The

rejection rates are about the same as above. We will next illustrate how the group move

proposal feature of the EMM package is used.

We need to look the correlation matrix and a plot of all possible pairs of scatter plots,

Figure 7, to see if group moves are actually needed. We are using R for the graphics and

the plotting code is included with the distribution. R is public domain software that runs

on nearly any platform that is available at www.r-project.org.

The correlation matrix gotten with R by sampling at the rate of every twenty-fifth point

and putting all correlations that are less than 0.6 to zero is

V1 V2 V3 V4 V5 V6
V1 1 0 0.0000000 0.0000000 0.0000000 0
V2 0 1 0.0000000 0.0000000 0.0000000 0
V3 0 0 1.0000000 0.6738761 -0.6400874 0
V4 0 0 0.6738761 1.0000000 -0.7926057 0
V5 0 0 -0.6400874 -0.7926057 1.0000000 0
V6 0 0 0.0000000 0.0000000 0.0000000 1

There is a relationship among variables V3, V4, and V5, which are parameters b1, s, and

r. The pairwise plots of these three indicate that it is not a strictly linear, tightly packed

relationship. The chain looks to be excellent. There really is no need for grouping here.

The fact that we do not need grouping is no accident. The form of the stochastic volatility

model used was chosen to minimize correlations. We wrote

vt = b0 + b1(vt−1 − b0) + u2t

instead of

vt = b0 + b1vt−1 + u2t

so that b0 and b1 could move independently of each another. Similarly for yt. We wrote

u2t = s
(

r z1t +
√

1 − r2 z2t

)

instead of

u2t = r21z1t + r22z2t

so that the scale parameters s and r could move independently of each other.
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Nonetheless, we will construct a group-move proposal to illustrate how it is done. We

have to construct a PROPOSAL GROUPING block to put in the parmfile. It looks like this

PROPOSAL GROUPING (optional) (frequencies are relative)
0.1 1

1 1.0
0.1 2

2 1.0
0.2 3 4 5

3 1.0 0.7 -0.6
4 0.7 1.0 -0.8
5 -0.6 -0.8 1.0

0.1 6
6 1.0

Each sub-block is a matrix, which defines a group. The number in the (1,1) position is

the relative frequency with which that group is to be sampled. Continuing down the first

column are the indexes of the variables in the group; continuing along the first row are

these same indexes. Filling in the rest of the matrix is the correlation matrix for this group.

The values in the PROPOSAL SCALING block are used as standard deviations to convert these

correlation matrices to variance matrices. Note that every variable must be listed and be in

exactly one group. If some variables are fixed by coding 0’s to the right of the values in the

PARAMETER START VALUES block, emm will pull them out of the groups and put them in a

separate group that is moved with relative frequency 0.0.

6.4 Putting Parameters on a Grid

We shall also take this opportunity to put the parameters on a grid by adding a PARAMETER

INCREMENTS block to the parameter file. As mentioned in Subsection 3.2, putting parameter

increments equal to the parameter scaling allows moves of two increments up or two down

and putting it twice as large allows one move up or down. This is what we shall do.

Also, we put max_cache_size=100000 in the ESTIMATION DESCRIPTION block because

if we did not set it to a positive value, then putting parameters on a grid is pointless. If one

neglects this step, then max_cache_size will be automatically set to 50000.

The complete parmfile (sv.parm.005) looks like this.

PARMFILE HISTORY (optional)
#
# This parmfile was written by EMM Version 2.5 using the following line from
# control.dat, which was read as char*, char*
# --------------------------------------------------------------------------
# sv.parm.004 sv
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# --------------------------------------------------------------------------
#
ESTIMATION DESCRIPTION (required)

SpotRate Project name, pname, char*
2.6 EMM version, defines format of this file, emmver, float

0 Objfun type, 0 EMM, 1 MLE, 2 usr, objtype, int
0 Proposal type, 0 group_move, 1 cond_move, 2 usr, proptype, int
1 Write detailed output if print=1, int

457 Seed for MCMC simulations, iseed, int
5000 Number of MCMC simulations per file, lchain, int

5 Number of MCMC simulation files beyond the first, nfile, int
1.0 Rescale proposal scaling by this value, sclfac, float
1.0 Rescale parameter increments by this value, incfac, float
1.0 Rescale objfun by this value, temperature, float

1 Sandwich variance not computed if kilse=1, int
1 The stride used to write MCMC simulations, stride, int
0 Draw from prior if draw_from_prior=1, int

100000 Max cache size, max_cache_size, int
DATA DESCRIPTION (required) (mod and obj constructors see realmat data(M,n))

1 Dimension of the data, M, int
834 Number of observations, n, int

dmark.dat File name, any length, no embedded blanks, dsn, string
4 Read these white space separated fields, fields, intvec
MODEL DESCRIPTION (required)

6 Number of modal parameters, len_mod_parm, int
8 Number of model functionals, len_mod_func, int

MODEL PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
__none__ File name, code __none__ if none, mod_parmfile, string
#begin additional lines

5000 Number of observations in simulated data, slen (=N), int
500 Initial simulations to eliminate transients, spin, int

#end additional lines
OBJFUN PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
11114000.fit File name, code __none__ if none, obj_parmfile, string
#begin additional lines
#end additional lines
PARAMETER START VALUES (required)

8.14895773998386974e-02 1
2.60176173224806462e-02 1
7.28064108382113773e-02 1
9.34458288546352378e-01 1
1.82976626342656323e-01 1
1.54595167239619968e-01 1

PROPOSAL SCALING (required)
1.56250000000000000e-02
1.56250000000000000e-02
1.56250000000000000e-02
1.56250000000000000e-02
1.56250000000000000e-02
3.12500000000000000e-02

PARAMETER INCREMENTS (optional) (fractional powers of two recommended)
1.56250000000000000e-02
1.56250000000000000e-02
3.12500000000000000e-02
3.12500000000000000e-02
3.12500000000000000e-02
3.12500000000000000e-02

PROPOSAL GROUPING (optional) (frequencies are relative)
0.1 1

1 1.0
0.1 2

2 1.0
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0.2 3 4 5
3 1.0 0.7 -0.6
4 0.7 1.0 -0.8
5 -0.6 -0.8 1.0

0.1 6
6 1.0

From the file sv.detail.dat we can see what the proposal looks like and the cache hit rate.

