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Abstract

GSM implements a methodology proposed by Gallant and McCulloch (2009) for the statisti-

cal analysis of models derived from scientific considerations that exhibit five characteristics:

(1) a likelihood is not available; (2) the model can be simulated; (3) prior information is

available; (3) a portion of the prior information is expressed in terms of functionals of the

model that are not easily converted into an analytic prior on model parameters but can be

computed from a simulation of the model; and (5) a parametric statistical model for the

data, determined without reference to the scientific model, is either known from the litera-

ture or can be determined. The latter is nearly always the case because richly parameterized

statistical models can be accommodated.

Their proposal is a computationally intensive Bayesian MCMC modeling strategy for

estimation and inference together with methods for assessing model adequacy. An important

adjunct to the method is that the implied map from the parameters of the scientific model

to the parameters of the statistical model and to functionals of both the scientific and

statistical models becomes available. This map is a powerful tool for eliciting the properties

of the scientific model and understanding the reasons for model success or failure.

GSM, coded in C++, is available at http://www.aronaldg.org The code is provided at

no charge for research purposes without warranty. Two versions are offered: a serial version

and a parallel version.

The purpose of this Guide is to review the underlying methodology and explain and

illustrate the use of the program. After explaining the methodology, use of the program is

illustrated with a stochastic volatility model that is determined using both the serial and

parallel versions of the program. The intent is that the Guide be self contained and that little

reference to the cited literature will be required to use the program and the GSM method.
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1 Introduction

Models derived from scientific considerations often exhibit four characteristics: (1) a likeli-

hood is not available because, for instance, the state vector is only partially observed, the

model’s output is continuous but observed discretely, or the model contains latent variables;

(2) the model can be simulated; (3) prior information is available; (4) a portion of the

prior information is expressed in terms of functionals of the model that cannot be converted

into an analytic prior on model parameters, for example, a prior on the expectation of the

solution of a system of nonlinear equations involving model variables and parameters;. Ex-

amples of such models are the SEIR model from epidemiology for which the state variable

is the proportion of a population that is susceptible, exposed, infected, and recovered from

a disease whereas the data are from case reports that report only those infected (Olsen and

Schaffer, 1990); continuous and discrete time stochastic volatility models of speculative mar-

kets from finance (Ghysels, Harvey, and Renault, 1995); general equilibrium models from

economics (Aldrich and Gallant, 2011); and compartment models from pharmacokinetics

(Mallet, Mentré, Steimer, and Lokiec, 1988). Aldrich and Gallant (2011) is an application

of GSM; they compare three general equilibrium asset pricing models: habit, long run risks,

and prospect theory.

GSM is designed for estimation and inference for models that at least exhibit character-

istics (1) and (2) and for which, in addition, it is the case that (5) an adequate statistical

model for simulations from the scientific model is available. Because richly parameterized

statistical models are admissible in this connection, an adequate statistical model can nearly

always be found.

In theory the statistical model should be an adequate model for simulations from the

scientific model. However, Gallant and McCulloch (2009) argue that in practice one might

well prefer that the statistical model be an accurate model of the data even if doing so causes

it to fail to reflect some features of the scientific model. Also, if the maximum likelihood of

the statistical model is easy to compute, the run times are considerably reduced and accuracy

is improved. This, also, should be a consideration in selecting a statistical model.

Given (5), we can construct a map from the parameters of the scientific model to those of
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the statistical model such that a point in the parameter space of the scientific model and its

image under the map both correspond to the same data generating process. Typically the

parameters of the statistical model will live in a higher dimensional space than that of the

scientific model. The scientific model may therefore be viewed as a prior on the statistical

model that has support entirely on the manifold that is the image of the map. Scientific

prior information will then generate preferences on the manifold. The GSM methodology

allows the scientific prior information to be expressed either directly on the parameters of the

scientific model or on functionals of the scientific model that can be evaluated via simulation.

