
MLE: Maximum Likelihood Estimation by MCMC

Version 1.1

User’s Guide 1

A. Ronald Gallant
Penn State University

Department of Economics
University Park PA 16802 USA

May 2013
Last Revised June 2013

1The code and this guide are available at http://www.aronaldg.org.

© 2013 by A. Ronald Gallant

This program is free software; you can redistribute it and/or modify it under the terms of the

GNU General Public License as published by the Free Software Foundation; either version

2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-

RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;

if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

MA 02110-1301 USA.

i

ABSTRACT

This guide shows how to use the computer package MLE. It provides instructions on how to

install the software and a description of the package. It also walks the reader through two

examples.

The MLE and EMM packages are similar, for many problems either would work. Both are

misnomers because they cover a much broader class of estimators than their names suggest.

The difference between them is that EMM presumes that a model can be simulated and

MLE presumes that it cannot.

The main practical difference is that the heteroskedasticity autoregressive consistent

(HAC) estimator of the information matrix that goes in the middle of a sandwich vari-

ance estimator can be computed by parametric bootstrap if a model can be simulated. A

sandwich variance, J −1IJ −1, has the inverse of the Hessian of the log likelihood on either

side and has a HAC estimate of the variance of the gradient of the log likelihood in the

middle. In both EMM and MLE the inverse of the Hessian is estimated by the variance

matrix of an MCMC chain. EMM can compute a bootstrap HAC from a simulation or a

stationary bootstrap. MLE cannot and instead relies on user supplied scores.

The design of the EMM code, although facilitating bootstrap estimation of the HAC in

the middle, makes it impossible to use EMM for the Metropolis within Gibbs estimator for

generalized method of moments (GMM) estimation of models with latent variables proposed

by Gallant, Giacomini, and Ragusa (2013). The technical reason is that EMM uses two

instantiations of the user supplied model (one for the MCMC chain and another for the HAC

in the middle) that would need to communicate with each other to implement Metropolis

within Gibbs but cannot within EMM without offense to the principles of object oriented

programming and parallel-safe design. MLE was written to fix this problem.

An acquaintance with the EMM User’s Guide would be helpful but in principle this

Guide is self contained, excepting the Introduction, which compares EMM to MLE. The

development is based on two examples.

The first example is the consumer demand application in the EMM distribution. It

illustrates the difference in the user supplied code between the EMM and MLE packages. In

the latter the user provides the scores and this Guide illustrates how it is done.

ii

The second is the stochastic volatility example from Gallant, Giacomini, and Ragusa

(2013), which is Metropolis within Gibbs applied to a likelihood derived from moment equa-

tions.

The code and this guide are available at http://aronaldg.org/webfiles/mle.

iii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 The Chernozhukov and Hong Method . 2

1.3 Using this Guide . 3

2 Building and Running MLE 3

2.1 Availability . 3

2.2 Building and Running MLE . 4

3 The Structure of the MLE Distribution 4

3.1 User Supplied Class . 4

3.2 The Input Parameter File . 8

3.2.1 PARMFILE HISTORY . 9

3.2.2 ESTIMATION DESCRIPTION . 9

3.2.3 DATA DESCRIPTION . 12

3.2.4 MODEL DESCRIPTION . 12

3.2.5 MODEL PARMFILE . 13

3.2.6 PARAMETER START VALUES . 13

3.2.7 PROPOSAL GROUPING . 14

3.3 Directory Structure . 14

3.3.1 mlesrc . 14

3.3.2 elec . 14

3.3.3 svsim . 14

3.3.4 lib . 14

3.3.5 mlerun . 15

4 Maximum Likelihood Estimation of the Electricity Example 16

5 GMM with Latent Variables 23

5.1 A Particle Filter . 27

5.2 A Modified Particle Filter . 28

5.3 A Metropolis Algorithm . 29

iv

6 A Stochastic Volatility Model 29

6.1 Model . 29

6.2 Code . 39

7 References 39

v

1 Introduction

1.1 Overview

A comparison of the MLE package to the EMM package is a quick way to introduce the

latter.

To use the EMM package for maximum likelihood estimation one must: (1) Write code

to implement the class emmusr that inheirits from emmusr_base, fill out a parmfile named,

for example, el.parm.000 that sets the values of program emm control parameters, and a

file named, for example, control.dat, whose lines have two blank separated items per line.

The first item is the filename of the parmfile to be used; the second item is the prefix for all

output files. For example, control.dat might have one line that reads el.parm.000 el. If

emm is entered on the command line then the file named control.dat will be read. If emm

el.ctrl.000 then el.ctrl.000 will be read instead of control.dat.

To use the EMM package for maximum likelihood estimation, two of the members in the

class emmusr are the most relevant: member likelihood, which computes the likelihood,

and member gen_bootstrap, which provides the bootstrap sample for computing the HAC

matrix in the middle of the sandwich variance.

Everything is the same for the MLE program with the exceptions that the user written

class is named mleusr, it inheirits from mleusr_base, and a few of the lines of the parmfile

are different. The most important difference between emmusr and mleusr is that member

gen_bootstrap is replaced by get_scores.

This is probably not a small change from the user’s point of view because computation

of the scores requires evaluation and differentiation of a log density at each observation and

storage of the result whereas the log likelihood requires only evaluation and accumulation

without need for storage. If scores are computed numerically, as in our first example, then

managing store is the only practical difference. If scores are computed analytically, the

differences are more substantial.

1

1.2 The Chernozhukov and Hong Method

The computational methods discussed here and implemented by the MLE package apply

to any discrepancy function sn(ρ) that produces asymptotically normal estimates; i.e., any

discrepancy function for which there exist ρo, I and J such that

J√
n(ρ̂n − ρo) =

√
n
∂

∂ρ
sn(ρ) + op(1) and

√
n
∂

∂ρ
sn(ρ)

L→ N(0, I) (1)

Quasi maximum likelihood estimation requires the computation of the estimator itself, ρ̂n =

ρ
argmin sn(ρ), an estimate of the Hessian

J =
∂

∂ρ∂ρ ′
so(ρo),

where so(ρ) = limn→∞ sn(ρ), and an estimate of Fisher’s information

I = Var

[
∂

∂ρ ′

√
n sn(ρ

o)

]
= E

[
∂

∂ρ ′

√
n sn(ρ

o)

] [
∂

∂ρ ′

√
n sn(ρ

o)

]′
.

An estimator of I is what we have termed the HAC in the middle previously.

The variance of
√
n(ρ̂n − ρo) is then of the sandwich form

Vn = Var [
√
n(ρ̂n − ρo)] = J −1IJ −1

Put ℓ(ρ) = e−n sn(ρ). Apply Bayesian MCMC methods with ℓ(ρ) as the likelihood. From the

resulting MCMC chain {ρi}Ri=1 put

ρ̂n = ρ̄R =
1

R

R∑

t=1

ρi and Ĵ −1 =
(n

R

) R∑

t=1

(ρi − ρ̄R) (ρi − ρ̄R)
′

Alternatively, one can use the mode of ℓ(ρ) as the estimator ρ̂n. The MLE package computes

and reports both the mean and the mode. There is the problem, however, that a mode

computed by finding the maximum of the likelihood over an MCMC chain is not as accurate

as that provided by a derivative based optimizer. Nonetheless, the attraction of the mode,

besides the fact that it is the maximum of the likelihood, is that the mode will satisfy the

support conditions of the structural model whereas the mean may not.

The strategy used to estimate I from the scores is standard. See, e.g., Gallant (1987).

The MLE package uses Parzen weights.

2

The MCMC method described here makes the imposition of support restrictions, inequal-

ity restrictions, and informative prior information exceptionally convenient.

For some structural models it is difficult to check the validity of parameters without first

substantially altering the internal state of the model. As it is wasteful to do this twice,

member set_rho of mleusr is called before member support. The user should be aware of

this fact when writing code for the structural model because one is not guaranteed that a

ρ set by MLE will satisfy support conditions. However, one can count on member support

being called immediately after set_rho. If it returns false, then no other member of the

user’s implementation of the structural model is called.

1.3 Using this Guide

New users should install as in Section 2, skim Section 3, and work through the elec example

developed in Section 4. Thereafter, use Section 3 for reference purposes.