**********************************************************************
* *
* grid_group_move proposal *
* *
**********************************************************************

Probability select group 0 is 0.2
Group 0 density function is:
prob support in increments
0.0912128 -2
0.4087872 -1
0.0000000 0
0.4087872 1
0.0912128 2

Probability select group 1 is 0.2
Group 1 density function is:
prob support in increments
0.0912128 -2
0.4087872 -1
0.0000000 0
0.4087872 1
0.0912128 2

Probability select group 2 is 0.4
Group 2 density function is:
prob support in increments
0.0000000 -1 -1 -1
0.0088811 -1 -1 0
0.3337195 -1 -1 1
0.0001222 -1 0 -1
0.0799762 -1 0 0
0.0007093 -1 0 1
0.0000036 -1 1 -1
0.0000006 -1 1 0
0.0000000 -1 1 1
0.0000000 0 -1 -1
0.0036870 0 -1 0
0.0575158 0 -1 1
0.0153848 0 0 -1
0.0000000 0 0 0
0.0153848 0 0 1
0.0575158 0 1 -1
0.0036870 0 1 0
0.0000000 0 1 1
0.0000000 1 -1 -1
0.0000006 1 -1 0
0.0000036 1 -1 1
0.0007093 1 0 -1
0.0799762 1 0 0
0.0001222 1 0 1
0.3337195 1 1 -1
0.0088811 1 1 0
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0.0000000 1 1 1

Probability select group 3 is 0.2
Group 3 density function is:
prob support in increments
0.0912128 -2
0.4087872 -1
0.0000000 0
0.4087872 1
0.0912128 2

Cache hit rate = 0.277744
Cache hit rate = 0.321636
Cache hit rate = 0.321402
Cache hit rate = 0.334883
Cache hit rate = 0.364927
Cache hit rate = 0.405152

As seen from the cache hit rate, we reduced our run time by about 35 per cent.

The chain is shown in Figure 8. From the pairs shown in Figure 9 one can see the grid.

The aggregate rejection rates from files reject.000.dat through reject.005.dat are

Col 1 Col 2 Col 3 Col 4

Row 1 0.32152 0.20320 1960.00 6096.00
Row 2 0.25463 0.20173 1541.00 6052.00
Row 3 0.52102 0.33940 5305.00 10182.0
Row 4 0.59444 0.32507 5797.00 9752.00
Row 5 0.60024 0.32787 5904.00 9836.00
Row 6 0.19142 0.19433 1116.00 5830.00
Row 7 0.37250 1.00000 11175.0 30000.0

If we were using the EMM program with a prior to do Bayesian inference, then these rejection

rates are too low. For Bayesian inference it is better if all of them were above 50% so that

the posterior gets adequately explored. For maximum likelihood inference one might prefer

smaller rejection rates to try to keep in the region where a quadratic approximation to the

likelihood is reasonably accurate. More on this later.
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Figure 8. MCMC Chain from Parameter File sv.parm.005. The panels are from top to bottom

a0, a1, b0, b1, s, r, and π. Every twenty-fifth point is plotted. R = 30000.
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Figure 9. Scatter Plots of Chain from Parameter File sv.parm.005. The variables V1 through

V6 are a0, a1, b0, b1, s, and r respectively. Every twenty-fifth point is plotted. R = 30000.
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6.5 The Effect of Temperature

To see the effect of temperature, we shall rerun the chain for sv.parm.005 with a temperature

of 2.0, calling it sv.parm.006. To make the consequences obvious in Figure 10, the first part

of the chain is from the temperature 1.0 chain and the second half is from the temperature

2.0 chain. The aggregate rejection rate increases because the effect of doubling temperature

is the same as doubling the sample size which makes the parameter scaling effectively twice

as large.

Col 1 Col 2 Col 3 Col 4

Row 1 0.42962 0.20343 2622.00 6103.00
Row 2 0.35885 0.20203 2175.00 6061.00
Row 3 0.70446 0.33960 7177.00 10188.0
Row 4 0.80326 0.32530 7839.00 9759.00
Row 5 0.80453 0.32810 7919.00 9843.00
Row 6 0.25317 0.19460 1478.00 5838.00
Row 7 0.50140 1.00000 15042.0 30000.0

The standard stochastic volatility model that we are using here does not fit data from

financial markets well (Gallant, Hsieh, and Tauchen, 1997). One can do much better by

including two stochastic volatility factors, one of which is mean reverting to fatten tails and

the other of which is persistent to capture volatility clustering (Chernov, Gallant, Ghysels,

and Tauchen, 2003). A hint of this can be seen from the chain for b1 in the fourth panel

of Figure 8 where the chain makes occasional excursions into a less persistent regime. As

seen from the fourth panel of Figure 8, an effect of increasing temperature is to damp the

movements of the chain. Although there are no excursions to a less persistent region in the

high temperature half of Figure 8, they do occur if one runs the chain long enough. Their

durations are shorter, however.

From the point of view of getting the MCMC chain to accurately compute the same

asymptotic distribution as would be gotten from computations using analytic derivatives,

keeping the movements of the chain close to the mle is beneficial because it confines the

chain to the region where the likelihood is more accurately approximated by a quadratic.

On the other hand, by not letting the chain make large excusions, we can mislead ourselves

because we may miss noticing that the likelihood is really bimodal.
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Figure 10. MCMC Chains from Parameter File sv.parm.005 and sv.parm.006. The last

half of the chain is from sv.parm.006 which is the same as sv.parm.005 except that temperature is 2.0

instead of 1.0. The first half of the chain is from sv.parm.005. The panels are from top to bottom a0,

a1, b0, b1, s, r, and π. Every twenty-fifth point is plotted. R = 30000.
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6.6 Interpreting the Output

We shall continue by using sv.parmfile.fit that resulted from sv.parm.005 by copying it

to sv.parm.007. We increase the temperature to 2.5 to reflect the considerations discussed

in Subsection 6.5. We remove the group move proposal because it is not needed. We

adjust parameter scaling to compensate for the change in temperature and set the parameter

increments to the same values so that the proposal puts probability on two moves up and

two down. To get a chain that is long enough and uncorrelated enough to compute accurate

averages, in particular the estimate of the Hessian J , we increase the number of MCMC

simulations per file, lchain, to 20000, increase nfile to 9, and set stride to 10. To improve

the accuracy with which the EMM objective function is computed, we increase the simulation

size slen to 10000. For this run, the aggregate rejection rates are

Col 1 Col 2 Col 3 Col 4

Row 1 0.24488 0.16767 8212.00 33535.0
Row 2 0.20729 0.16728 6935.00 33456.0
Row 3 0.11208 0.16814 3769.00 33627.0
Row 4 0.16870 0.16624 5609.00 33248.0
Row 5 0.11132 0.16574 3690.00 33148.0
Row 6 0.13895 0.16495 4584.00 32991.0
Row 7 0.16400 1.00000 32799.0 200000

The MCMC chain is shown in Figure 11.