The discovery of the mapping from the parameters of the scientific model to those of

the statistical model, which is an intermediate step of the methods proposed here, is often

itself of scientific interest. For instance, the statistical model must, perforce, be expressed

entirely in terms of observables whereas scientific models often contain unobservables. Having

a mapping from the subset of the parameters that control the unobservable features of the

scientific model to the parameters of a statistical model consisting entirely of observables can

be extremely helpful in understanding the observable consequences of changes in a model’s

unobservable internal structure. The utility of this approach can be extended by using the

same methods to find the map from the parameters of the scientific model to functionals of

both the scientific and statistical models.

A Bayesian approach suggests itself for problems that exhibit the five characteristics just

listed because the methodology gracefully accepts prior information into the analysis and,

for dynamic models, does not require growth conditions on model output or data that are

often counter factual. Moreover, the estimates of parameter uncertainty are credible. That

is, the asymptotics on which frequentist methods rely are often grossly inaccurate for the

class of problems considered here.

The implementation relies on modern object oriented programming methods, modern

data structures, and a discretization at a critical point in the computations. Bringing these

elements to bear on the problem seems to be both novel to this work and essential to success.
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2 The GSM Method

We shall use the notational conventions of time series analysis because most models for which

GSM is called for are dynamic. This is in no way essential because the results apply equally

well to other data structures with a few obvious changes to notation.

3 Scientific and Statistical Models

Let the transition density of the scientific model be denoted as p(yt|xt−1, θ), θ ∈ Θ, where

xt−1 = (yt−1, . . . , yt−L) if Markovian and xt−1 = (yt−1, . . . , y1) if not. We assume that there

is no direct information about p(·|·, θ). All that we can do is simulate data from p(·|·, θ) for
given θ. If the model produces ergodic output, then a single long simulation for each setting

of θ suffices for our purposes. If not, then many independently simulated replicates of the

data are used.

Because we do not have access to p(·|·, θ), there is no direct way to compute the likelihood.

Our approach is to find a parametric family of distributions that is capable of representing

the process {yt}:

ASSUMPTION 1 We assume that there is a transition density f(yt|xt−1, η), η ∈ H, and
that there is a one-to-one map g : θ 7→ η such that

p(yt|xt−1, θ) = f(yt|xt−1, g(θ)) θ ∈ Θ (1)

and that the form of f(·|·, η) is known.

When we need a likelihood based on the unknown p(·|·, θ), we substitute f(·|·, g(θ)). The
model f(·|·, η) is a statistical description of the observed data that we call the statistical

model. Often this model will be known from the literature. In other cases it must be

determined as part of the analysis. As richly parameterized models are permitted, success

in finding an acceptable statistical model can be anticipated. It is to be emphasized that we

only use the statistical model to fit large simulations from the scientific model (Section 4) or

when augmented by a strong prior dictated by the scientific model (Section 5) so that the

fact that the data may be too sparse to support it is not a consideration.
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When Assumption 1 is satisfied the likelihood is exactly that implied by the scientific

model. When Assumption 1 is violated the likelihood is different from that implied by the

scientific model. To use Poirier’s (1988) terminology, when Assumption 1 holds one is looking

at the world through the window implied by the scientific model. When Assumption 1 is

violated one is looking at the world through a different window.

One might deliberately choose to violate Assumption 1. For example, if satisfaction of

(1) leads to a statistical model f(y|x, θ) with characteristics markedly different from what is

known about the distribution of the data, one might deliberately opt for a simplification that

does not exhibit these characteristics. The issues that arise in this connection are discussed

in Subsection 4.4.

A key motivation for implementing a Bayesian approach to the problem is the importance

of using prior information. This can be critical when data are sparse. When data are sparse,

prior information can be used to fill in model features about which the data says little but

the literature says much thereby enabling extraction of features about which the data are

informative.

