7 Hypothesis Testing

In this chapter we consider the propertics of versions of the Wald,
Lagrange multiplier, and “likelihood ratio” statstics for testing the
hypothesis ;

H :hi@*)=h; aa.n
Versus
H :h(6¥) + by o,

where fi: @ — B9, g . Each statistic we consider, say T, is decomposed
into & sum of two random variables

T:-l — Xn-i-ﬂﬂ

where a, converges in probability to zero and X, has a known finite
sample distribution. Such a decomposition permi's the statement that
foranyrte®

lim [P(T, > t)—P(X, > t)] = 0.

= m
Because we allow specification error and nonstationarity we will not
necessarily have T, converging in distribution to a random variable X.
However, the utility of convergence in distribulion in applications
derives from the statement

lim [P(T, = t)—P(X = 1)] =0,

Ff —+ o0
because P(X = 1) is computable. Since our P(X, > t) is computable, our
results carry the full foree of classical results.

The starting point for our results is the followig set of conditions,

which we collect together as a single assumption. All of the results given
in this chapter rely on these conditions.
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Assumption HT (hypothesis testing)
Let (£2, F, P) be a complete probability space and let ® = R, ke M, bea
compact set. Assume:

(a) 0,:Q2x® — R is a -andom function continuously differentiable of
order2on ®,as,n=12,....
(b) There exist sequences of functions {J,:@ — R} and {4,:@—-7**%)
such that §, is differzntiable on © and
0.8 —0, " —0 as, uniformly on @,
VoQ.(0)— Vo0, —+ 0 as. uniformly on @,
Vi0.(0)—4,() =0 as. uniformly on @,
where {{J,}, {V,@,},and {4,} are continuous on © uniformly in n.
(c) {0} has identifiably unique minimizers {#*} on @, interior to ®
uniformly in n. Define
®, = {0e®@:h(E) = It}

where h:@ — R4, ge M, is continuously differentiable on ©, h* =
h(B*), and {hZ} is chcsen so that

)k —hg) = 0(1).

Assume that {(,} has identifiably unique minimizers {62} on {@®,},
interior to @ uniformly in n.

(d) \/(n)OF —63) = 0(1)
(e) There exist sequences {Bj} and {B*} of O(l) uniformly positive
definite symmetric &k x & matrices such that
By =V Ga— V03 A N0, 1)
J(mBr ~12y,0r £ N, 1),
(f) Thereexistsequences{B,:Q— #***} and {B,:Q— R**¥} measurable-
F/B(R***)and O(1) nonstochastic sequences { U2} and {U#*} such that
B,— (B3 +Up) =0
B,—(B*+Un-Zo0.
{g) There exists a closed sphere 8§ = @ of finite nonzero radius such
that for some e = 0

Uz 1 {00©:(0-0% <&} = S
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and {A,(} is O(1) and uniformly positive definite uniformly on 5.
(h) There exist sequences {A,:Q— B**¥} and {4, Q- B***] mea-
surable-F/B(R"** ¥y such that

A, —A2=0 as.
A —A*= D as

where A5 = A (), A¥ = A(0%). ]

Given assumption HT(a), theorem 2.2 ensures the existence of a
measurable function f, which solves the problem ming Q,(f) as;
further, theorem 3.19 ensures that §,—8* — 0 as. given assumptions
HT(a), (b), and (c). The same theorems ensure thal there exists
a measurable function @, which solves the conitrained problem
ming Q) as. for @, as defined in assumption HT(c) and that
J,— - 0as.
The requirement that i} be chosen in such a way that

it —hy) = 0(1)

is the way in which we impose a Pitman drift. We keep the data
generating process (defined by P) fixed, and suppose that the investigator
gradually adjusts his hypothesis in such a way as to approach the
“truth™ asymptotically. This is in contrast to the traditional approach in
which the hypothesis is held fixed, and the data gnerating process
{(different for each sample size) drifts in such a way that the data
peneration process satisfies the hypothesis asympiotically. In some
respects our approach is philosophically more pelatable than the
standard approach. It makes more sense to assume that an investigator
slowly discovers the truth as more data become available than to
assume that nature slowly accommodates to the investigator’s pig-
headedness. But withal, the drift is only a technical artifice to obtain
approximations to the sampling distributions of test statistics that are
reasonably accurate in applications, so that philosophical nitpicking of
this sort is ultimately irrelevant.