2 Building and Running MLE

2.1 Availability

C++ code and thisGuide as a PostScript or PDF file are available at http://www.aronaldg.org/

webfiles/mle. This code runs under Linux and MacOS. On a Windows machine one can

use either Cygwin at http:/www.cygwin.com or MinGW at http://www.mingw.org. It has

not been tested on other platforms.

This program is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation; either

version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this

program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,

Boston, MA 02110-1301 USA.

3

2.2 Building and Running MLE

Download mle.tar from http://www.aronaldg.org/webfiles/mle. On a Unix machine

use tar -xf mle.tar to expand the tar archive into a directory that will be named mle.

mle

elec

lib

libscl

libmle

mleman

mlerun

mlesrc

svsim

utility

Often one changes the name mle of the parent directory to a name that represents the project

one is working on.

First the two libraries libscl and libmle must be built, in that order. Change directory to

lib/libscl/gpp and type make. Then change directory to lib/libmle/gpp and type make.

To run the elec example that comes with the MLE distribution, within emmrun copy

makefile.gpp to makefile, type make and then ./mle elec.ctrl.000.

3 The Structure of the MLE Distribution

The structure in the discussion of the example distributed with the distribution is presumed

to be as above. The user is free to set up another file structure provided that the references

in the makefiles are changed to correspond.

3.1 User Supplied Class

As described in the worked examples farther on, the user supplies a class, which here we shall

call elec_usrmod. The declaration for the class is in file mleusr.h, the code implementing

it is in file mleusr.cpp. The functionality that elec_usrmod must provide is dictated by

inheritance from class usrmod_base declared in libsmm/src/libmle_base.h. Here is the

relevant portion of libsmm/libsmm_base.h

4

#include "libscl.h"

namespace libmle {

class usrmod_base {
public:
virtual INTEGER len_rho() = 0;
virtual INTEGER len_stats() = 0;
virtual bool get_stats(scl::realmat& stats) = 0;
virtual void get_rho(scl::realmat& rho) = 0;
virtual void set_rho(const scl::realmat& rho) = 0;
virtual void set_rho_old(const scl::realmat& rho) { return; }
virtual bool support(const scl::realmat& rho) = 0;
virtual scl::den_val prior(const scl::realmat& rho,

const scl::realmat& stats) = 0;
virtual scl::den_val likelihood() = 0;
virtual bool get_scores(scl::realmat& scores)

{scl::error("Error, usrmod_base, get_scores"); return false;}
virtual void write_usrvar(const char* filename) { return; }
virtual ~usrmod_base() {}

};

}
#endif

and here is the corresponding mleusr.h

#ifndef __FILE_MLEUSR_H_SEEN__
#define __FILE_MLEUSR_H_SEEN__

#include "libmle.h"
#include "mle_base.h"

namespace mle {

class elec_usrmod;

typedef elec_usrmod usrmod_type;

class elec_usrmod : public libmle::usrmod_base {
private:
scl::realmat data;
scl::realmat rho;
INTEGER lrho;
INTEGER lstats;
INT_32BIT variable_seed;
scl::realmat a;
scl::realmat B;
scl::realmat R;
scl::realmat yhat;
scl::realmat ehat;
scl::realmat zhat;
void set_parms();
bool get_obj(scl::realmat& obj);

public:
elec_usrmod

(const scl::realmat& dat, INTEGER len_mod_parm, INTEGER len_mod_func,
const std::vector<std::string>& mod_pfvec,
const std::vector<std::string>& mod_alvec,
std::ostream& detail);

5

INTEGER len_rho() {return lrho;}
INTEGER len_stats() {return lstats;}
bool get_stats(scl::realmat& stats);
void get_rho(scl::realmat& parm) { parm = rho; }
void set_rho(const scl::realmat& parm) { rho = parm; set_parms();}
bool support(const scl::realmat& rho);
scl::den_val prior(const scl::realmat& rho,

const scl::realmat& stats);
scl::den_val likelihood();
bool get_scores(scl::realmat& scores);
void write_usrvar(const char* filename)
{

std::string stem = filename;
size_t suffix = stem.find(std::string("dat"));
if (suffix != std::string::npos) stem = stem.substr(0, suffix);
if (likelihood().positive) {

std::string fn;
fn = stem + "yhat.dat"; vecwrite(fn.c_str(), yhat);
fn = stem + "ehat.dat"; vecwrite(fn.c_str(), ehat);
fn = stem + "zhat.dat"; vecwrite(fn.c_str(), zhat);

}
}

};
}

#endif

Class elec_usrmod gets bound to program mle via the statement

typedef sv_usrmod usrmod_type;

as shown.

The types REAL, INTEGER, and INT_32BIT are defined by typedef’s in scltypes.h which

gets included with libscl.h. On most machines these are double, int, and int, respec-

tively. Class realmat is presented in realmat.h which gets included with libscl.h. This is

a fairly complete matrix class that supports most linear algebra related to statistical appli-

cations including equation solving, inversion, and singular value decomposition. In general

there is much in libscl that will aid the user in writing code to support MLE including a

nonlinear equation solver and a nonlinear optimizer. Of special interest is class gmm that

implements generalized method of moments estimation, which we will use in our second

example.

The idea behind stats is that there is more information about a model that the user

needs to know besides the value of rho that generated it. Member stats is more useful for

simulation based estimation where one computes a statistic from a simulation to use with

the prior for checking conditions that can only be determined by simulation. It is of less use

with the MLE package. For more information regarding stats, see the EMM User’s Guide

6

The realmat stats of length lstats gets written to a file by program mle as does rho and

much else as described later.

The method prior is exactly what its name suggests and can be used to implement

Bayesian inference. It can also be used to implement support conditions that depend on

stats in frequentist inference. If prior is not to be used, one codes it to always return

scl::denval(true,0). An scl::denval is a struct whose first member is a bool that is

true if the argument of a density is in the support of the density second member is a REAL

that contains the log density if it is.

Member support plays a similar role: it returns false if if rho is to be rejected. The

difference between support and prior is that support is called before stats and prior

after. The intent is to save the cost of an unnecessary computation if rho violates support

conditions that can be cheaply determined. Be aware that set_rho is always called before

support.

In this example, the real work is done by private member function get_obj. It computes

the log density of the data for each observation and places the result in its scl::realmat

argument obj. Member likelihood calls get_obj and sums the elements of obj. This sum

is the log likelihood that likelihood returns as an scl::denval, whose first member is

true if rho is in the support of the log likelihood and whose second member contains the log

likelihood if it is.

Member get_scores calls get_obj repeatedly at different parameter values to compute

the scores by numerical differentiation and returns the result in the scl::realmat argument

scores. Private member set_parms copies the elements of rho into the models parameters:

a, B, R.

The constructor gets passed the data, lengths of the parameter and stat vectors, two

std::vector of std::string named mod_pfvec and mod_alvec that the user controls

through the parmfile as described immediately below and a std::ostream named detail to

which to write if desired. For most applications this constructor argument list is sufficiently

general and no modification to the constructor call in mle.cpp will be required.

All other members in this example are trivial and can be coded in the header as shown.

7

3.2 The Input Parameter File

The MLE input parameter file contains several blocks of control information. An example,

used again in Section 4, is

PARMFILE HISTORY (optional)
#
This parmfile was written by MLE Version 1.1 using the following line from
control.dat, which was read as char*, char*

el.parm.000 el

#
a[1] = rho[1];
a[2] = rho[2];
#
B(1,1) = rho[3];
B(1,2) = rho[4];
B(2,2) = rho[5];
B(1,3) = rho[6];
B(2,3) = rho[7];
B(3,3) = rho[8];
#
R(1,1) = rho[9];
R(1,2) = rho[10];
R(2,2) = rho[11];
#
a[3] = -1.0;
#
B(2,1) = B(1,2);
B(3,1) = B(1,3);
B(3,2) = B(2,3);
#
R(2,1) = 0.0;
#
s = a + Bx
e = Rz
#
y[1] = log(s[1]/s[3]) + e[1]
y[2] = log(s[2]/s[3]) + e[2]
#
ESTIMATION DESCRIPTION (required)

electric Project name, pname, char*
1.1 mle version, defines format of this file, mlever, float