The scientific model is built using subject matter knowledge. Thus, we expect that real

prior information is available. This prior information may be expressible either in terms of

elements of θ or in terms of characteristics ψ of the process.

Ψ : p(·|·, θ) 7→ ψ (2)

that is computable from a simulation. Thus, ψ is a function of θ through the composition

θ 7→ p(·|·, θ) 7→ ψ. GSM captures both of these types of information in our prior π(θ)

through the construction

π(θ) ∝ h(θ, ψ(θ)). (3)

Note that because we will be using the Metropolis-Hastings algorithm to compute the poste-

rior, we only need a function proportional to the prior. We shall also discretize θ on a finite

grid so that any positive h will be integrable.

We may not want to impose the belief that the scientific model holds exactly. We can

capture this idea by recasting the problem so that η of the statistical model is viewed as

the parameter of interest and constructing a prior that expresses a preference for η that are
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close to the manifold

M = {η ∈ H : η = g(θ), θ ∈ Θ} , (4)

where Θ is the parameter space of the scientific model and H is the parameter space of the

statistical model. Our prior construction uses a single parameter that we call κ to control

prior beliefs about how close η should be to the manifold (Section 5). The smaller κ is,

the more prior weight is placed on η close to the manifold. We assess the scientific model

by seeing if the marginal posterior distributions of interpretable features of the statistical

model are sensitive to the choice of κ. If changing our prior so as to support η farther from

the manifold results in location shifts of the posteriors that are appreciable from a practical

point of view, then we conclude that the evidence in the likelihood is against the restriction

corresponding to the scientific model.

We illustrate the ideas in Figure 1. The scientific model is p(y|θ) = n(y; θ, θ2), and the

statistical model is f(y|η) = n(y; η1, η2), where n(y;µ, σ
2) denotes the normal density with

mean µ and variance σ2. The mapping of the parameter θ of the scientific model to the

parameters (η1, η2) of the statistical model is g : θ 7→ (θ, θ2). In each panel of Figure 1 the

actors in our piece are displayed as follows: (i) the curve depicts the manifold (4), (ii) the

dotted contours are those of the likelihood of the statistical model, (iii) the shading depicts

the prior on η corresponding to a choice of κ, (iv) the dots are draws from the posterior for

the parameter θ of the scientific model mapped into M ∈ H using the map η = g(θ) and

then jittered (without the jittering, all the draws would be on the manifold), and (v) the

solid contours represent the posterior of η given the prior (iii). We will call this the tinker

toy example hereafter. It is included in the GSM distribution.
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Figure 1. Priors and posteriors for the statistical model, tinker toy example.

The the dotted lines are contours of the likelihood of the statistical model f(y|x, η) of the

tinker toy example. The line is the prior on η determined by the implied map η = g(θ) from

the parameters θ of scientific model p(y|x, θ) to the parameters η of the statistical model.

In the left panels the scientific model is true, in the right it is false. The thickness of the

line is proportional to the posterior of η. The prior π(η) can be relaxed as indicated by the

shading. The lower panels are more relaxed than the upper. The solid contours show the

posterior under the relaxed prior. Relaxation causes the contours to enlarge in all cases.

When the scientific model is false, the posterior shifts in search of the likelihood.
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The likelihood in the two left panels was obtained by simulating 50 observations from

the scientific model with θ = 2, or equivalently, (η1 = 2, η2 = 4). The likelihood in the

two right panels was obtained by simulating 50 observations from the statistical model with

η = (2.8, 4). The prior off the manifold corresponds to a small value of κ in the top two

panels, and a larger value in the bottom two. Our method for assessment of the scientific

model is based on the observation that when the data support the scientific model, increasing

κ may cause the posterior to become more spread out, but it will not dramatically shift

location (panels (1,1) and (2,1)). Conversely, when the data does not support the scientific

model, increasing κ will result in a shift of the posterior (panels (1,2) and (2,2)).