The requirement that \/{n}{f.i:—ﬂ:} = (1) is essentially a require-
ment that #* approach (% at the same rate at which 1} approaches hi.
This can be ensured by placing further restrictions on h. Lemmas 7.1
and 7.2 below enable us to place restrictions on h ensuring that

/({02 —62) = 0(1) as required.
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Assumption HT(e) is the conclusion of theorem 5.4 and corollary 5.3,
while assumption HT{[) posits the existence of consistent estimators for
Bi+ U and for B*+ U For this any appropriate result of chapter 6
will suffice.

Assumption HT(g) iz a strengthening of assumption PD(ii}; however,
in cases in which 0F = ¢* for all n, S can be chosen as a sufficiently small
neighborhood of 0* without further conditions, as the continuity of the
determinant function, the uniform continuity of A, on @&, and the
uniform positive definteness of {4}} ensure that {4,(6)} is O(1) and
uniformly positive definite uniformly on such a neighborhood 5. We
strengthen assumption PD.

Assumption PDY
Assumption PD(i) holds, and

(i) There exists a closad sphere S = @ of finite nonzero radius such
that for some ¢ = 0

U, {(fe@:|(—0f <&}l =S

and {A4,(6)} is O(1 and uniformly positive definite uniformly on
3, o

Finally, assumption HT{h) is the conclusion of theorem 6.1. This
suggests that the results of the previous chapters provide sufficient
conditions for assumption HT, once we ensure that \/ (m)(8F —02) = O(1).
To do this, we first sstablish that 8*—8 —0 as ¥ —hl — 0. The
following assumption plays a key role in ensuring this.

Assumption CN (constraint)

Suppose fi: @ — R, gV, is continuously differentiable of order 2 on ®
with Jacobian H(-) = V;h( - ) such that the eigenvalues of H(0)H(0) are
bounded below on S by ¢ = 0 and above by A < oo,

For ¢ = k, let h be cne-to-one with a continuous inverse on S. For
g < k, suppose there exists r: @ — #* 7 continuous on © such that the

mapping
(0, ') = (r(), 1HO))
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has a continuous inverse
= Y(p,1)

defined over M = {(p,):p = r(f), T = (), 0 e5}. Mareover, ¥(p, 7) has
4 continuous extension to the set

RxT={p:p=r(f),0c@] x{t:t=hif),0c0}. o

Lemma 7.1
Given assumptions HT(b), HT(c), and CN, if i} —h} - 0 as n — co, then
0¥ —8 — 0asn — oo, 0o

We now formally impose the Pitman drift assumptior.

Assumption DR (Pitman drift)
The sequence {h7} is chosen such that

Jor—r=0(1). o f

By making use of lemma 7.1 and the following result, itis straightforward
to establish that /| (n{Ox — 07} = O(1).

Lemma 7.2

Let A be a symmetric k x k matrix and let H be a g »xk matrix with
g < k. Suppose that the eigenvalues of A are bounded below by 6 =0
and above by A < oo and that those of HH' are bounded below by §*
and above by A% Then there is a k % (k—q) matrix G with orthonormal
columns such that HG = 0, the elements of

G'A
1=[%]
are bounded above by kA, and |[detJ| = 6**. O

| |
We can now state a result ensuring that .‘/{n}[ﬁ:‘a—ﬂ‘;} = O(1), along
with several other useful facts.
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Lemma 7.3

Given assumptions DG, OP', MX, SM, DM’, NE', ID', PLY, and CN:
(a) There exists A, < co sich that |6F —0,] < A |hY —h7l.

Il assumption DR also holds, then

(b) . —0* -0 as.
(©) /(0 —am = o(1).
(d) @, —0) =0,1). o

The following result gives a formal statement of the fact that our
previous results provide conditions which, when combined with those
added here, suffice for assumption HT. Given this result we can proceed
to consider the test statistics of interest.

Theorem 7.4

Suppose that any one of the following three sets of assumptions holds
with ©, = {fe @ :h(f) = 2}, where h satisfies assumption CN and {h7}
satisfies assumption DR:

(i) DG, OP, MX/, SM, DM", NE”, 1D/, PD, and E(MZ|F'~!) =
EMAF-Y=0,nt=12...; |

(i) DG, OP’, MX’. SM_DM", NE", ID', PD', and E(M%M?_)) =
E(MEMY:_)=0forallt > meMN,nt=1,2,...;

(i) DG, O, MX’, SM, DM", NE”, ID', TL, WT, PD', and {U2},
(U}0(L).