0 Proposal type, 0 group_move, 1 cond_move, 2 usr, proptype, int
1 Write detailed output if print=1, int

457 Seed for MCMC draws, iseed, int
20000 Number of MCMC draws per output file, lchain, int

9 Number of MCMC output files beyond the first, nfile, int
1.0 Rescale proposal scaling by this value, sclfac, float
1.0 Rescale likelihood by this value, temperature, float

0 Sandwich variance not computed if kilse=1, int
0 Number of lags in HAC middle of sandwich variance, lhac, int
1 The stride used to write MCMC draws, stride, int
0 Draw from prior if draw_from_prior=1, int

DATA DESCRIPTION (required) (mod constructor sees realmat data(M,n))
5 Dimension of the data, M, int

224 Number of observations, n, int
electric.dat File name, any length, no embedded blanks, dsn, string
1 2 3 4 5 Read these white space separated fields, fields, intvec

8

MODEL DESCRIPTION (required)
11 Number of modal parameters, len_mod_parm, int
2 Number of model functionals, len_mod_func, int

MODEL PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
__none__ File name, code __none__ if none, mod_parmfile, string
#begin additional lines
#end additional lines
PARAMETER START VALUES (required)

-2.92727122000000017e+00 1 a[1]
-1.53786463000000007e+00 1 a[2]
-1.28362478999999996e+00 1 B(1,1)
8.18892990000000043e-01 1 B(1,2)
-1.04835590999999995e+00 1 B(2,2)
3.61067589999999994e-01 1 B(1,3)
3.04976700000000010e-02 1 B(2,3)
-4.67359469999999999e-01 1 B(3,3)
2.65620000000000023e-01 1 R(1,1)
3.03970000000000018e-01 1 R(1,2)
2.96590000000000020e-01 1 R(2,2)

PROPOSAL SCALING (required)
3.12500000000000000e-02 a[1]
7.81250000000000000e-03 a[2]
3.12500000000000000e-02 B(1,1)
7.81250000000000000e-03 B(1,2)
7.81250000000000000e-03 B(2,2)
3.90625000000000000e-03 B(1,3)
3.90625000000000000e-03 B(2,3)
3.90625000000000000e-03 B(3,3)
7.81250000000000000e-03 R(1,1)
7.81250000000000000e-03 R(1,2)
3.90625000000000000e-03 R(2,2)

A description of each block of the input file follows.

3.2.1 PARMFILE HISTORY

This block is optional. It is written by mle to the output parmfile parmfile.fit at the end

of every run. It consists of seven lines that begin with # that should be left alone. After

these seven lines, the user can add additional lines that begin with a # and these will get

copied from the input parmfile to the output parmfile. In the example, lines describing the

model are included in the history.

3.2.2 ESTIMATION DESCRIPTION

Under the block labeled ESTIMATION DESCRIPTION, there are parameters that govern the

computations:

pname: Project name. Chosen by the user for identification purposes.

mlever: Version of MLE.

9

proptype: Standard is the group move proposal which defaults to a single move pro-

posal when the optional block PROPOSAL GROUPING is missing from the parmfile. How to

specify group moves in the parmfile is discussed in the EMM User’s Guide. When the

PROPOSAL GROUPING block is missing, the proptype=0 proposal randomly selects an ele-

ment of ρ to move and the draws from a normal; i.e. a move-one-at-a-time random walk.

When PROPOSAL GROUPING block is present the proposal randomly selects one of the groups

defined therein to move and draws from a user specified multivariate normal. Setting prop-

type=1 selects a proposal that attempts to automate group moves with indifferent success.

It serves as an example to show how a alternative proposal is coded. A user coded proposal

would be selected by setting proptype=2. One would code it in mleusr.h and mleusr.cpp.

At the beginning of mleusr.h one would need to insert the compiler directive

#define USR_PROPOSAL_TYPE_IMPLEMENTED

and at the beginning of namespace mle add a binding such as

class usr_proposal;
typedef usr_proposal proposal_type;

Examples are in proposal.cpp in libmle/src.

print: If print=1, then voluminous debugging information is written to file detail.dat.

Setting print=0 suppresses printing.

seed: Seed for the MCMC chain.

lchain: The MCMC chain is broken up into pieces and written to files rho.000.dat,

rho.001.dat, etc. The variable lchain determines the number of draws per file.

nfile: Determines how many files in addition to rho.000.dat are generated. The total length

of the MCMC chain is R= lchain*(nfile+1). Many other files are produced to describe

the chain such as reject.000.dat, pi.000.dat, stats.000.dat as well as summary files,

files containing variance matrices, etc.

sclfac: Rescales the proposal standard deviations that are set in the PROPOSAL SCALING

block without changing relative values.

temperature: This variable controls the peakedness of the objective function. Putting

temperature=2 is like doubling the number of observations from which the likelihood was

computed, which makes the objective function more peaked. Putting temperature=0.5

would be like halving them. For Bayesian inference it is essential that temperature=1.

10

kilse : Computing sandwich standard errors is costly and often unnecessary, setting kilse=1

will stop them from being computed. When kilse=1, scores is not called and does not

need to be coded unless, as the elec example, it is called by the user’s code. Even for an

estimator that does require the computation of sandwich standard errors, one should set

kilse=1 during the early hill climbing phase of the chain. When the objective function has

reached its plateau and the stationary portion of the chain has been reached, kilse can be

set to 0. This point is determined graphically as illustrated by example in the EMM User’s

Guide and discussed in texts such as Gamerman and Lopes (2006).

lhac : The number of lags to be used to compute the HAC information matrix in the middle

of the sandwich variance estimator. Set lhac=0 if the scores are uncorrelated, in which case

the estimator is heteroskedastic consistent.

stride : MLE writes the MCMC chains to files of length lchain as explained above. If

stride=1, every element of the chain is written. If stride=2, every other element is written

and the length of an output files becomes lchain/2. Similarly for higher values of stride.

Stride greater than one reduces memory requirements because values not written are not

stored anywhere. One consequence of this is that statistics such as the Hessian are computed

only from the elements of the MCMC chain that are written, not from all that are generated.

The exceptions are that the mode and the rejection count are computed from all elements

that were generated.

draw from prior : When MLE is used for Bayesian estimation and the prior is proper, it is

useful to be able to draw from the prior for at least two purposes. The first is to be able to

compare the prior and posterior distribution of estimates of parameters and functionals. The

other is as an intermediate step in computing posterior probabilities for model selection as

discussed in, e.g., Gamerman and Lopes (2006, Section 7.2.1). The essential information for

model selection is in the output files named pi.000.dat, pi.001.dat, etc. (to which a user

defined prefix is prepended). Their structure is discussed in more detail later but, briefly, the

information one needs are the likelihood draws, in the second row, and the prior draws in the

third row. When draw_from_prior=0 these will be draws made by comparing the posterior

at the accept/reject step of the MCMC chain, as will be true of all other output files such as

rho.000.dat, rho.001.dat, etc. When draw_from_prior=1 these will be draws made by

11

comparing the prior at the accept/reject step of the MCMC chain, as will be true of all other

output files. Setting draw_from_prior=1 when the prior is not proper is a ghastly error.

3.2.3 DATA DESCRIPTION

In the block labeled DATA DESCRIPTION are parameters that specify the dimension of the

data, the number of observations, and govern reading of the data. The data are presumed to

be stored in a file containing rows that have values separated by blanks containing the data

for each observation yt and perhaps additional values such as dates or the index t. There

should be one line for each t = 1, . . . , n. The presence of the line terminating character is

important because the C++ function getline does the reading.

M: The dimension of the vector yt.

n: The number of observations to be read. The value can be smaller than the number of

observations in the file in which case those at the end will not be read.

dsn: The name of the file from which the data are to be read.

fields : Lastly, one has fields. One must use care here because errors can cause the pro-

gram to crash with misleading diagnostic messages, if any at all. As just mentioned, the

presumptions is that the data are arranged in a table with time t as the row index and the

elements of yt in the columns. The blank separated numbers here specify the fields (columns)

of the data in the order in which they are to be assigned to the elements y1t, y2t, . . . , yMt of

yt. It does not hurt to have too many fields listed because only the first M are read. The

disaster is when there are too few (less than M) or one of them is larger than the actual

number of columns in the data set. A few of the first and last values of yt read in are printed

in the file detail.dat which should be checked to make sure the data were read correctly.