Of course, in high dimensional problems, we cannot simply look at the contours of the

η posterior. Instead we must examine low dimensional marginals of interest. This can be

illustrated for the tinker toy example by considering the marginal posterior of the coefficient

of variation Υ : f(·|·, η) 7→ υ = η1√
η2
. Under the tinker toy scientific model the coefficient of

variation is one with probability one. The four panels of Figure 2 correspond to the four

panels of Figure 1. In Figure 2 the dotted curves are the densities of the prior marginal of

υ while the solid curves are the posterior densities. In the left two panels we see that as the

prior is relaxed (κ increases) the posterior spreads out but does not shift away from the true

value which is one (the value consistent with the scientific model). In the right two panels,

the posterior shifts as κ increases.

At this point, the main conceptual ideas that we shall propose have been set forth. The

devil is in the details, to which we now proceed. The reader who would rather see how GSM

works before bothering with details can skip to Subsection 6.1.
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Figure 2. Priors and posteriors for a functional of the statistical model, tinker

toy example. The posterior of the coefficient of variation for the tinker toy example is the

solid line; the dashed line is prior. In the left panels the scientific model is true, in the right

it is false. The prior is more relaxed in the lower panels than it is in the upper panels. The

panels correspond to those of Figure 1
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4 Bayesian Estimation of Scientific Models

We have two cases to consider. In the first case, we assume the scientific model is true and

seek inference for θ. Here the statistical model is just a tool for computing the likelihood.

In the second case we work in the context of the statistical model and η is the parameter.

In this case, the scientific model is a source of prior information. We will consider the first

case in this section and the second in Section 5.

4.1 A Metropolis Algorithm for θ

We use the Metropolis algorithm to compute the posterior distribution of θ. The Metropolis

algorithm is an iterative scheme generating a sequence of θ values according to a Markov

chain whose stationary distribution is the posterior. To implement it, we must require a

likelihood, a prior, and transition density in θ called the proposal density.

Let L(θ) denote the likelihood assuming that (1) holds. To compute it we use

L(θ) =
n
∏

t=1

f(yt | xt−1, g(θ)),

where {yt, xt−1} denotes the observed data and n the sample size. Let π(θ) denote the prior

distribution on θ. As discussed in Section 3, in order to compute this prior π(θ) we may need

the value ψ taken on by the functionals Ψ given by (2). Let q denote our proposal density.

For a given θ, q(θ, θ∗) defines a distribution of potential new values θ∗.

Given a current θo and the corresponding ηo = g(θo), we obtain the next pair (θ ′, η ′) as

follows:

1. Draw θ∗ according to q(θo, θ∗).

2. Draw {ŷt, x̂t−1}Nt=1 according to p(yt|xt−1, θ
∗).

3. Compute η∗ = g(θ∗) and ψ∗ from the simulation {ŷt, x̂t−1}Nt=1.

4. Let α = min
(

1, L(θ
∗)π(θ∗) q(θ∗, θo)

L(θo)π(θo) q(θo,θ∗)

)

.

5. With probability α, (θ ′, η ′) = (θ∗, η∗), otherwise (θ′, η ′) = (θo, ηo).
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Steps 1, 4, and 5 are just the standard Metropolis algorithm. Steps 2 and 3 are essential

features of our approach. If the proposed θ in Step 1 violates a support condition that can

be checked without running Step 2, one skips Step 2 because α in Step 4 will be zero.

4.2 Choice of θ Proposal

Step 1 of the Metropolis algorithm in Section 4.1 requires a proposal density q for θ. In

choosing q we need to take into consideration that to compute the likelihood at a proposed θ

the scientific model must be simulated. For a sophisticated scientific model, this simulation

may involve significant computation. A nonlinear optimizer, a nonlinear equation solver, or

some other routine that needs starting values might be called in the coarse of these compu-

tations. This motivates us to consider proposing small changes in θ so that computational

results from the old θ may be used in doing the computations for the proposed θ. In par-

ticular, if θ is not changed too much, results from the previous computation can be used as

starting values for the new one. The cost of this strategy is in dependence in the Markov

chain.