Then assumption HT holds. o

The first test statistic comsidered is the Wald test statistic (Wald 1943).
Letting i, = h(0,) and H, = H(f,), this is defined as

W, = n(f,— kLR, Ar Bt Ay A1\, — ).

As shown below, one rejects the hypothesis H,:h¥ = hj at the a level
when W, exceeds the 1 —aquantile of the chi-square distribution with ¢
degrees of freedom. The principal advantage of the Wald test is that it
requires only one unconst-ained optimization to compute. The principal
disadvantages are that fcr nonlinear hypotheses it is not invariant to
reparameterization (see for example Gregory and Veall 1985), and its
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sampling distribution is not as well approximated by our characteriza-
tions as are the “likelihood ratio” and Lagrange multiplier test statistics
(Gallant 1987). The lack of invariance means that two researchers with
the same model, the same data, and the same nonlinear null hypothesis
can obtain conflicting results because they happen:d to parameterize
differently.

We have the following result.

Theorem 7.5
Let assumption HT hold. Then
W, ~ Y,+0,(1)
where, letting H* = H(6¥),
Y, =Z,[Hy Ay "By +UnAr " 'HY¥17'Z,
and
Z, ~ N(/(n)hy —h3), HY A¥ ~*BY A* ™' HY).

If UY = o(1) then Y, is to within o,(1) distributed as the noncentral
chi-square distribution with g degrees of freedom and noncentrality
parameter

o = (n/2)(h¥ —HY[HYAY " 'By AY " 'HY¥1'(ht -h)).
Under the null hypothesis, & = 0. O

In order to characterize the distribution of the “likelihood ratio” and
Lagrange multiplier test statistics we need the following characteriza-
tion of the score vector when evaluated at the constrained value 9.

Theorem 7.6
Let assumption HT hold. Then

JOVeQS ~ X, +0,1)
where

X, ~NG/mV,05,B). o

Both the “likelihood ratio” test statistic and the Lagrange multiplier
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test statistic are effectively functions of the score vector evaluated at &,
The following result gives an essential representation.

Theorem 7.7
Let assumption HT held. Then

—— JVe0, = HY[HAS HY ™ H2 AL ™1 /(0)V4Q5 +o0,(1)
‘ =0 ). o

The second test statistic considered is the “likelihood ratio” test statistic

Ln = 2n[Qn(gn'—Qn(gn)]'

We enclose “likelihood ratio” in quotes because Q need not be the
likelihood function. Itis instead (as usual) the optimand which defines
the extremum estimator. As we show below, one rejects the hypothesis
H,:h¥ = h) at the a lzvel when L, exceeds the 1—a quantile of the
chi-square distribution with g degrees of freedom. The principal dis-
advantages of the “likelihood ratio” test are that it takes two minimiza-
tions to compute, and it requires that B; = A2+ o(1) to achieve its null
case asymptotic distribution. In cases where this condition holds,
there is some Monte Carlo evidence to indicate that the asymptotic
approximation is quit: accurate if degrees of freedom corrections are
applied (Gallant 1987).
The result for the “licelihood ratio” test is as follows.

Theorem 7.8
Let assumption HT hold. Then
L, ~ Y,+o,1)
where
Y, = Z,A; " By THady " HY 1 Hodp 2,
and
Z, ~ N/ n)\VsQ:, By).

If B; = A7 +0o(1) then 1, is to within o,(1) distributed as the noncentral
chi-square distributior with g degrees of freedom and noncentrality
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parameter
o = (n/2)V,0n Ay~ Hy THRAR ™ HY 1 H AR Vo0

Under the null hypothesis, ¢ = (. O

The last test statistic considered is the Lagrange multiplier test statistic
(Rao 1947, Aitchison and Silvey 1958)

LM, = nV,0, A7 ‘AL, A B A; A7 A,4,'V,0,,

where we write V,0, = V,0,(0,)and H, = H(f,). As we show below, one
rejects the hypothesis H,:h* = ! at the « level whea LM, exceeds the
1 —u quantile of the chi-square distribution with ¢ cegrees of freedom.
Using the saddle point conditions

Vil @ 70 = Vo[ Qul )+ Z(1(0,) — h3)] = 0

for the problem minimize Q,(€) subject to h{d) = h} where L, denotes
the Lagrangean [or this problem, one can replace V.0.(7) by
IV ) = T H(,) in the expression for LM,, whence the term
Lagrange multiplier test; it is also called the efficent score test. Its
principal advantage is that it requires only one constriined optimization
for its computation. If the constraint h(f) = h; complztely specifies b, or
results in a linear model, this can be an overwhelming advantapge. The
test can have rather bizarre structural characteristics Suppose h(lf) = hy
completely specifies #,. Then the test will accept any kg for which f, is a
local minimum, maximum, or saddle point of Q(0) regardless of how
large is h—h°. Monte Carlo simulations suggest that the asymptotic
approximation can be reasonably accurate (Gallant _987).