The primary output file is sv.summary.dat which looks like this:

rhomean rhomode sesand sehess seinfo
0.067607 0.066406 0.050294 0.024447 0.016227
0.036087 0.035156 0.04446 0.028485 0.019562
0.09738 0.097656 0.33038 0.097826 0.030964
0.93709 0.94043 0.076428 0.023172 0.0073957
0.18006 0.18066 0.057519 0.018716 0.0067218
0.12418 0.11719 0.18173 0.085317 0.041642

The log posterior (log prior - objfun) at the mode is -8.6733.

For EMM, if usrmod.prior returns only 0 or 1, objfun is a chi-square
on ltheta - 1 - lrho degrees of freedom. See SNP parmfile for ltheta.

The degrees of freedom for seinfo are 536.

The file shows the chi-square statistic which will be correct if the prior is a zero-one indicator

function in whose support is an open set containing the true value. This is the case in our ap-

plication because member prior of class sv_usrmod always returns den_val.positive=true

and member support only imposes stability conditions and an identification rule. Printed
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is the negative of the normalized value of the optimized objective function. For EMM

(objtype=0) the objective function is

nm′

n(ρ, θ̃n)(Ĩn)−1mn(ρ, θ̃n),

where

mn(ρ, θ̃n) =
1

N

N
∑

t=1

(∂/∂θ) ln f
[

ŷt(ρ) | x̂t−1(ρ), θ̃n

]

,

Ĩn =
1

n

n
∑

t=1

[

(∂/∂θ) ln ft(ỹt | x̃t−1, θ̃n)
][

(∂/∂θ) ln ft(ỹt | x̃t−1, θ̃n)
]′

.

and θ̃n maximizes the likelihood of the auxiliary model f(y|x, θ) as discussed in Subsec-

tion 1.2.

Under correct specification of the structural model, the normalized value of the optimized

EMM objective function is asymptotically X 2 with degrees of freedom equal to the length of

θ minus the length of ρ minus one to account for the SNP normalization rule that A(1,1)=1.

In our instance, ltheta is ten and lrho is six leaving three degrees of freedom. The p-value

is about 0.02.

The file also shows the mode, which is the suggested estimate for EMM, the mean,

and three sets of standard errors: sandwich V = J −1IJ −1, information matrix I−1, and

Hessian J −1. If one is confident that the SNP fit is a good approximation to the true data

generating process, then the standard errors from the Hessian should be used. Otherwise the

sandwich standard errors should be used. However, because the sandwich estimate involves

numerical differentiation and, in the case of EMM, several nonlinear optimizations, accuracy

is a concern.

Sandwich standard errors are sensitive to the MCMC chain tuning parameters. Expe-

rience to date suggests that when the information and Hessian standard errors are roughly

the same order of magnitude then the standard errors are reliable.

Another indicator of reliability are kernel density plots of the marginals of the MCMC

chain for ρ as shown in Figure 12. These plots should look like the normal density. In our

instance there is a small departure in panel four, which is the panel for b1, caused by the

excursions to a less persistent regime seen in panel four of Figure 11. This phenomenon is

discussed in Subsection 6.5. Increasing the temperature further with corresponding decrease
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in proposal scale might correct this. What one is trying to do is sample where the peak of

the objective function is well approximated by a quadratic without being driven to a scaling

that renders the computations unstable. The computation of I is especially finicky because

it involves numerous nonlinear optimizations to recompute SNP’s θ.

Also produced are files that allow access to the components of the computations reported

in sv.summary.dat to full machine precision. Their contents are obvious from the labels.

sv.V_hat_hess.dat sv.rho_mean.dat
sv.V_hat_info.dat sv.rho_mode.dat
sv.V_hat_sand.dat

Although in theory either the mean or the mode can be used as an estimate of rho, in

most instances the mode is preferable. This is because the mode is what optimizes the

EMM objective function and the parameters of the mode will generate the simulation that

produced the mode. The mean may not even be suitable for generating a simulation because

the parameter values may not be in the model’s support. It is also of interest to examine

kernel density plots of stats, which are the statistics s(ρ) computed from the simulations

ρ 7→ {ŷτ (ρ)}N

τ=1 7→ s(ρ) for each ρ in the MCMC chain. They are shown in Figure 13.
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Figure 11. MCMC Chain from Parameter File sv.parm.007. The panels are from top to

bottom a0, a1, b0, b1, s, r, and π. Every hundredth point is plotted. R = 200000.
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Figure 12. Kernel Density Estimates from Chain of Parameter File sv.parm.007. The

variables from top to bottom are a0, a1, b0, b1, s, and r. Kernel is computed from every hundredth

point. R = 200000.
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Figure 13. Kernel Density Estimates of Stats from Parameter File sv.parm.007. The

variables from top to bottom are the minimum, maximum, mean, and standard deviation of yt followed

by the same for vt. Kernel is computed from every hundredth point. R = 200000.
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6.7 Score Diagnostics

The file sv.diagnostics.dat contains the normalized mean SNP score vector under the

model, which is

√
nm′

n(ρ̃n, θ̃n) =
1

N

N
∑

τ=1

√
n(∂/∂θ) ln f

(

ŷτ (ρ̃n) | x̂τ−1(ρ̃n), θ̃n

)

,

along with the unadjusted standard errors of the normalized scores, and the corresponding

quasi-t-statistics. The unadjusted standard deviations are the square roots of the diagonal

elements of Ĩn, and the quasi-t-ratios are the ratios of normalized scores to the unadjusted

standard deviations. Here is an example of file sv.diagnostics.dat from sv.parm.007:

Score diagnostics:
normalized standard

Index mean score error t-statistic descriptor
1 1.36398 1.96687 0.69348 a0[1] 1
2 -1.93021 1.96554 -0.98203 a0[2] 2
3 -2.14192 1.93646 -1.10610 a0[3] 3
4 -2.41360 1.97982 -1.21910 a0[4] 4
5 0.00000 0.00000 0.00000 A(1,1) 0 0
6 0.09779 1.33933 0.07301 b0[1]
7 -0.25862 1.02792 -0.25160 B(1,1)
8 -0.90908 2.17472 -0.41802 R0[1]
9 0.18832 2.60930 0.07217 P(1,1) s
10 2.63979 6.82532 0.38676 Q(1,1) s

The quasi-t-ratios are not actually asymptotically N(0, 1) because they take account only

of the randomness in θ̃n, while treating ρ̂n as if it were the fixed value ρ0. Interestingly, the

unadjusted standard errors are biased upwards (Newey, 1985) and (Tauchen, 1985) so the

quasi-t-ratios are downward biased relative to 2.0. The quasi-t-ratios are still useful for

assessing how well the model fits along various dimensions. A quasi-t-statistic above 2.0 still

indicates failure to fit the corresponding score. The quasi-t-ratios are particularly useful for

assessing the underlying causes of a statistically significant chi-square statistic.