Fields can be specified as a single digit or as a range. Thus, one can enter either “1 2 3 5”

or “1:3 5”.

3.2.4 MODEL DESCRIPTION

The MODEL DESCRIPTION block is straightforward, it gives the dimensions of the pa-

rameters of the model.

len mod parm : The dimension of rho, which is the parameter vector of the model.

12

len mod func: The dimension of stats, which is the vector of statistics (functionals) of

the model that are computed from a simulation of the model.

3.2.5 MODEL PARMFILE

The vectors mod_pfvec and mod_alvec of type vector<string> that are passed to the

usrmod constructor are defined in the MODEL PARMFILE block.

mod parmfile: This is the name of a file containing lines of the user’s choosing. This file is

read and passed to the usrmod constructor as the std::vector of std::string mod_pfvec.

If there is no mod_parmfile then code __none__ as the filename.

#begin additional lines, #end additional lines: Lines between these two markers are

read and passed to the usrmod constructor as mod_alvec of type vector<string>. The

two marker lines are passed as well so that the first user line is mod_alvec[1] and not

mod_alvec[0].

3.2.6 PARAMETER START VALUES

The block labeled PARAMETER START VALUES specifies the first value for the chain. It

must satisfy the support conditions; i.e. elec_usrmod::support must return true, and

elec_usrmod::prior must return scl::dev_val.positive=true for this initial value of ρ.

The numbers to the right, 0 or 1, determine whether that element is held fixed or is active.

If 0, then the proposal never moves that element of ρ. To the right of this 0 or 1 the user

may add text such as the name of the parameter. New files parmfile.fit, parmfile.end

and parmfile.alt are written as the MCMC chain progress with the current putative mode

of the objective function replacing the values in PARAMETER START VALUES for .fit and

.alt and the last value of ρ in the chain in the case of .end. The parmfile.end is used

to recommence where one left off; parmfile.fit is used to recommence starting at the

mode, which is what one usually wants to do; and parmfile.alt is used when switching

to the conditional move proposal (proptype=1). If the number of parameters exceeds 20,

then parmfile.alt will not be written. Once the mode has been found, it will not change.

Therefore if a parmfile.fit is used to recommence and nothing in the parmfile is changed,

then it may happen that the previous run is just reproduced. If the purpose of the new run

13

is to try and improve the mode, then change seed in block ESTIMATION DESCRIPTION or use

parmfile.end.

3.2.7 PROPOSAL GROUPING

How to specify group moves in the parmfile is discussed and illustrated in the EMM User’s

Guide. We will not be using it in the examples of this Guide.

3.3 Directory Structure

The directory structure of the MLE distribution is as follows:

3.3.1 mlesrc

The directory mlesrc contains all source code for program mle, excepting mleusr.h and

mleusr.cpp, which contain headers and code for class usrmod and reside in their own direc-

tory.

3.3.2 elec

This directory contains the files mleusr.h and mleusr.cpp for fitting a translog electricity

demand system by maximum likelihood. It is our first example.

3.3.3 svsim

This directory contains the code for stochastic volatility estimated by means of the Metropolis

within Gibbs GMM estimator proposed by Gallant, Giacomini, and Ragusa (2013) that is

used for the second example in this Guide. For the svfx example, the class usrmod that

the user must supply is presented in mleusr.h and defined in mleusr.cpp. Also present are

makefiles and data for that example.

3.3.4 lib

The directory lib contains the two libraries libscl and libmle. The source code is in

libscl/src, the makefiles are in libscl/gpp. Compilation is done within libscl/gpp for

Linux the library and headers reside in libscl/gpp after compilation. Similarly for and

14

libmle. If one uses something other such as Portland Group than or in addition to GNU’s

suite, we suggest compiling in a directory such as pgi.

3.3.5 mlerun

The directory mlerun contains the makefile to build the mle executable and input files to

run the elec example. Type make and the mle executable will be built and ready to run.

This folder also contains certain key files described as follows.

control.dat: A file that contains the names of the input parmfile and the prefix for the

output files. Here is an example of a one line control.dat file:

el.parm.000 el

The input parmfile is named el.parm.000 and all output files such as detail.dat,

rho.000.dat, etc. are named el.detail.dat, el.rho.000.dat, etc. To prefix control.dat

itself, execute mle with el.control.dat as a command line argument, i.e.

mle el.control.dat.

detail.dat: Voluminous detailed output from the run.

summary.dat: This file summarizes the output giving mean, mode, and standard errors,

provided kilse=0

rho.000.dat, stats.000.dat, pi.000.dat, reject.000.dat: The file rho.000.dat contains

the MCMC chain for ρ. The file stats.000.dat contains the corresponding values of stats;

Let τ denote the temperature parameter, let ℓ(ρ) = exp(−nsn(ρ)), and let p(ρ) denote the

prior. The file pi.000.dat contains three items corresponding to the MCMC chain for ρ :

(1) log ℓ(ρ) + log p(ρ). (2) log ℓ(ρ). (3) log p(ρ). The file reject.000.dat contains a matrix

whose first column contains the rejection rate for each parameter followed by the overall

rejection rate. The other columns of reject.000.dat are discussed later. There will also

be files rho.001.dat, rho.002.dat, etc. up to the limit specified by nfile.

parmfile.fit : A copy of the input parmfile with the parameter start values replaced by the

mode and scaling variables recomputed so that incfac and sclfac are 1.0. All else is the

same as the input parmfile.

15

parmfile.end : A copy of the input parmfile with the parameter start values and seed

replaced by the the last value of ρ and seed in the MCMC chain and scaling variables re-

computed so that incfac and sclfac are 1.0. All else is the same as the input parmfile.

parmfile.alt : A copy of the input parmfile with the parameter start values replaced

by the mode and scaling variables recomputed so that incfac and sclfac are 1.0. A

PROPOSAL GROUPING block is inserted and proptype is put to 1. All else is the same as the

input parmfile.

rho mode, rho mode, V hat hess, etc.: Statistics from the run in the form expected for

reading with member vecread of class realmat in library libscl.

The user is free to modify the directory structure to suit the application, but the makefiles

will need to be altered accordingly. We now proceed to the worked examples.

4 Maximum Likelihood Estimation of the Electricity

Example

Here is the mleusr.h that declares elec_usrmod:

#ifndef __FILE_MLEUSR_H_SEEN__
#define __FILE_MLEUSR_H_SEEN__

#include "libmle.h"
#include "mle_base.h"

namespace mle {

class elec_usrmod;

typedef elec_usrmod usrmod_type;

class elec_usrmod : public libmle::usrmod_base {
private:

scl::realmat data;
scl::realmat rho;
INTEGER lrho;
INTEGER lstats;
scl::realmat a;
scl::realmat B;
scl::realmat R;
scl::realmat yhat;
scl::realmat ehat;
scl::realmat zhat;
void set_parms();
bool get_obj(scl::realmat& obj);

public:
elec_usrmod

(const scl::realmat& dat, INTEGER len_mod_parm, INTEGER len_mod_func,
const std::vector<std::string>& mod_pfvec,

16

const std::vector<std::string>& mod_alvec,
std::ostream& detail);

INTEGER len_rho() {return lrho;}
INTEGER len_stats() {return lstats;}
bool get_stats(scl::realmat& stats);
void get_rho(scl::realmat& parm) { parm = rho; }
void set_rho(const scl::realmat& parm) { rho = parm; set_parms();}
bool support(const scl::realmat& rho);
scl::den_val prior(const scl::realmat& rho, const scl::realmat& stats);
scl::den_val likelihood();
bool get_scores(scl::realmat& scores);
void write_usrvar(const char* filename)
{

std::string stem = filename;
size_t suffix = stem.find(std::string("dat"));
if (suffix != std::string::npos) stem = stem.substr(0, suffix);
if (likelihood().positive) {

std::string fn;
fn = stem + "yhat.dat"; vecwrite(fn.c_str(), yhat);
fn = stem + "ehat.dat"; vecwrite(fn.c_str(), ehat);
fn = stem + "zhat.dat"; vecwrite(fn.c_str(), zhat);

}
}

};
}

#endif

The most important member function is likelihood. The purpose of likelihood is to

return the likelihood computed from rho and the data as a den_val(p,ll), where p is true

if rho and the data satisfy the support conditions that pertain to the application and ll is

the log likelihood L(ρ).
We are using the electricity demand system described in detail in Chapter 5 of Gallant

(1987). Briefly it is as follows. Given a vector of prices divided by expenditure x, an

expenditure “share” is computed as

s = a+Bx

where a is a vector with last element −1 and B is a symmetric matrix. With these normal-

ization conventions, an expenditure “share” actually has all elements negative and does not

sum to one. When using conventional quasi Newton optimizers, imposing the constraint on

a and B that this be so for all xt observed in the data is actually quite difficult. However, as

we shall see, it is trivial when using the MLE package. The “share” s is presumed to be the

location parameter of a logistic normal distribution. If an observed share vector y and the

“share” vector s both have dimension d and y(1) and s(1) represent a vector containing the

17

first d − 1 elements of these vectors, then the logistic normal density can be characterized

by saying that

log(y(1)/yd) ∼ Nd−1

[
log(s(1)/sd),Σ

]

where NM(µ,Σ) is the multivariate normal of dimension M and the log function is applied

to a vector element by element. We shall parametrize Σ by means of its Cholesky factors:

Σ = RR ′, where R is upper triangular. In our example, d = 3 and M = d− 1 = 2.