Thearem 7.9
Let assumption HT hold. Then
LM, ~ Y, +0/(1),
where
Y, = Z,As Y THIAS ~ By UAZ ~ HE'T HEAS ™12,
and
Z, ~ N(/(n)V, 03, B2).
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If UZ=o(1) then ¥, is to within o,(1) distributed as the noncentral
chi-square distribution with ¢ degrees of [reedom and noncentrality
parameter

o = (nf2)Vy0nAy ~  HY [HRAL ' Bidy = Hy 7 HR AL =V, 05

Under the null hypothesis, o« = 0. =

If Uy = U¥=o(l), the noncentrality parameters of the Wald and
Lagrange multipliertest statistics are, respectively,

ty = (/21— HEY[HEAY ' BEA* = 'H* ]~ '(h*—h9)

Grar = (M2 02A42 L HY [HE A2~ e qe -1 e~ HeAL ™'Y, 00,
By equicontinuity and the fact that \/ (m)(@F — &%) = 0(1), the matrices in

brackets differ by terms of order o(1). Further, by Taylor's theorem and
familiar arguments

e —h) = HE /(06 —02)+0(1)
VG = Aa/(mn)(0F —07)+o(1)
S0 We can write
oty = (n/2)(0F — 07 HX THY A¥ "' B Ay ' HY ™!
x HY (9% —07) +o(1)
opar = (/2)(05 — O Hy [Ho Ay~ ' By Ay~ "Hy ™!
® Hy(l* — B+ o(1) = ayp+o(l).

As oy is O(1) and thz noncentral chi-square distribution is continuous
in the noncentrality parameter we will have

lim |P(LM, > x)—P(W, > x)| = 0.

=D
Thus, under the Pitman drift assumption, the Wald and Lagrange
multiplier test have the same power in large samples — the same “local
power”, to use the standard parlance, It is obvious that the same sort of
arguments will yield this result even when U2 and U#* are 0(1) instead of
o{1). Il A% = B:-Fo(l), then the same applies to the *likelihood ratio”
test, as oty and oy, arz identical in that instance,

One should not nterpret this result to mean that the tests are

equivalent in sampe sizes ordinarily encountered in practice. As
remarked earlier, the tests do have different structural characteristics,
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and Monte Carlo evidence suggests that the asymptotic approximations
to the distribution of the “likelihood ratio™ and Lagrange multiplier
tests are more accurate than the Wald,

MATHEMATICAL APPENDIX

Proofaf lemma 7.1

When g = k the result is immediate, as the one-to-onemapping © = h({)
has a Jacobian whose inverse has bounded elements.

Suppose g < k. Let & > 0 be given. Given assumption HT(c) there
exists N, e such that

¢ =infy 5 v, infly_ g > /@) —FF| > 0.

Let W(p,7) be as defined in assumption CN. Now he = h(0%) by
definition, and put p§ = r(fl}), i¥ = h(0F), and p¥ = r(07). The image of a
compact set is compact and the Cartesian product of two compact sets
is compact, so R x T is compact. A continuous function on a compact
set is uniformly continuous, so |h* — k2| — 0 implies

Sup.ﬂl‘yflﬂs h:}_q‘[ﬂ‘: h:}l = 0.
In particular, putting 0, = W(p*, h?) we have
|07 =071 0.