6.8 More is Better?

We copied sv.parm.007 to sv.parm.008, changed slen (= N) to from 10000 to 20000 and

left all else the same. Here is the result:

rhomean rhomode sesand sehess seinfo
0.074536 0.074219 0.040543 0.023101 0.016755
0.039306 0.035156 0.0455 0.028555 0.019418
0.091753 0.089844 0.33007 0.095939 0.029408
0.93609 0.93848 0.08281 0.021899 0.0061191
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0.17976 0.18066 0.064532 0.018885 0.0061137
0.11755 0.10156 0.17811 0.084962 0.042845

The log posterior (log prior - objfun) at the mode is -8.7582.

For EMM, if usrmod.prior returns only 0 or 1, objfun is a chi-square
on ltheta - 1 - lrho degrees of freedom. See SNP parmfile for ltheta.

The degrees freedom for seinfo are 526.

There is not much change. The MCMC chain looks the same as Figure 11. It would seem

that with MCMC methods slen can be smaller than with methods that rely on nonlinear

optimization. Experience acquired with earlier versions of EMM that relied on nonlinear

optimizers rather than MCMC methods suggests that 50000 is pushing the limits of stability

and 100000 is more reasonable.

6.9 Criterion Difference

Confidence intervals can also be obtained by inverting the criterion difference test based

on the asymptotic chi-square distribution of the optimized objective function (Gallant and

Tauchen, 1996b, 1997). By way of explanation, let

qi(ρi) = n max
ρ, ρifixed

mn(ρ, θ̃n)(Ĩn)−1mn(ρ, θ̃n),

denote the profile objective function with every parameter other than ρi optimized out. The

set {ρi : qi(ρi)− qi(ρ̂i) ≤ X 2
1−α} is a level-α confidence interval for parameter ρi obtained by

inverting the criterion difference test. (Technically, this set is a confidence region, because

it could be disconnected, though we shall continue to use the more intuitive term of con-

fidence interval.) The interval is the set of all values of ρi for which the difference ρ̂i − ρi

is statistically insignificant under a one-degree of freedom chi-square test. Simply put the

interval is the set of acceptable null hypotheses for ρi. This confidence interval has better

properties than conventional Wald-type confidence intervals computed from the standard

errors in sv.summary.dat. It reflects asymmetries in the objective function and is invariant

under nonlinear reparametrization.

The easiest way to find the boundary

qi(ρi) − qi(ρ̂i) = X 2
1−α
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is to compute qi(ρi) for values near where the standard error for ρi in sv.summary.dat

suggests the solution ought to be and interpolate. We will illustrate for i = 4, which is

the autoregressive coefficient b1 of the volatility equation. The values we shall use are ρ4 =

0.60, 0.65, 0.71, 0.96, 0.97, 0.98. The standard error provided good guidance for the three

points on the right. The three on the left had to be found by trial and error. One needs to

bracket the interval by getting points to the left and right of ρ̂i that satisfy qi(ρi)− qi(ρ̂i) >

X 2
1−α. In this case the profile objective function q4(ρ4) is not well approximated by a quadratic

so the guidance provided by the standard error was not very helpful at the left end. The

reasons for this are the model’s deficiencies that were discussed in Subsection 6.5. A tedious

succession of fits on the left was required to find the point ρ4 = 0.60.

The trial points are coded in parmfiles which we have labeled sv60.parmfile.in0

through sv98.parmfile.in0. The control file looks like this for the six points displayed

in Table 1; the middle point is from the sv.summary.dat file in Subsection 6.6.

sv60.parmfile.in0 sv60
sv65.parmfile.in0 sv65
sv71.parmfile.in0 sv71
sv96.parmfile.in0 sv96
sv97.parmfile.in0 sv97
sv98.parmfile.in0 sv98

Here is what sv97.parmfile.in0 looks like.

PARMFILE HISTORY (optional)
#
# This parmfile was written by EMM Version 2.5 using the following line from
# control.dat, which was read as char*, char*
# --------------------------------------------------------------------------
# sv.parm.007 sv
# --------------------------------------------------------------------------
#
ESTIMATION DESCRIPTION (required)

SpotRate Project name, pname, char*
2.6 EMM version, defines format of this file, emmver, float

0 Objfun type, 0 EMM, 1 MLE, 2 usr, objtype, int
0 Proposal type, 0 group_move, 1 cond_move, 2 usr, proptype, int
1 Write detailed output if print=1, int

457 Seed for MCMC simulations, iseed, int
20000 Number of MCMC simulations per file, lchain, int

9 Number of MCMC simulation files beyond the first, nfile, int
1.0 Rescale proposal scaling by this value, sclfac, float
1.0 Rescale parameter increments by this value, incfac, float
2.5 Rescale objfun by this value, temperature, float

1 Sandwich variance not computed if kilse=1, int
10 The stride used to write MCMC simulations, stride, int
0 Draw from prior if draw_from_prior=1, int

75000 Max cache size, max_cache_size, int
DATA DESCRIPTION (required) (mod and obj constructors see realmat data(M,n))

1 Dimension of the data, M, int
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834 Number of observations, n, int
dmark.dat File name, any length, no embedded blanks, dsn, string
4 Read these white space separated fields, fields, intvec
MODEL DESCRIPTION (required)

6 Number of modal parameters, len_mod_parm, int
8 Number of model functionals, len_mod_func, int

MODEL PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
__none__ File name, code __none__ if none, mod_parmfile, string
#begin additional lines

10000 Number of observations in simulated data, slen (=N), int
500 Initial simulations to eliminate transients, spin, int

#end additional lines
OBJFUN PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
11114000.fit File name, code __none__ if none, obj_parmfile, string
#begin additional lines
#end additional lines
PARAMETER START VALUES (required)