We start by discretizing θ because, as seen later, discretization permits significant im-

provements in computational efficiency. For the ith component of θ we choose ai < bi, and

si. We then let θi take on the values ai + jsi where j ranges from 1 to gi which is equal to

the integer part of (bi− ai)/si. Thus, θi takes values between ai and bi on a grid of mesh si.

To propose a new θ we first randomly choose a component to change, with each component

having the same chance of being chosen. If the ith component is chosen, there is some j such

that the current θi = ai+ jsi. We choose a set of distributions qi(j, k) on {1, 2, . . . , gi} where
i is the θ component, j is the current grid position of that component, and k denotes the

random new grid position to be drawn. We draw k ∼ qi(j, ·) and let θ∗ be obtained from θ

by changing the ith component from ai + jsi to ai + ksi. For qi(j, k) use

qi(j, k) ∝











exp(− 1
2σ2

i

(k − j)2) k 6= j

0 else

The choice of σi determines the number of si that we tend to move. We assign 0 probability

to proposing that we stay put as there is no point in proposing that we go to where we are.
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The choice of ai and bi is not critical; ai and bi can be set so that the intervals (ai, bi) cover

the support of the posterior by a wide margin without noticeably degrading the performance

of the Metropolis algorithm. The choice of si is crucial. We will move away from the starting

value in integer multiples of si. The combination of the choice of si and σi determines the

size of the changes that q proposes. The choice of si determines the accuracy of our inference.

When we choose si we are saying that, as a practical matter, we only need to know θi in

terms of si units. Two θ’s that differ in component i by less than si are virtually the same

as a practical matter. Because computation is expensive, we should not waste resources by

determining θ on a finer scale than we actually care about.

4.3 Computing the Map

In Step 3 of the Metropolis algorithm in Section 4.1 we need to uncover the map g : θ 7→ η

that satisfies (1) from a simulation {ŷt, x̂t−1}Nt=1 of p(yt|xt−1, θ). At an intuitive level what

we propose is simple: We choose N so large that the simulated data {ŷt, x̂t−1}Nt=1 gives us

complete information about its distribution for given θ. We find the corresponding η by max-

imizing the likelihood of the simulated data under the statistical model f(·|·, η). That is, we
find the η which gives the same kind of data under f(yt|xt−1, η) as did θ under p(yt|xt−1, θ).

At a formal level, we are finding the η that puts the Kullback-Liebler divergence d(f, p) =
∫∫

[log p(y|x, θ)− log f(y|x, η)] p(y|x, θ) dy p(x|θ) dx to zero by minimizing d(f, p) with re-

spect to η and are noting that
∫∫

log p(y|x, θ) p(y|x, θ) dy p(x|θ) dx does not have to be com-

puted to solve this minimization problem. We approximate the integral that does have to be

computed in the usual way:
∫∫

log f(y|x, η) p(y|x, θ) dy p(x|θ) dx ≈ 1
N

∑N
t=1 log f(ŷt|x̂t−1, η).

(Or by 1
R

∑R
r=1

1
n

∑n
t=1 log f(ŷt,r|x̂t−1,r, η) if not ergodic. We assume ergodicity hereafter; if

not, the requisite modifications are obvious.) Thus, upon dropping the division by N , the

map is computed as

g : θ 7→
η

argmax
N
∑

t=1

log f(ŷt | x̂t−1, η).

Because the f(·|·, η) family is generally chosen to be flexible and high dimensional, this

likelihood can be complicated. However, the simulated data set is large and ηo should be a

good starting value in the search for η∗. This assumes that θ∗ is not too different from θ as

discussed in Section 4.2. In order to keep our analytical requirements to a minimum, we would

11



like our method only to require the computation of the objective L(η) = ∏N
t=1 f(ŷt|x̂t−1, η).