By definition of S, it [ollows that for all n > N, say, 07 is in 8. Because
{0,(0)} is continuous uniformly in n given assumption HT(b), there
exists N, such that |0 — 0¥ < n implies

18.0)—3u03)] < &

for all n > N,;. Choose N, large enough that IE:_-E:"[ < i for all
n > Nj. Because h(#7) = h?, we must have @.(62) < G(6%) forn > N t
as (% minimizes 0, on @,. For n > max (N,, N, N,, N, we have

007) < 0,(07) < O (03)+ &

This implies |Q(0%)—0.(0F) < & so that |02—0*| <z Because & is
arbitrary, i — 8% — 0. o
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Proof of lemma 7.2
Let

H = USV,
be the singular vaue decomposition (Lawson and Hanson 1974,
chapter ) of H, where § is a diagonal matrix of order g with positive
entries on the diagonal, V) is of order g by k, and U'U = UL’ =
ViVi =1, From HH' = US*U" we see that § < 52 < A. Choose VY of
order k—q by k suchthat

V.l
V= 1
7]
satisfies
i Ll ¥
L=V =hvi+vyy =100 Vite| [ 0 ]
A7 Al [

Put &' = V4, note thet HG = 0 and consider
¢ rfl P
JI = [uff;lf*][’”’! V,SU"

_[vidiv,  vLavSUr
-~ L USvi4Y, ustU

=[V'1 u]AU A | 0 Tar o | 57 T N Ay
0 Uflo Ssjf, o |[v: o0flo s|lo w

= BCDDC'H',

The elements of B and D are bounded by one so we must have that each
element of BCD is boinded above by kA. Then each element of JJ' is
bounded above by k*A%. Since a diagonal element of JJ' has the form
Z,J7; we must have [J,] < kA,. Now (Mood and Graybill 1963, p. 206)

det JU' = det (US*U)det [V A4V, — V4 AV, SU(US*U) " ' USV, AV,
= det S3det (Vo 44V, — VLAV, V| AV,)
= det S*det (VL AV, VA4V,
= a* det? (VA V).
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But

dx'x = 6XVVox < X V3AV,x
whence 8* < det V,AV, and

% < detd I =det®’J. o

Proof af lemma 7.3(a)

The first order conditions for the problem minimizz §,(f) subject to
hif) = I are

VO -+ A Hy =0
h2) = I,

By Taylor’s theorem we have

Vo = V@5 +[VaQr+o{1)10F —067)

h¥ —h2 = h(05)— h+ [HE -+ ol 1))(0¥ —5).
Using V,@.(6%) = 0, h(#) = I}, we have upon substitution into the first
order conditions

[ViQ:+o(1)](6F —65) = — Hj A7

[H,+ o 1)J(0F — ) = hy — k.

Let G* be the matrix given by lemma 7.2 with orthenormal columns,
H*G* =0,0 < §** < detJ}, and max; |J%,| < kA < © where

ijn
GF AT
*® ] n
il

Let J,; denote the elements ol a matrix J and considerthe region
[Ji:0 < 6% —g < detJ, |4, < kA+e}.

On this region we must have |JY| €A, < oo where JY denotes an
element of J~ '. For large n the matrix J7 is in this region by lemma 7.2,
as s the matrix

5 _[oxTaz+o
"= H*+o(l) |

because the elements of GF are bounded by one. In consequence we
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have

0
*_ oy — -1
a-w=5,. 0

where the elements of J, ' are bounded above by A, for all n larger than
some N e V. Thus we have |05 — 0] < A |h¥ —hg] for large n.

Proofof lemma 7.3(b)
By the triangle inequality
18, — 0] < 10,— 03+ 105— 7]
< 18, — 02 -+ A X — .

The first term conve-ges to zero a.s. given assumptions DE, OF, MX,

. SM(i), DM, NE', and 1D, and the second term converges to zero given

assumptions DG, OF, MX, SM(i), DM’, NE', ID', PI), CN, and DR by
lemma 7.3(a).

Proaf af lemma 7.3(c)

Blecause \/{n}lﬁ';—ﬂzl = ﬁ,,\/{u}lh: — Iyl by lemma 7.3(a) given assump-
tions DG, OP', MX SM(i), DM', NE', ID/, PD’, CN, and DR, and
because J{u]|hj‘ — Izl is O(1) by assumption DR, it follows immediately
that \/(n)}6 — ) = 0(1).