Here is the mleusr.cpp that defines elec_usrmod:

#include "libmle.h"
#include "mle.h"
#include "mleusr.h"

using namespace scl;
using namespace libmle;
using namespace mle;
using namespace std;

mle::elec_usrmod::elec_usrmod
(const realmat& dat, INTEGER len_mod_parm, INTEGER len_mod_func,
const std::vector<std::string>& mod_pfvec,
const std::vector<std::string>& mod_alvec,
std::ostream& detail)

: data(dat), rho(), lrho(11), lstats(2), a(), B(), R(),
yhat(2,dat.ncol()), ehat(2,dat.ncol()), zhat(2,dat.ncol())

{
if (lrho != len_mod_parm) {

error("Error, usrmod, constructor, len_mod_parm is set wrong in parmfile");
}

if (lstats != len_mod_func) {
error("Error, usrmod, constructor, len_mod_func is set wrong in parmfile");

}
}

void mle::elec_usrmod::set_parms()
{
a.resize(3,1);
B.resize(3,3);
R.resize(2,2);

a[1] = rho[1];
a[2] = rho[2];

B(1,1) = rho[3];
B(1,2) = rho[4];
B(2,2) = rho[5];
B(1,3) = rho[6];
B(2,3) = rho[7];
B(3,3) = rho[8];

R(1,1) = rho[9];
R(1,2) = rho[10];
R(2,2) = rho[11];

a[3] = -1.0;

18

B(2,1) = B(1,2);
B(3,1) = B(1,3);
B(3,2) = B(2,3);

R(2,1) = 0.0;
}

bool mle::elec_usrmod::get_obj(realmat& obj)
{
INTEGER n = data.get_cols();

yhat.resize(2,n,0.0);
ehat.resize(2,n,0.0);
zhat.resize(2,n,0.0);

obj.resize(1,n,-REAL_MAX);

if (!support(rho)) return false;

realmat y = data("1:2","");
realmat x = data("3:5","");

realmat s = B*x;
for (INTEGER t=1; t<=n; ++t) {

s(1,t) += a[1];
s(2,t) += a[2];
s(3,t) += a[3];

}

for (INTEGER i=1; i<=s.size(); ++i) {
if (s[i] >= 0.0) return false;

}

for (INTEGER t=1; t<=n; ++t) {
REAL bot = log(-s(3,t));
yhat(1,t) = log(-s(1,t)) - bot;
yhat(2,t) = log(-s(2,t)) - bot;
ehat(1,t) = y(1,t) - yhat(1,t);
ehat(2,t) = y(2,t) - yhat(2,t);

}

realmat P = inv(R);

zhat = P*ehat;

REAL detR = R(1,1)*R(2,2);

const REAL pi = 3.14159265358979312e+00;

for (INTEGER t=1; t<=n; ++t) {
obj[t] = pow(zhat(1,t),2) + pow(zhat(2,t),2);
obj[t] *= (-0.5);
obj[t] -= log(detR);
obj[t] -= log(sqrt(2.0*pi));

}

return true;
}

den_val mle::elec_usrmod::likelihood()
{

19

INTEGER r = data.get_rows();
INTEGER n = data.get_cols();

if (r != 5) error("Error, elec_usrmod, likelihood, bad data");
if (rho.get_rows() != 11) error("Error, elec_usrmod, likelihood, bad parm");

realmat obj;

if (!get_obj(obj)) return den_val(false,-REAL_MAX);;

REAL q = 0.0;

for (INTEGER t=1; t<=n; ++t) {
q += obj[t];

}

return den_val(true,q);
}

bool mle::elec_usrmod::support(const realmat& parm)
{
if (parm[9] <= 0.0) return false;
if (parm[11] <= 0.0) return false;
return true;

}

bool mle::elec_usrmod::get_stats(scl::realmat& stats)
{
stats.resize(2,1);
INTEGER n = zhat.ncol();
stats[1] = stats[2] = 0.0;
for (INTEGER j=1; j<=n; ++j) {

stats[1] += zhat(1,j);
stats[2] += zhat(2,j);

}
stats[1] /=n; stats[2] /= n;
return true;

}

den_val mle::elec_usrmod::prior(const realmat& rho_in, const realmat& stats)
{
return den_val(true, 0.0);

}

bool mle::elec_usrmod::get_scores(scl::realmat& scores)
{
realmat rhosave = rho;

INTEGER n = data.get_cols();

scores.resize(lrho,n,0.0);

REAL eps = std::pow(double(REAL_EPSILON),0.33333333);

for (INTEGER i=1; i<=lrho; ++i) {
REAL tmp = rho[i];

REAL h = eps*std::fabs(tmp);
if (h == 0.0) h = eps;

REAL hi = tmp + h;
rho[i] = hi;

20

set_rho(rho);

realmat f1;
if (!get_obj(f1)) {set_rho(rhosave); return false;}

REAL lo = tmp - h;
rho[i] = lo;
set_rho(rho);

realmat f0;
if (!get_obj(f0)) {set_rho(rhosave); return false;}

REAL difference = hi - lo;

for (INTEGER t=1; t<=n; ++t) {
scores(i,t) = (f1[t] - f0[t])/difference;

}

rho[i] = tmp;
}

set_rho(rhosave);

return true;
}

All is as described earlier but attention needs to be called to member functions (methods)

set_parms, get_obj, likelihood, and get_scores.

The member function set_parms maps the parameter ρ into the vector a and matrices

B and R.

The method get_obj of elec_usrmod computes

log nd−1

(
log(y(1)/yd)

∣∣∣ log(s(1)/sd), Σ
)

for each datum in data and returns them in its realmat& argument obj. Note in particular

the statement if (s[i] >= 0.0) return false; that imposes the constraint that s have

all entries negative for all xt. As intermediate steps it computes the vectors yhat, ehat and

zhat, which we write for use as diagnostics in write_usevar coded in mleusr.h.

All likelihood has to do is call get_obj, sum the elements of obj, and return the sum

as a denval.

As coded here, the method get_scores calls get_obj repeatedly at various settings for

rho in order to computed numerical derivatives according to standard formulae.

This code is not sensitive to tuning parameters and runs fast. Start values were taken

from Chapter 5 of Gallant (1987). Herewith follows the parameter file.