Given these considerations, to find the mle we run a Markov chain for η using the simu-

lated data. Because our goal is to find the mle and the sample size is large, we use a flat prior

on η when running this chain. With the large sample size, the Markov chain will quickly

move from the η to values close to η∗. We use a normal random walk Metropolis within

Gibbs approach. That is, we first subdivide the η vector into subvectors. In the manner of

a Gibbs sampler, we cycle through the subvectors one at a time. For subvector ηi, we use

the normal proposal q(ηi, η
∗
i ) ∼ n(ηi,Σi) in a standard random walk Metropolis algorithm.

Effectively, this is a simulated annealing optimization algorithm where the simulation size N

is the temperature parameter because N is what controls the peakedness of the likelihood.

A side benefit is that the chain for η also provides the scaling for the model assessment

strategy proposed in Section 5.

We choose a fixed number of steps to run the η chain, and keep the visited η which

has the highest likelihood under the simulated data. In our experience, it is relatively

straightforward to choose (i) a simulation sample size which is large enough to ensure that

the map is adequately recovered by the mle and (ii) a number of steps to iterate the Markov

chain in η that will ensure the η chain has finished moving away from the starting value of

η.

This is a computationally costly part of our overall procedure. Because the simulation

sample size N is large, each computation of the likelihood for the η chain can take a long

time. Nonetheless, we have found that, because of the large N , this part of the procedure

is remarkably stable, even though the statistical model may actually be difficult to estimate

on data samples of the size n that we actually observe.

The first reason for placing θ on a grid is that a significant reduction in computational

time can be achieved. With θ on a grid, it takes only a modest amount of memory to store

all previously computed values of η, L(η), π(θ), etc. in a binary tree indexed by θ. When θ

is revisited, both the fact that it is a revisit and the information required for Step 4 of the

Metropolis algorithm for θ can be quickly obtained by traversing the tree. The two costliest

Steps 2 and 3 are thereby eliminated. By storing previous results in a tree and looking them

up, the θ chain runs faster as it becomes longer.
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The second reason for putting θ on a grid is that it reduces the accuracy to which the mle

has to be computed, which also reduces computational time significantly. In fact, one might

say that putting θ on a grid is what makes the GSM software work at all, becuase it is next

to impossible to compute the mle to sufficient accuracy to allow θ to be on a continuum.

Analytic derivatives of the likelihood of some statistical models are not hard to obtain.

When there are support conditions, these can often be enforced by adding a smooth penalty

function to the likelihood that is zero when the support conditions are satisfied and suffi-

ciently positive otherwise. For this case, the GSM package includes a derivative based hill

climber to complete the computation of the mle after a short run of the η chain. The hill

climber is a BFGS quasi-Newton method that makes more use of derivative information in

the line search part of the algorithm than most BFGS implementations thereby making it

economical of function evaluations and well suited to this application. The design of GSM

is modular: One is not required to supply methods for the statistical model that compute

the derivatives and the penalty if the hill climber is not going to be used. Experience so

far indicates that there is a limit to the hill climber’s effectiveness. It can shorten the η

chain but not eliminate it. The BFGS quasi-Newton iterations, if started from the previ-

ously BFGS-computed η, tend to stick, which, in turn, causes the η and θ chains to stick.

Therefore, in connection with the BFGS hill climber, the role of the η chain becomes that

of supplying a starting value and it must be made sufficiently long to do so effectively.

Figure 3 displays the results of ten runs of an η chain. Every run is clearly visible in the

figure as a segment of 200 iterations. In the notation of Section 4.1, each segment displays

the results of a Markov chain in η that is started at ηo, uses the data simulated from the

scientific model at θ∗, and uses the likelihood of the statistical model coupled with a flat

prior on η. On the vertical axis, the log-likelihood from the statistical model is plotted. We

can see the likelihood quickly increase as the η value moves toward the mle. The segments

level off at different likelihoods because they represent the likelihoods of different simulated

data sets. Because of the large size of each simulated data set, N = 50, 000 in this instance,

the posterior is very tight around the mle and the chain quickly moves to a new level.