6.64062500000000000e-02 1
3.51562500000000000e-02 1
9.76562500000000000e-02 1
9.70000000000000000e-01 0
1.80664062500000000e-01 1
1.17187500000000000e-01 1

PROPOSAL SCALING (required)
7.81250000000000000e-03
7.81250000000000000e-03
7.81250000000000000e-03
1.95312500000000000e-03
1.95312500000000000e-03
1.56250000000000000e-02

PARAMETER INCREMENTS (optional) (fractional powers of two recommended)
7.81250000000000000e-03
7.81250000000000000e-03
7.81250000000000000e-03
1.95312500000000000e-03
1.95312500000000000e-03
1.56250000000000000e-02

The summary file that results from sv97.parmfile.in0 looks like this.

rhomean rhomode sesand sehess seinfo
0.059575 0.058594 0.02885
0.044627 0.042969 0.027549
0.25409 0.25391 0.06729
0.96973 0.96973 0
0.1427 0.14355 0.012104

0.15042 0.14844 0.094205

The log posterior (log prior - objfun) at the mode is -12.79.

For EMM where objfun.prior returns only 0 or 1 this is a chi-square
on ltheta - 1 - lrho degrees freedom. See SNP parmfile for ltheta.

Notice that even though we coded ρ4 = 0.97, the coded value got put on the grid so that

the actual value to which q4(ρ4) corresponds is ρ4 = 0.96973; a value with more significant

digits is in sv97.rho_mode.dat. Zero is not on the grid. The first positive point on the grid

is half the increment and the first negative point is minus half the increment. There are no

sandwich standard errors in the summary file because kilse= 1.
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Table 1. Criterion Differences for ρ4.

ρ4 q4(ρ4) q4(ρ4) − q4(ρ̂4)

0.97949 18.629 9.9557
0.96973 12.790 4.1167
0.95996 9.9702 1.2969

0.93709 8.6733 0.0

0.71973 11.939 3.2657
0.64941 12.289 3.6157
0.60059 12.544 3.8707

Notes: The 95% critical point of a χ2 on 1 df. is 3.841. R = 5000.

We fit a quadratic to the first three values in the first and third columns of Table 1

and solved for the point where the quadratic equals 3.841 to get the upper end of the the

criterion difference confidence interval. Similarly for the lower using the last three values.

The interval we obtained is

(0.606, 0.969)

The confidence interval computed from the sandwich standard error in file sv.summary.dat

of Subsection 6.6 is

(0.774, 1.11).

This interval does not reflect the sharp rise of the profile objective function on the right nor

its slow rise on the left.

As remarked above, the criterion difference confidence intervals reflect asymmetries in

the objective function and are to be preferred. They are also safer from a numerical analysis

point of view because they only require that the mode be accurately determined by the

MCMC chain, which requires neither careful tuning to try and get I accurately determined

nor excessive length to get J accurately computed.

6.10 Running on a Parallel Machine

The parallel version of EMM, which is emm_mpi, is similar to the serial version, which is emm,

but with some quirks caused by restrictions imposed by the LAM implementation of MPI
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for which the code was written. These are that path names must be absolute, that command

line parameters should not be used, and that subnodes cannot print anything.

The way the absolute path name requirement is handled is to supply a header pathname.h

that contains the absolute path name and builds it into the code at compile time. This header

is generated automatically by the makefile makefile.mpi included with the distribution. It

assumes that the build occurs in the same directory in which data, parmfiles, etc. are found.

The command line requirement is met by always using the file control.dat rather than

entering a file name on the command line. Also, for the parallel version, only the first line

of control.dat is read and processed.

The no print requirement is handled by always coding print= 0 on the SNP parmfile. If

this is not done, at best an unintelligible mess will be printed to standard output, at worst

the program will crash.

For our example, here is pathname.h which was generated automatically by the makefile:

#define PATHNAME "/home/arg/r/emm_develop/test_mpi"

This is control.dat:

sv.parm.007 sv

Running on a parallel machine requires initiation of MPI prior to execution. This is

handled by a shell script emm_mpi.lam_7.0.sh included with the distribution:

#! /bin/sh

# This shell script works for an 8 box cluster with 2 mono core CPUs
# per box running LAM Version 7.0. The host node is named n0 and the
# subnodes are named n1, n2, n3, n4, n5, n6, n7.

echo n0 > lamhosts
echo n1 >> lamhosts
echo n2 >> lamhosts
echo n3 >> lamhosts
echo n4 >> lamhosts
echo n5 >> lamhosts
echo n6 >> lamhosts
echo n7 >> lamhosts

test -f emm_mpi.err && mv -f emm_mpi.err emm_mpi.err.bak
test -f emm_mpi.out && mv -f emm_mpi.out emm_mpi.out.bak

rm -f core core.*

lamboot -v lamhosts

RC=$?

case $RC in
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0) ;;
1) exit 1;;
esac

make -f makefile.mpi.lam_7.0 >emm_mpi.out 2>&1 && \
mpirun -v -O -D -s h N N \
${PWD}/emm_mpi >>emm_mpi.out 2>emm_mpi.err

RC=$?

case $RC in
0) exit 0 ;;
esac

exit 1;

Also included with the distribution are shell scripts and makefiles for Version 7.1 of LAM

and for Version 2.1 of OpenMPI.

The results of a run are a set of files similar to those for the serial version. Instead of

files being named like sv.rho.001.dat they are named like sv.rho.015.001. This would be

ifile=001 produced by processor 15. (There are 16 processors numbered 0 to 15 because

each of the eight nodes has two processors.) Files from one processor can be meaningfully

concatenated. Files from different processors start at the same value of ρ (which should be

the mode of the posterior to prevent initial transients) but use a different seed. The files

sv.emmcache.new, sv.rho_mode.dat, etc. are jointly produced by all processors.

Here are the aggregate rejection counts from running sv.parm.007 on this parallel ma-

chine

Col 1 Col 2 Col 3 Col 4

Row 1 0.25140 0.16661 125661 499842
Row 2 0.20994 0.16672 105002 500155
Row 3 0.11462 0.16668 57317.0 500047
Row 4 0.16104 0.16658 80478.0 499746
Row 5 0.11315 0.16671 56591.0 500144
Row 6 0.14017 0.16672 70106.0 500161
Row 7 0.16504 1.00000 495135 3000000

and here is the file sv.summary.dat

rhomean rhomode sesand sehess seinfo
0.068852 0.066406 0.053952 0.024436 0.014774
0.035004 0.035156 0.049452 0.028573 0.01835
0.079053 0.097656 0.48568 0.10306 0.022898
0.93329 0.94043 0.14514 0.027875 0.0057576
0.18233 0.18066 0.079283 0.020861 0.0064226
0.12357 0.11719 0.18682 0.083871 0.039562

The log posterior (log prior - objfun) at the mode is -8.6733.