21

PARMFILE HISTORY (optional)
#
This parmfile was written by MLE Version 1.1 using the following line from
control.dat, which was read as char*, char*

el.parm.000 el

#
a[1] = rho[1];
a[2] = rho[2];
#
B(1,1) = rho[3];
B(1,2) = rho[4];
B(2,2) = rho[5];
B(1,3) = rho[6];
B(2,3) = rho[7];
B(3,3) = rho[8];
#
R(1,1) = rho[9];
R(1,2) = rho[10];
R(2,2) = rho[11];
#
a[3] = -1.0;
#
B(2,1) = B(1,2);
B(3,1) = B(1,3);
B(3,2) = B(2,3);
#
R(2,1) = 0.0;
#
s = a + Bx
e = Rz
#
y[1] = log(s[1]/s[3]) + e[1]
y[2] = log(s[2]/s[3]) + e[2]
#
ESTIMATION DESCRIPTION (required)

electric Project name, pname, char*
1.1 mle version, defines format of this file, mlever, float

0 Proposal type, 0 group_move, 1 cond_move, 2 usr, proptype, int
1 Write detailed output if print=1, int

457 Seed for MCMC draws, iseed, int
20000 Number of MCMC draws per output file, lchain, int

9 Number of MCMC output files beyond the first, nfile, int
1.0 Rescale proposal scaling by this value, sclfac, float
1.0 Rescale likelihood by this value, temperature, float

0 Sandwich variance not computed if kilse=1, int
0 Number of lags in HAC middle of sandwich variance, lhac, int
1 The stride used to write MCMC draws, stride, int
0 Draw from prior if draw_from_prior=1, int

DATA DESCRIPTION (required) (mod constructor sees realmat data(M,n))
5 Dimension of the data, M, int

224 Number of observations, n, int
electric.dat File name, any length, no embedded blanks, dsn, string
1 2 3 4 5 Read these white space separated fields, fields, intvec
MODEL DESCRIPTION (required)

11 Number of modal parameters, len_mod_parm, int
2 Number of model functionals, len_mod_func, int

MODEL PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
__none__ File name, code __none__ if none, mod_parmfile, string
#begin additional lines
#end additional lines

22

PARAMETER START VALUES (required)
-2.92727122000000017e+00 1 a[1]
-1.53786463000000007e+00 1 a[2]
-1.28362478999999996e+00 1 B(1,1)
8.18892990000000043e-01 1 B(1,2)

-1.04835590999999995e+00 1 B(2,2)
3.61067589999999994e-01 1 B(1,3)
3.04976700000000010e-02 1 B(2,3)

-4.67359469999999999e-01 1 B(3,3)
2.65620000000000023e-01 1 R(1,1)
3.03970000000000018e-01 1 R(1,2)
2.96590000000000020e-01 1 R(2,2)

PROPOSAL SCALING (required)
3.12500000000000000e-02 a[1]
7.81250000000000000e-03 a[2]
3.12500000000000000e-02 B(1,1)
7.81250000000000000e-03 B(1,2)
7.81250000000000000e-03 B(2,2)
3.90625000000000000e-03 B(1,3)
3.90625000000000000e-03 B(2,3)
3.90625000000000000e-03 B(3,3)
7.81250000000000000e-03 R(1,1)
7.81250000000000000e-03 R(1,2)
3.90625000000000000e-03 R(2,2)

And here is the file summary.dat.

parm rhomean rhomode sesand sehess seinfo
1 -3.0226 -2.9273 0.22164 0.251 0.30973
2 -1.5537 -1.5379 0.086409 0.089628 0.10047
3 -1.3046 -1.2836 0.15577 0.19372 0.26437
4 0.80819 0.81889 0.084848 0.08216 0.084678
5 -1.066 -1.0484 0.086415 0.080535 0.093049
6 0.34557 0.36107 0.034945 0.030485 0.030173
7 0.037249 0.030498 0.037116 0.037316 0.040359
8 -0.46676 -0.46736 0.014801 0.016947 0.022628
9 0.26891 0.26562 0.018419 0.012963 0.0096423

10 0.3129 0.30397 0.02507 0.022697 0.022151
11 0.30375 0.29659 0.01564 0.013614 0.01377

The log posterior (log prior - log likelihood) at the mode is 137.89.

Compare to page 368 of Gallant (1987). The match is pretty close but comparison is made

tedious because the variables are ordered differently.

5 GMM with Latent Variables

Before proceeding to our next example, we shall describe the method for estimating the

parameters of a structural model proposed by Gallant, Giacomini, and Ragusa (2013).

The estimator is implemented by a Metropolis within a Gibbs algorithm with Chernozukov

and Hong’s (2003) MCMC algorithm used to implement the Metropolis step and Andrieu,

23

Douced, and Holenstein’s (2010, Subsection 4.1) modified particle filter algorithm used to

implement the Gibbs step.

We require a structural model that has parameters θ, a vector. We denote the true but

unknown value of the parameters by θo. We observe the the history X = (X1, X2, ..., XT),

a subset of the endogenous and exogenous variable in the model. We do not observe the

variables in the model that remain: Λ = (Λ1,Λ2, ...,ΛT). These are the latent variables.

Partial histories are denoted X1:t = (X1, X2, ..., Xt) and Λ1:t = (Λ1,Λ2, ...,Λt).

We assume that we can draw from the transition density of the latent variables Λt+1 ∼
P (Λt+1 |Λt, θ). The transition density is assumed to be ergodic. Note that this implies that

we can also draw from the stationary density P (Λt | θ) by drawing from P (Λt+1 |Λt, θ) with

an arbitrary start Λ0 and waiting for transients to die out.

The type of model that this setup describes that comes immediately to mind is a state

space model whereby the latent variables are the driving process or shocks and the remainder

of the model is the measurement equation. Although this is the typical form of a model that

satisfies the requirements set forth here, we do not assume that the model has a state space

representation.

We are given a set of conditional moment conditions of the form

E [g(Xt+1,Λt+1, θ) | It] = 0,

where g(·, ·, ·) is M -dimensional. The information set is It = {X−∞, ..., Xt, Λ−∞, ...,Λt}. We

assume that the corresponding unconditional moment equations

E [g(Xt+1,Λt+1, θ)] = 0 (2)

would identify θ if both X and Λ were observed.

The corresponding sample moment conditions are

gT (X,Λ, θ) =
1√
T

T∑

t=1

g(Xt,Λt, θ)

with weighting matrix

Σ(X,Λ, θ) =
1

T

T∑

t=1

g̃(Xt,Λt, θ)
′g̃(Xt,Λt, θ) (3)

g̃(Xt,Λt, θ) = g(Xt,Λt, θ)−
1√
T
gT (X,Λ, θ) (4)

24

If the moment conditions are serially correlated one will have to substitute a heteroskedastic

autoregessive consistent (HAC) weighting matrix (Andrews, 1991) for that shown as (3). If a

HAC matrix is used, the residuals used to compute it should be of the form shown as (4). We

assume that the moment conditions normalized by the weighting matrix are asymptotically

normal; i.e.,

Z = [Σ(X,Λ, θo)]−1/2 gT (X,Λ, θo)
d→ N(0, I)

Regularity conditions such that asymptotic normality obtains are in Hansen and Singleton

(1982), Gallant and White (1987), and elsewhere.

Define

p(X,Λ, θ) = (2π)−M/2 exp

{
−1

2
gT (X,Λ, θ)′ [Σ(X,Λ, θ)]−1 gT (X,Λ, θ)

}
(5)

Our most important assumption is that the Chernozhukov and Hong (2003) result holds;

that is, a sample
{
θ(i)

}R

i=1
from the density

p(θ |X,Λ) ∝ p(X,Λ, θ) (6)

is a sample from the asymptotic distribution of the GMM estimator for large T . Thus, all

we have to do to achieve the goal of this paper is provide an algorithm that generates an

MCMC chain for (6).

We do this by sampling
{
θ(i),Λ(i)

}
from the density

p(θ,Λ |X) ∝ p(X,Λ, θ) (7)

using a Metropolis within Gibbs algorithm and discarding the Λ draws. The method is as

follows:

1. Initialization. Choose a reasonable start (θ(0), Λ(0)) and set i = 1.

2. Sample θ(i) from p(θ |X,Λ(i−1)) using a Metropolis algorithm (Subsection 5.3).

3. Sample Λ(i) from p(Λ |X, θ(i)), where

p(Λ |X, θ) ∝ p(X,Λ, θ), (8)

using a modified particle filter (Subsection 5.2).

25

4. Increment i and repeat from Step 2 until i exceeds some preassigned value R.

We impose an additional requirement that is a considerable convenience:

ˆ

∞

−∞

· · ·
ˆ

∞

−∞

(2π)−M/2 exp

{
−1

2
gT (X,Λ, θ)′ [Σ(X,Λ, θ)]−1gT (X,Λ, θ)

}
dX1· · · dXT = 1, (9)

which implies

p(X |Λ, θ) = p(X,Λ, θ). (10)

As yet we have not encountered a practical application that violates this condition. Usually

all that is required is that each element of g is unbounded with respect to some element of

Xt and that the residuals used to compute the weighting matrix are centered as in (4).