Proof of lemma 7.3(d)
By argument identical to that in part (a), we obtain
¥, —0,) < AhO)—h| aan as,

where Q,(f)) replaces (,(0)), 0, replaces 62, and @, replaces 0% A*+o_(1)
replaces A¥ +o(l), H! +0,,(1) replaces H*+0(1), and the elements of
J ! are bounded above by A, almost surely, By Taylor's theorem

W0,) = h0¥)+ [HY + 0,,(1)1(0, — 07).
Therefore

SOOI = /)2 — )+ LHE + 0,11/ ()0, — 0%)
= 0,(1).
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The first term is Q1) given assumption DR, while tie second term is
0,(1) given that H? is O(1) by assumption CN and \/[.u]{ﬁn—ﬂ:‘] is O,(1).
That \;’ll:u}{lg,, —@%)is O (1) lollows because

SN0, —02) = —AF (V02 +0,(1)

under the conditions given, where {4} '} is O(1) and ,_/ (MV,0* =
0,(1) as a consequence of McLeish's inequality, thecrem 3.11 (see the
proof of theorem 5.4). Thus

\/tillig,, = gn} = Gp[”
It follows that

S~ 0) = S0, — 0,4/ ()0, — 0%) +/ () — 07)
=0,(1)

because \/ (). —0) is 0,(1) as just established, \/ (), —a%) is o,(1)
given assumptions DG, OP', MX, SM, DM', NE', ILY, and PD as
previously argued, and ,/ (n)(0F —07) is O(1) as estadlished in lemma
73 D

Proof of theorem 7.4

We give the argument for conditions (iii) only. The result for conditions
(i) follows using theorem 6.4 instead ol theorem 6.9 and the result for
conditions (i} follows using theorem 6.5 instead of theorem 6.9.

Assumption HT(a) holds given assumptions DG znd OP’ as estab-
lished in the proof of theorem 2.2. Assumption HT(b) holds given
assumplions DG, OP!, MX/', SM, DM", NE", and MX', since these
conditions imply those of theorem 5.6. Assumption HTi(c) is satisfied
given assumption ID'. Similarly, assumption HT(d) holds as a con-
sequence of lemma 7.3(c). Assumption HT(¢) holds by the conclusion in
theorem 5.4 and corollary 5.5. Assumption HT([) tolds by the con-
clusion of theorem 6.9. Assumption HT(g) holds given assumption
PD’, Finally, assumption HT(h) holds by the conclusion of theorem
6.1. |

Proof of theorem 7.5

We may assume without loss of generality that §, and % are in S.
Conditions HT(a), (b), and (c) ensure that V,0,(7) = o, n~'"?) and
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V.0r = o(n™''%). By Taylor’s theorem
O, = h(02)] = Vo (@) /)0, — 2)

fori=1,2,...,q and 0}, on the line segment joining 0, to 0*. By the
almost sure convergence of 0F — 0, to zero, 0} —02 — 0 almost surely,
whence Vol () — Vi1 (0F) — 0 almost surely. Thus we may write

o0l — ) = [HE +o{1 /), — 02).
By lemma 3 of Jennrich (1969) we have

JBE ~ 1,08 = | /(nBr ~112v,0,

+ B T RLAY +o,(1)]/(n)0,—03)
=0y(1)+ B ~H[AF + 0, (] ()0, — 7).

Now Bf 12 = O(1)and 4% ' = 0(1), whence . /(n)(0, — 6%) is bounded
in probability and

JOV0F = Az SN, —0%)+0,(1):
Combining these two equations we have
R, =8 = )k —1)
+HE ()0, —03)+0,(1)
= )i —h)+ Hr Az 1By 2By~ 112
X A/ (MVa Q2 +0,(1).

This equation implies that the left hand side is bounded in probability,
and because

R ATB AT A, = H¥A* ~\(Br + UNA* - YH¥ +0,,(1)
we have that
W, = n(h,— Iy [HI A}~ (BX + UNAL~ Yy ] YR, —he)+0,(1).

By the Skorohod representation theorem (Serfling 1980, section 1.6),
there are randcrsm variables X with the same distribution as
B 12, /(n)V,0F such that X, = X +0,(1) where X ~ N(0, 1,). Then
SO, —hD) ~ e — b2+ HE A~ 1B~ 12 )
= /(n)ht —ho)+ HXA*~'B2 12X +0_(1).
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Let
Z,= /(s —h)+ HIA} " 'Br T'PX,

and the result follows. |

Proof of theorem 7.6
Given assumption HT(e) we have
B3 =2V 08— Vo @iy = N(O, 1),
Now \/ (mV,04 = O(1) because by Taylor’s theorem
SOV = V0 +LAF+o(U]y/ ()05~ 07)
= AXJ/ ()l —07)+ol1)

and A* = O(1) by assumption HT(g) and \/{ri]{{]’:—ﬂ:’] = 0(1}) by
assumption HT(d). By the Skorohod representation theorem (Serfling
1980, section 1.6) there are random variables ¥, with the same distribu-
tion as /(n)B:~2V,0¢ such that Y,—./(n)BS~1P7,05 = Y+0,(1)
where ¥ ~ N(0, I,). Let