For EMM, if usrmod.prior returns only 0 or 1, objfun is a chi-square
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on ltheta - 1 - lrho degrees of freedom. See SNP parmfile for ltheta.

The degrees of freedom for seinfo are 113310.

The run produced three million MCMC trials with a stride of ten, which leaves us with

300,000 trials fragmented into 15 × 10 = 150 files. The program combine in subdirectory

utility with usage

../utility/combine prefix processors nfiles stride

will combine the chains from each processor into one file using a stride to reduce length.

In the command line, prefix refers to the prefix in control.dat, which is sv in our case,

processors is as above, which is 15 in our case, nfiles is the value from the parmfile named

in control.dat, which is sv.parm.007 with nfiles=9 in our case, and stride is set by

the user. Here are our choices

../utility/combine sv 15 9 10

which will reduce the MCMC chain to length 30,000 and put 15 chains into a subdirectory

combined_files. The concatenated chain and its autocorrelations sampled at every tenth

point are shown in Figures 14 and 15. The net sampling rate in these figures is every

thousandth point of the original chain of length 3,000,000. Notice the excursions of b1 into

a less persistent region in the fourth panel of Figure 14.
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Figure 14. Parallel Machine MCMC Chain from Parameter File sv.parm.007. The panels

are from top to bottom a0, a1, b0, b1, s, r, and π. Every thousandth point is plotted. R = 3, 000, 000.
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Figure 15. Parallel Machine Autocorrelation of Chain from Parameter File sv.parm.007.

The panels are from top to bottom a0, b0, b1, c1, s, and r. Every thousandth point is sampled.

R = 3, 000, 000.
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7 Maximum Likelihood Estimation

Implementing a usrmod for maximum likelihood is much the same as implementing a usrmod

for EMM. Recall, that the header libsmm/src/libsmm_base.h that defines the interface is

#include "libscl.h"

namespace libsmm {

/* Now in libscl

struct den_val {
bool positive;
REAL log_den;

den_val() : positive(false), log_den(-REAL_MAX) { }
den_val(bool p, REAL l) : positive(p), log_den(l) { }

};

*/

class usrmod_base {
public:
virtual INTEGER len_rho() = 0;
virtual INTEGER len_stats() = 0;
virtual bool gen_sim(scl::realmat& sim, scl::realmat& stats) = 0;

//Same seed every call
virtual void get_rho(scl::realmat& rho) = 0;
virtual void set_rho(const scl::realmat& rho) = 0;
virtual bool support(const scl::realmat& rho) = 0;
virtual den_val prior(const scl::realmat& rho,

const scl::realmat& stats) = 0;
virtual void write_usrvar(const char* filename) { return; }
virtual ~usrmod_base() {}
virtual bool gen_bootstrap(std::vector<scl::realmat>& bs)

//New seed each call
{return false;}

virtual void set_data(const scl::realmat& dat) {}
virtual libsmm::den_val likelihood(scl::realmat& predicted,

scl::realmat& residuals)
{return den_val(false,-REAL_MAX);}

};

}

The code for all member functions except set_data and likelihood has been discussed

previously. Nothing changes here except that for maximum likelihood the argument sim

of gen_sim is never used and so code to fill it does not need to be supplied. Also, for

maximum likelihood, as with EMM, I = J as discussed in Subsection 1.3. Therefore

one can set kilse=1 in the ESTIMATION DESCRIPTION block of the parmfile in which case

gen_bootstrap is never called and does not need to be coded. However, as with EMM one

can code gen_boostrap and compute sandwich standard errors anyway. To illustrate, we
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shall code gen_boostrap and return bootstrap samples generated from model residuals.

Maximum likelihood uses the data and rho to compute the likelihood and therefore

needs a copy of both rho and the data, usually stored as realmats in the private part of

class usrmod. The purpose of the member function set_data(const realmat& dat) is to

replace data with dat. However, because set_data is only called if kilse=0, data must

be set by the usrmod constructor as well. If this step is overlooked, the EMM program will

crash.

The purpose of likelihood is to return the likelihood computed from rho and the data

as a den_val(p,l), where p is true if rho and the data satisfy the support conditions that

pertain to the application and l is the log likelihood L(ρ).

The log likelihood has the property that −2L(ρo) is distributed as a chi square, where

ρo denotes the true value of the parameter ρ. According to the theory discussed in Sub-

section 1.3, any statistical objective function with this property can be returned as l. In

particular, if m′(ρ)[W (ρ)]−1m(ρ) is a GMM objective function based on moment equations

m(ρ) = 1
n

∑n
t=1 m(yt, ρ) and a weighting matrix W (ρ) scaled so that W (ρ) converges to a

constant as the sample size n increases and such that the chi square property is satified, then

−1
2
nm′(ρ)(W )−1m(ρ) can be returned as l. For example, if m(yt, ρ

o) is iid, then

W (ρ) =
1

n

n
∑

t=1

[m(yt, ρ) − m(ρ)] [m(yt, ρ) − m(ρ)]′ ,

is a suitably scaled weighting matrix for which the chi square property is satisfied. Note

that we have subtracted off the mean in computing W . This is because the estimation

method is MCMC and one does not want an absurd value of a proposed ρ to be accepted

simply because it makes W (ρ) ridiculously large. Also, as mentioned earlier and as discussed

by Gallant and Hong (2007), it is perfectly acceptable to code a meaningful prior and to

view the MCMC chain produced by the EMM program as a simulation whose stationary

distribution is a Bayesian posterior.

We will illustrate with the electricity demand system described in detail in Chapter 5 of

Gallant (1987). Briefly it is as follows. Given a vector of prices divided by expenditure x,

an expenditure “share” is computed as

s = a + Bx
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where a is a vector with last element −1 and B is a symmetric matrix. With these normal-

ization conventions, an expenditure “share” actually has all elements negative and does not

sum to one. When using conventional quasi Newton optimizers, imposing the constraint on

a and B that this be so for all xt observed in the data is actually quite difficult. However, as

we shall see, it is trivial when using the EMM package. The “share” s is presumed to be the

location parameter of a logistic normal distribution. If an observed share vector y and the

“share” vector s both have dimension d and y(1) and s(1) represent a vector containing the

first d − 1 elements of these vectors, then the logistic normal density can be characterized

by saying that

log(y(1)/yd) ∼ Nd−1

[

log(s(1)/sd), Σ
]

where NM(µ, Σ) is the multivariate normal of dimension M and the log function is applied

to a vector element by element. We shall parameterize Σ by means of its Cholesky factors:

Σ = RR ′, where R is upper triangular. In our example, d = 3 and M = d − 1 = 2.