If the integral in (9) does not integrate to one, but one has a convenient means to compute

it, then this requirement can be eliminated by using

p#(X |Λ, θ) =
exp

{
−1

2
gT (X,Λ, θ)′ [Σ(X,Λ, θ)]−1 gT (X,Λ, θ)

}

´

∞

−∞
· · ·
´

∞

−∞
exp

{
−1

2
gT (X,Λ, θ)′ [Σ(X,Λ, θ)]−1gT (X,Λ, θ)

}
dX1· · · dXT

(11)

instead of p(X |Λ, θ) to implement the particle filters in Subsections 5.1 and 5.2.

We discard the Λ draws to avoid excessive consumption of disk space and because there

is little use for the joint distribution of θ and Λ in frequentist inference. Of more use is to

generate countefactuals. For this one needs the ordinary particle filter algorithm (Subsec-

tion 5.1) for generating draws from the conditional distribution of Λ given X at the estimated

or some other value of θ.

Sometimes one uses a penalty function in connection with MCMC using (7). In our exam-

ples we shall investigate the effect of multiplying (7) by a Jacobian term [detΣ(X,Λ, θ)]−M/2.

Three algorithms are required to implement our proposal:

• A particle filter (PF) algorithm.

– Input: θ.

– Output: Draws
{
Λ(i)

}R

i=1
from P (Λ |X, θ).

• A modified particle filter algorithm.

– Input: The previous draw Λ(i−1) and a draw θ(i) from p(θ |X,Λ(i−1)).

– Output: A draw Λ(i) from P (Λ |X, θ(i)).

26

• A Metropolis algorithm.

– Input: Λ.

– Output: A draw θ from p(θ |X,Λ).

We present them in turn.

We previously introduced the notation X1:t = (X1, ..., Xt) and Λ1:t = (Λ1, ...,Λt) for

partial histories. The joint density for partial histories is

p(X1:t,Λ1:t, θ) = (2π)−M/2 exp

{
−1

2
gt(X1:t,Λ1:t, θ)

′ [Σ(X1:t,Λ1:t, θ)]
−1 gt(X1:t,Λ1:t, θ)

}
, (12)

which corresponds to (5). The densities p(X1:t |Λ1:t, θ) and p(θ |Λ1:t, X1:t) are proportional

to (12). For p(X1:t |Λ1:t, θ) the proportionality factor is assumed to be one; we do not need

the proportionality factor for p(θ |Λ1:t, X1:t) because we use a Metropolis algorithm to draw

from it.

5.1 A Particle Filter

1. Initialization.

• Input θ (and X)

• Set T0 to the minimum sample size required to compute gt(X1:t,Λ1:t, θ).

• For i = 1, . . . , N sample (Λ
(i)
1 ,Λ

(i)
2 , . . . ,Λ

(i)
T0
) from p(Λt|Λt−1, γ).

• Set t to T0 + 1.

• Set Λ
(i)
1:t−1 = (Λ

(i)
1 ,Λ

(i)
2 , . . . ,Λ

(i)
T0
)

2. Importance sampling step.

• For i = 1, . . . , N sample Λ̃
(i)
t from p(Λt|Λ(i)

t−1) and set

Λ̃
(i)
1:t = (Λ

(i)
0:t−1, Λ̃

(i)
t).

• For i = 1, . . . , N compute weights w̃
(i)
t = p(X1:t | Λ̃(i)

1:t, θ).

• Scale the weights to sum to one.

27

3. Selection step.

• For i = 1, . . . , N sample with replacement particles Λ
(i)
1:t from the set {Λ̃(i)

1:t} according

to the weights.

4. Repeat

• If t < T, increment t and go to Importance Sampling Step;

• else output
{
Λ

(i)
1:T

}N

i=1
.

5.2 A Modified Particle Filter

1. Initialization.

• Input Λ
(1)
1:T , θ (and X)

• Set T0 to the minimum sample size required to compute gt(X1:t,Λ1:t, θ).

• For i = 2, . . . , N sample (Λ
(i)
1 ,Λ

(i)
2 , . . . ,Λ

(i)
T0
) from p(Λt|Λt−1, γ).

• Set t to T0 + 1.

• Set Λ
(i)
1:t−1 = (Λ

(i)
1 ,Λ

(i)
2 , . . . ,Λ

(i)
T0
)

2. Importance sampling step.

• For i = 2, . . . , N sample Λ̃
(i)
t from p(Λt|Λ(i)

t−1) and set

Λ̃
(i)
1:t = (Λ

(i)
0:t−1, Λ̃

(i)
t).

• For i = 1, . . . , N compute weights w̃
(i)
t = p(X1:t | Λ̃(i)

1:t, θ).

• Scale the weights to sum to one.

3. Selection step.

• For i = 2, . . . , N sample with replacement particles Λ
(i)
1:t from the set {Λ̃(i)

1:t}Ni=1
according

to the weights.

28

4. Repeat

• If t < T, increment t and go to Importance Sampling Step;

• else output the particle Λ
(N)
1:T .

5.3 A Metropolis Algorithm

To implement a Metropolis algorithm we require a proposal density for θ. A proposal density

is a transition density of the form T (θold, θnew) such as a move-one-at-a-time random walk.

In the example of Section 6.1, we used the move-one-at-a-time random walk that uniformly

selects an index k and then moves the element θk,old of θold to θk,new according to a normal

with mean θk,old and variance σk, where σk is chosen by trial and error to achieve a rejection

rate of about 50% in the Accept-Reject step of the algorithm that follows or at least about

the same magnitude as the standard errors of the chain. For K below we set K = 50.

• Input: Λ, θold (and X)

• Propose: Draw θprop from T (θold, θ)

• Accept-Reject: Put θ(i) to θprop with probability

α = min

[
1,

p(X,Λ, θprop)T (θprop, θold)

p(X,Λ, θold)T (θold, θprop)

]

else put θ(i) to θold.

• Repeat: If i < K put θold = θ(i) and go to Propose; else output θ(K).

6 A Stochastic Volatility Model

6.1 Model

Our second example is a stochastic volatility (SV) model:

Xt = ρXt−1 + exp(Λt) ut

Λt = φΛt−1 + σet

et ∼ N(0, 1)

ut ∼ N(0, 1)

29

The true values of the parameters are

θ0 = (ρ0, φ0, σ0) = (0.9, 0.9, 0.5)

for the purpose of plotting the particle filter and

θ0 = (ρ0, φ0, σ0) = (0.25, 0.8, 0.1)

for illustrating estimation results. The reason for the difference is that the former generates

plots that are easy to assess visually whereas the latter are more representative of, say, fits

to daily S&P 500 closing prices.

The moment conditions used with this model are:

g1 = (Xt − ρXt−1)
2 − [exp(Λt)]

2 (13)

g2 = |Xt − ρXt−1||Xt−1 − ρXt−2| −
(
2

π

)2

exp(Λt) exp(Λt−1) (14)

...

gL+1 = |Xt − ρXt−1||Xt−L − ρXt−L−1| −
(
2

π

)2

exp(Λt) exp(Λt−L) (15)

gL+2 = Xt−1(Xt − ρXt−1) (16)

gL+3 = Λt−1(Λt − φΛt−1) (17)

gL+4 = (Λt − φΛt−1)
2 − σ2 (18)

Moment (16) identifies ρ independently of Λt; moments (13) through (16) overidentify Λt

given ρ. Moment (17) identifies φ given Λt and moment (18) identifies σ given Λt.

Estimates of θ for the SV model are shown in Table 1 for three methods: Metropolis

within Gibbs GMM with a Jacobian term, without a Jacobian term, and using the Flury

and Shephard (2010) estimator. The Flury and Shephard estimator can be regarded as

state-of-the-art. The MCMC chain generated using the method are draws from the exact

posterior with a flat prior.

Applying the particle filter at the true value of θ and N = 5000, we obtain the estimate

of Λ shown as a time series plot in Figure 1 and as a scatter plot in Figure 2 for the case

when a Jacobian term is included and as Figures 3 and 4 when it is not. The plots for the

30

Flury and Shephard estimator are Figures 5 and 6. In the particle filter vernacular, the

Metropolis within Gibbs GMM estimator is computed from a smooth whereas the Flury and

Shephard estimator is computed from a filter; accordingly, the plots shown for the Metropolis

within Gibbs GMM estimator are smooths whereas the plots shown of the Flury-Shephard

estimator are filters.