X, = By'2Y +/(n)V, 0%
whence
X, ~ NL/(mV.0;, B3

As B2'/?is bounded, B2'?g, (1) = 0,,(1) and the result 'ollows. O

Proofaf thearem 7.7

By Taylor’s theorem and the continuity of {V;(Q,(#)} ard H(0) uniformly
in n on the compact set 5 we have

VB = Va8 + [ A5+ 0 1)1/ ()T, - 03)
S, = /(02 + CHE + 0, )1/ ()T, — )
Recalling that J{::}E,,—J{n}h[ﬂ:} = and the elements of A} are
bounded we have for large n that
@, =00 = [A+o, 1]~ /Y, G,
—[ A2+ 0, (1)1 S (V02 + (1)
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and

[HZ+ 0,,(1)1,/(0(T,— 02) = 0,(1)
whence

[CHG + 0, D[ AR+ 0,11~/ (1)V, D,

= [Hy+2,,(D1LA + 04D '/ (Vo @5 + 0,41).

Now ,/ (m)By " Y2[V,0r—V,05] converges in distribution and by
Taylor's theorem (Jernrich 1969, lemma 3)

VB V,00 = J/(m)Bs 12y, O

/() BS LAR + 0,/1)1(05—67)
= 0,(1)+0(1).
This implies that ,/(n)B;~Y2V,0% is O(1). Because B!~ ' is O(1),
\/{u}?ﬂg:' is bounded in probability given assumption HT{e).
There is a sequence of Lagrange multipliers 1, such that

S0V, G, + BT = 0,41).
By continuity of Hif) and the fact that § —0°—0 as we have
f:t= HY+ 0,,(1). Reealling that . /(n)V,0, is 0,(1) we have for large n

a
Hy TR Ay~ 1 A/ (n)VaQF
= HL [+ o (D) A} +o0,(1)] 1 H,] !
% [H; + 0, (1)1LAS + 0,101~/ (Ve @7 +0,(1)
= H[(F} +o0,,(1)[ A7 +o. (1] ']~
% LH)+ 0o DILAS + 0,010 /(mVo, + 0,(1)
= — [, [(Hy+ o0, (D)[AL+0,,(1)]~*A,] !

% [H,+ 0, \)ILAZ+ 0o, (1)] ", +o,(1)
—H, 5 +0,(1)

JOVdi+o,1). o

Proof of theorem 7.8
By the mean value thearem (Jennrich 1969, lemma 3)

2n[Q,(7,)— 040,01 = 2nV,0(0XT, —0.)
- "l:gn s gﬂjr?ﬂ? er{ ﬂi-J'l:Kﬁrrr_ ﬂn.}
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where @, lizs on the segment connecting , and @,. Because {Vi{J,(0)} is
continuow on © uniformly in n, §,—0° = o,,(1), §,—0% = ¢,(1), and
% — 8% = (1), we have

Vi) = V30,(07) + 0,,(1).
Also, nV,(X) = o,,(1)so that

2n(0,—0.] = n(l,— 0, TA2+ 0,110, — 0,)+0.(1).
Again by tae mean value theorem

[4+ 0,11/, ~6,) = /)Y,
whence using the same type of argument as in theorem 7.7,

N8, —0,) = [A2+ 0,011 ' [AS+ 0,11/ (T, — B) + 0,,(1)
= [A2+ 0, (1)] ™/ )Ve T, + 0,4(1),

which is O (1) by the argument of theorem 7.7. Thus
2 0,— 0,1 = n(l,~ 0,y 438, —0,)+0,(1)
NG —0,) = 427/ 0)VoD, +0,(1)
whence
20, 0,1 = nV,0, 45 'V, 0+0,(1)

and the dstributional results follow al once from theorem: 7.6 and
L o

Proof of theorem 7.9
Using arguments that by now are routine we have
LM, = nVoQody = HYTHR AR~ (B + U Ay ~ 1 H T
x HyAS ~ V408 + 0,(1).

The result ‘ollows [rom theorems 7.6 and 7.7. o
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