Here is the emmusr.h that declares elec_usrmod:

#include "libsnp.h"
#include "libsmm.h"
#include "emm_base.h"
#include "snp.h"

namespace emm {

class elec_usrmod;

typedef elec_usrmod usrmod_type;

class elec_usrmod : public libsmm::usrmod_base {
private:

scl::realmat data;
scl::realmat rho;
INTEGER blen;
INTEGER lrho;
INTEGER lstats;
INT_32BIT variable_seed;
scl::realmat a;
scl::realmat B;
scl::realmat R;
void set_parms();

public:
elec_usrmod

(const scl::realmat& dat, INTEGER len_mod_parm, INTEGER len_mod_func,
const std::vector<std::string>& mod_pfvec,
const std::vector<std::string>& mod_alvec,
std::ostream& detail);

INTEGER len_rho() {return lrho;}
INTEGER len_stats() {return lstats;}
bool gen_sim(scl::realmat& sim, scl::realmat& st)

{st.resize(1,1,0.0); return true;}
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bool gen_bootstrap(std::vector<scl::realmat>& bs);
void get_rho(scl::realmat& parm) { parm = rho; }
void set_rho(const scl::realmat& parm) {rho = parm; set_parms();}
void set_data(const scl::realmat& dat) { data = dat; }
bool support(const scl::realmat& rho);
libsmm::den_val prior(const scl::realmat& rho,

const scl::realmat& stats);
libsmm::den_val likelihood(scl::realmat& yhat, scl::realmat& zhat);
void write_usrvar(const char* filename)
{

scl::realmat yhat, zhat;
if (likelihood(yhat,zhat).positive) {

vecwrite(filename, yhat);
}

}
};

}

Here is the emmusr.cpp that defines elec_usrmod:

#include "libsmm.h"
#include "emm.h"

using namespace scl;
using namespace libsmm;
using namespace emm;
using namespace std;

emm::elec_usrmod::elec_usrmod
(const realmat& dat, INTEGER len_mod_parm, INTEGER len_mod_func,
const std::vector<std::string>& mod_pfvec,
const std::vector<std::string>& mod_alvec,
std::ostream& detail)

: data(dat), rho(), blen(23), lrho(11), lstats(1),
variable_seed(740726), a(), B(), R()

{
vector<string>::const_iterator usr_ptr = mod_alvec.begin();
++usr_ptr;
blen = atoi((usr_ptr++)->substr(0,12).c_str());

if (lrho != len_mod_parm) {
error("Error, usrmod, constructor, len_mod_parm is set wrong in parmfile");

}

if (lstats != len_mod_func) {
error("Error, usrmod, constructor, len_mod_func is set wrong in parmfile");

}

if (blen < 2*lrho+1) {
blen = 2*lrho+1;
warn("Warning: usrmod, constructor, blen increaed to 2*lrho+1");

}

}

void emm::elec_usrmod::set_parms()
{
a.resize(3,1);
B.resize(3,3);
R.resize(2,2);

a[1] = rho[1];
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a[2] = rho[2];

B(1,1) = rho[3];
B(1,2) = rho[4];
B(2,2) = rho[5];
B(1,3) = rho[6];
B(2,3) = rho[7];
B(3,3) = rho[8];

R(1,1) = rho[9];
R(1,2) = rho[10];
R(2,2) = rho[11];

a[3] = -1.0;

B(2,1) = B(1,2);
B(3,1) = B(1,3);
B(3,2) = B(2,3);

R(2,1) = 0.0;
}

den_val emm::elec_usrmod::likelihood(realmat& yhat, realmat& zhat)
{
if (!support(rho)) return den_val(false,-REAL_MAX);;

INTEGER r = data.get_rows();
INTEGER n = data.get_cols();

if (r != 5) error("Error, elec_usrmod, likelihood, bad data");
if (rho.get_rows() != 11) error("Error, elec_usrmod, likelihood, bad parm");

realmat y = data("1:2","");
realmat x = data("3:5","");

realmat s = B*x;
for (INTEGER t=1; t<=n; ++t) {

s(1,t) += a[1];
s(2,t) += a[2];
s(3,t) += a[3];

}

for (INTEGER t=1; t<=n; ++t) {
for (INTEGER i=1; i<=s.size(); ++i) {

if (s[i] >= 0.0) return den_val(false,-REAL_MAX);
}

}

yhat.resize(2,n);
zhat.resize(2,n);

realmat ehat(2,n);

for (INTEGER t=1; t<=n; ++t) {
REAL bot = log(-s(3,t));
yhat(1,t) = log(-s(1,t)) - bot;
yhat(2,t) = log(-s(2,t)) - bot;
ehat(1,t) = y(1,t) - yhat(1,t);
ehat(2,t) = y(2,t) - yhat(2,t);

}

realmat P = inv(R);

72



zhat = P*ehat;

REAL q = 0.0;

for (INTEGER t=1; t<=n; ++t) {
q += pow(zhat(1,t),2) + pow(zhat(2,t),2);

}

q *= (-0.5);

REAL detR = R(1,1)*R(2,2);

q -= REAL(n)*log(detR);

const REAL pi = 3.14159265358979312e+00;

q -= REAL(n)*log(sqrt(2.0*pi));

return den_val(true,q);
}

bool emm::elec_usrmod::support(const realmat& parm)
{
if (parm[9] <= 0.0) return false;
if (parm[11] <= 0.0) return false;

return true;
}

den_val emm::elec_usrmod::prior(const realmat& rho_in, const realmat& stats)
{
return den_val(true, 0.0);

}

bool emm::elec_usrmod::gen_bootstrap(vector<realmat>& bs)
{
if (!support(rho)) return false;

realmat yhat, zhat;

den_val dv = likelihood(yhat, zhat);

if (!dv.positive) return false;

INTEGER len = 2*lrho+1;
INTEGER len_vec = bs.size();

if (len_vec != len) {
bs.resize(len);

}

INTEGER n = data.get_cols();
realmat sim(5,n);
realmat x, z, e, s;

for (INTEGER i=0; i<len; ++i) {
for (INTEGER t=1; t<=n; ++t) {

x = data("3:5",t);
INTEGER u = iran(variable_seed, n-1);
++u;
z = zhat("",u);
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e = R*z;
s = B*x;
s[1] += a[1];
s[2] += a[2];
s[3] += a[3];
for (INTEGER j=1; j<=s.size(); ++j) {

if (s[j] >= 0.0) return false;
}
REAL bot = log(-s[3]);
sim(1,t) = log(-s[1]) - bot + e[1];
sim(2,t) = log(-s[2]) - bot + e[2];
sim(3,t) = x[1];
sim(4,t) = x[2];
sim(5,t) = x[3];

}
bs[i] = sim;

}

return true;
}

All is as described earlier but attention needs to be called to the constructor and member

functions (methods) set_parms, gen_sim, gen_bootstrap, and likelihood.