31

Table 1. Parameter Estimates for the SV Model
Instruments (13) through (18)

Parameter True Value Mean Mode Standard Error

With Jacobian Term

ρ 0.25 0.30488 0.30961 0.074778

φ 0.8 0.09153 0.94851 0.660790

σ 0.1 0.09023 0.06702 0.050229

Without Jacobian

ρ 0.25 0.30271 0.30939 0.076758

φ 0.8 0.15348 0.85765 0.643400

σ 0.1 0.11400 0.08435 0.070081

Flury and Shephard Estimator

ρ 0.25 0.30278 0.28555 0.059320

φ 0.8 0.17599 0.89189 0.509780

σ 0.1 0.09737 0.07839 0.064661

Data of length T = 250 was generated by simulating the model of Subsection 6.1 at
the values shown in the column labeled true. In the first two panels the model was
estimated by using the Metropolis within Gibbs methods described in Section 5 with a
one-lag HAC weighting matrix using N = 1000 particles for Gibbs and M = 50 draws
for Metropolis. In the third panel the estimator is the Bayesian estimator proposed
by Flury and Shepard (2010) with a flat prior. It is a standard maximum likelihood
particle filter estimator except that the seed changes every time a new θ is proposed
with N increased as necessary to control the rejection rate of the MCMC chain. The
columns labeled mean, mode, and standard deviation are the mean, mode, and standard
deviations of a Metropolis within Gibbs chain of length R = 9637 for the first two panels
and the same from an MCMC chain of length R = 500000 with a stride of 5 for the
third.

32

0 20 40 60 80 100

−
2

−
1

0
1

2
3

Figure 1. PF for Λ with Jacobian, Time Series Plot, SV Model. Data of

length T = 100 was generated from a simulation of the model of Subsection 6.1 and

N = 5000 particles computed using the algorithm described in Section 5.1 with a

Jacobian term. The blue line plots the simulated Λ. The red line is the mean of the

particles and the dashed black lines are plus and minus two pointwise standard errors.

The moment equations were (13) through (18); a one lag HAC estimator was used for

(3).

33

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

o

oo

o

o

o

o

o

o
o

oo

o

o
o

o

o
o

oo

o

o oo

o

o

o

oo

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o
o
o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

oo o

o
oo

o

o

o

o
o

o oo

o

o

o
o

o

o

o

o
o

o

o
oo

o
oo ooo o

Figure 2. PF for Λ with Jacobian, Scatter Plot, SV Model. As for Figure 1

except that plotted is the mean of the particles vs. the simulated Λ.

34

0 20 40 60 80 100

−
3

−
2

−
1

0
1

2
3

Figure 3. PF for Λ, without Jacobian, Time Series Plot. As for Figure 1

except that estimation is without a Jacobian term.

35

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

o

o

o
oo

o
o oo

o
o

o

o
o

o
o

o o o

oo
o

o
o

o

oo
o

oo

oo
o

o
o

o oo
o o oo

ooooo o o o
oo o

o o
o

o oo
oo o oo oooo
o

o
o
o

o o
oo

o
o

o
o

o
oo

oo ooo oooooooo ooo o

Figure 4. PF for Λ, without Jacobian, Scatter Plot, SV Model. As for

Figure 3 except that plotted is the mean of the particles vs. the simulated Λ.

36

0 20 40 60 80 100

−
3

−
2

−
1

0
1

2
3

Figure 5. PE for Λ, Flurry-Shephard Method, Time Series Plot, SV Model.

As for Figure 1 except that plotted is a filter, not a smooth, and weighting is by the

measurement density, not GMM.

37

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

o

ooo

o

o

o o
o

o
o

o
o

o o

o

o
o

o

oo
o

o

o

o

ooo

o

o

o

o
o

o

o

o o
oo

o
o

o

o

o
o

oo

o

o
o

o

o

o
o o o

o o
o

o

o
o

o

o

o
oo

o

o

o
ooo

o
o

o

o

o

o

o
o
o

o o

o
o
o

o o

o

o

o

o
ooo o

oo

o

Figure 6. PF for Λ, Flurry-Shephard Method, Scatter Plot. As for Figure 5

except that plotted is the mean of the particles vs. the simulated Λ.

38

6.2 Code

The code implementing the model is in directory svsim of the distribution. One runs it by

copying makefile.gpp.lib to makefile and then entering mle.sh svsim.ctrl.dbg on the

command line. Entering mle.sh svsim.ctrl.000 should reproduce the results shown in

Subsection 6.1 but takes a long time to run, say about 72 hours. This is overkill, the tuning

parameters in svsim.parm.000 could be set to produce shorter runs without changing results

much.

The particle filter is coded in likelihood. While emcount is less than emlimit MCMC

draws are computed. When emcount exceeds emlimit the particle filter code is executed.

The communication problem mentioned in Section 5 Introduction arises because likelihood

is called after mcmc in libmle calls set_rho whereas the particle filter needs to start at the

value at the preceding MCMC draw. This is where set_rho_old comes in. It supplies that

value. This is also where the need for only one instance of usrmod arises: Only mcmc knows

what rho and rho_old are so that all parts of the code must be working with the same

instance of usrmod to guarantee these are set correctly.

The remainder of the code implements a likelihood based on a GMM criterion. It relies

on gmm in libscl. The ideas behind the rest of the code can be determined by reading the

portions of libscl.h relevant to class gmm and the documentation for gmm at the beginning

of file gmm.cpp.

7 References

Andrieu, C., A. Douced, and R. Holenstein (2010), “Particle Markov Chain Monte Carlo

Methods,” Journal of the Royal Statistical Society, Series B, 72, 269–342.

Andrews, D. W. K. (1991), “Heteroskedasticity and Autocorrelation Consistent Covariance

Matrix Estimation,” Econometrica 59, 307–346.

Chernozhukov, Victor, and Han Hong (2003), “An MCMC Approach to Classical Estima-

tion,” Journal of Econometrics 115, 293–346.

Flury, Thomas, and Neil Shephard (2010), ”Bayesian Inference Based Only on Simulated

39

Likelihood: Particle Filter Analysis of Dynamic Economic Models,“ Econometric The-

ory, forthcoming.

Gallant, A. Ronald (1987), Nonlinear Statistical Models, New York: John Wiley and Sons.

Gallant, A. Ronald, Raffaella Giacomini, and Giuseppe Ragusa (2013), “Generalized

Method of Moments with Latent Variables,” Working paper, http://www.aronaldg.org

Gallant, A. Ronald, and George Tauchen (1992), “A Nonparametric Approach to Nonlinear

Time Series Analysis: Estimation and Simulation,” in David Brillinger, Peter Caines,

John Geweke, Emanuel Parzen, Murray Rosenblatt, and Murad S. Taqqu eds. New

Directions in Time Series Analysis, Part II. New York: Springer-Verlag, 71-92.

Gallant, A. Ronald, and George Tauchen (1990), “SNP: A Program for Nonparametric Time

Series Analysis, Version 9.0, User’s Guide,” Manuscript, Duke University. Available

along with code and worked example by anonymous ftp at http://www.aronaldg.org.

Gallant, A. Ronald, and George Tauchen (1993), “EMM: A Program for Efficient Method

of Moments Estimation, Version 2.6, User’s Guide,” Manuscript, Duke University.

Available along with code and worked example at http://www.aronaldg.org.

Hansen, Lars Peter and Kenneth J. Singleton (1982), “Generalized Instrumental Variables

Estimation of Nonlinear Rational Expectations Models,” Econometrica 50, 1269–1286

Gallant, A. R., and H. White (1988), A Unified Theory of Estimation and Inference for

Nonlinear Dynamic Models. Oxford: Basil Blackwell

Gamerman, D., and H. F. Lopes (2006), Markov Chain Monte Carlo: Stochastic Simulation

for Bayesian Inference (2nd Edition), Chapman and Hall, Boca Raton, FL.

Hansen, L. P. (1982), Large Sample Properties of Generalized Method of Moments Estima-

tors. Econometrica 50, 1029–1054.

Schwarz, G. (1978), “Estimating the Dimension of a Model,” Annals of Statistics 6, 461–

464.

40