Note that the constructor for elec_usrmod sets the data. As mentioned earlier, this is

essential.

The member function set_parms maps the parameter ρ into the vector a and matrices

B and R.

As coded here, the method gen_bootstrap uses draws from the empirical distribution

of standardized model residuals to generate bootstrap samples.

The method gen_sim of elec_usrmod doesn’t do anything but set stats to the same

dimension as coded in the parameter file and fill it with zeros.

The method likelihood of elec_usrmod computes

log nd−1

(

log(y(1)/yd)
∣

∣

∣ log(s(1)/sd), Σ
)

for each datum in data and accumulates them in q. Note in particular the statement

if (s[i] >= 0.0) return den_val(false,-REAL_MAX); that imposes the constraint that

s have all entries negative for all xt.

This code is not sensitive to tuning parameters and runs fast. Start values were taken

from Chapter 5 of Gallant (1987). Herewith follows the parameter file.

PARMFILE HISTORY (optional)
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#
# This parmfile was written by EMM Version 2.5 using the following line from
# control.dat, which was read as char*, char*
# --------------------------------------------------------------------------
# el.parm.000 el
# --------------------------------------------------------------------------
#
# a[1] = rho[1];
# a[2] = rho[2];
#
# B(1,1) = rho[3];
# B(1,2) = rho[4];
# B(2,2) = rho[5];
# B(1,3) = rho[6];
# B(2,3) = rho[7];
# B(3,3) = rho[8];
#
# R(1,1) = rho[9];
# R(1,2) = rho[10];
# R(2,2) = rho[11];
#
# a[3] = -1.0;
#
# B(2,1) = B(1,2);
# B(3,1) = B(1,3);
# B(3,2) = B(2,3);
#
# R(2,1) = 0.0;
#
# s = a + Bx
# e = Rz
#
# y[1] = log(s[1]/s[3]) + e[1]
# y[2] = log(s[2]/s[3]) + e[2]
#
ESTIMATION DESCRIPTION (required)

electric Project name, pname, char*
2.6 EMM version, defines format of this file, emmver, float

1 Objfun type, 0 EMM, 1 MLE, 2 usr, objtype, int
0 Proposal type, 0 group_move, 1 cond_move, 2 usr, proptype, int
1 Write detailed output if print=1, int

457 Seed for MCMC simulations, iseed, int
20000 Number of MCMC simulations per file, lchain, int

9 Number of MCMC simulation files beyond the first, nfile, int
0.0625 Rescale proposal scaling by this value, sclfac, float

1.0 Rescale parameter increments by this value, incfac, float
1.0 Rescale objfun by this value, temperature, float

0 Sandwich variance not computed if kilse=1, int
1 The stride used to write MCMC simulations, stride, int
0 Draw from prior if draw_from_prior=1, int
0 Max cache size, must be 10 or more, max_cache_size, int

DATA DESCRIPTION (required) (mod and obj constructors see realmat data(M,n))
5 Dimension of the data, M, int

224 Number of observations, n, int
electric.dat File name, any length, no embedded blanks, dsn, string

1 2 3 4 5 Read these white space separated fields, fields, intvec
MODEL DESCRIPTION (required)

11 Number of parameters, len_stat_parm, int
1 Number of functionals, len_stat_func, int

MODEL PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
__none__ File name, code __none__ if none, mod_parmfile, string

#begin additional lines
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23 Number of bootstrap repetitions, blen, int
#end additional lines
OBJFUN PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)

__none__ File name, code __none__ if none, obj_parmfile, string
#begin additional lines
#end additional lines
PARAMETER START VALUES (required)
-2.92727122000000000e+00 1 a[1]
-1.53786463000000000e+00 1 a[2]
-1.28362479000000000e+00 1 B(1,1)
0.81889299000000000e+00 1 B(1,2)

-1.04835591000000000e+00 1 B(2,2)
0.36106759000000000e+00 1 B(1,3)
0.03049767000000000e+00 1 B(2,3)

-0.46735947000000000e+00 1 B(3,3)
0.26562000000000000e+00 1 R(1,1)
0.30397000000000000e+00 1 R(1,2)
0.29659000000000000e+00 1 R(2,2)

PROPOSAL SCALING (required)
5.00000000000000000e-01 a[1]
1.25000000000000000e-01 a[2]
5.00000000000000000e-01 B(1,1)
1.25000000000000000e-01 B(1,2)
1.25000000000000000e-01 B(2,2)
6.25000000000000000e-02 B(1,3)
6.25000000000000000e-02 B(2,3)
6.25000000000000000e-02 B(3,3)
1.25000000000000000e-01 R(1,1)
1.25000000000000000e-01 R(1,2)
6.25000000000000000e-02 R(2,2)

And here is the file summary.dat.
rhomean rhomode sesand sehess seinfo
-3.0226 -2.9273 0.19681 0.251 0.33523
-1.5537 -1.5379 0.084392 0.089628 0.10291
-1.3046 -1.2836 0.17087 0.19372 0.24106
0.80819 0.81889 0.081372 0.08216 0.087983
-1.066 -1.0484 0.078783 0.080535 0.085266

0.34557 0.36107 0.033553 0.030485 0.028781
0.037249 0.030498 0.04201 0.037316 0.034982
-0.46676 -0.46736 0.015915 0.016947 0.019363
0.26891 0.26562 0.017964 0.012963 0.010089
0.3129 0.30397 0.025988 0.022697 0.021

0.30375 0.29659 0.014154 0.013614 0.014135

The log posterior (log prior - objfun) at the mode is 137.89.

The degrees of freedom for seinfo are 972.

Compare to page 368 of Gallant (1987). The match is pretty close but comparison is made

tedious because the variables are ordered differently.
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