Figure 4 repeats the computation with 9 iterations of the Markov chain in η followed

by a BFGS polish. The same final point is computed, but run times are much faster. This
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Figure 3. η Chain for the tinker toy model. Ten successive runs of the η chain. Each run is

200 iterations. The log-likelihood of the simulated data set is plotted on the vertical axis. Vertical

bars mark where θ changes. Jumps are because {ŷt}Nt=1
changes at each vertical bar.

example is so simple that we can get away with 9 MCMC iterations. This will not be true

in general. Specifically, 9 iterations are too few for the example in Section 9.

The second reason for putting θ on a grid is that it reduces the accuracy to which the mle

has to be computed, which also reduces computational time significantly. In fact, one might

say that putting θ on a grid is what makes the GSM software work at all, becuase it is next

to impossible to compute the mle to sufficient accuracy to allow θ to be on a continuum.

4.4 Identification and Map Recovery

The scientific model and the statistical model must work in concert with one another. In

this subsection we discuss issues arising from the relationship between the two models.
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Figure 4. η Chain for the tinker toy model. Ten successive runs of the η chain. Each

run is 9 iterations of the MCMC chain followed by a BFGS polish. The jump at the end of each

chain shows the effect of the polish. The log-likelihood of the simulated data set is plotted on the

vertical axis. Vertical bars mark where θ changes. Jumps in the level of the chains at the vertical

bars are because {ŷt}Nt=1
changes at each vertical bar.

The map g(θ) = η should not be one-to-many if Assumption 1 is to be satisfied. This

is equivalent to stating that the statistical model should be identified by simulations from

the scientific model. Identification of the statistical model by simulations from the scientific

model entails some obvious conditions such as that the support of the statistical model should

include the support of the scientific model. A violation of the support condition can occur

if the scientific model has fewer random shocks than the dimension of y thereby causing the

support of the scientific model to be a lower dimensional submanifold of the support of the

statistical model. This can happen inadvertently if a proposed θ implies a singular variance
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matrix somewhere within the scientific model. However, singularity is easy to check.

Other violations can be more subtle. An example is the statistical model y = η1 exp(η2x)+

η3 exp(η4x)+e with simulated data from a scientific model that is actually y = θ1 exp(θ2x)+e

in disguise. In this case, either η3 = 0 and η4 is not identified or η2 = η4 and only the sum

η1 + η3 is identified. One can usually detect this situation by checking the η chain described

in Subsection 4.1 for a unit root. One way to do this is to find the eigen vector ℓ of the

variance matrix of the chain {ηt}Nt=1 with largest eigen value and examine the sequence of

inner products {ℓ ′ηt}Nt=1 for a unit root.

Lack of identification of the statistical model does not matter in the computation of the

θ chain described in Subsection 4.1 as long as the likelihood is actually maximized at the

computed η. The implied map g(θ) = η will be one-to-many but often considerations similar

to estimability in less than full rank linear models come into play so that the features of

the statistical model that are of interest in an application have the same value regardless of

which maximizing value of η is chosen. These considerations are discussed in Gallant (1987).

The methods proposed in Section 5 would have to be modified if η is not identified.

An omnibus check for identification failure and nearly anything else that can go wrong

with the algorithm of Subsection 4.1, such as poor start values or not running the chain long

enough to compute η∗ to sufficient accuracy, is to run a regression of all computed η∗ on

low degree polynomials in the corresponding values of θ. If the R2 are high one has some

assurance that the statistical model is identified and that accuracy is adequate.

Another requirement of Assumption 1 is that (1) should hold. To check directly whether

(1) holds for a specific value of θ one may (a) fit the statistical model to a simulation of

the scientific model at that value of θ, (b) simulate from the fitted statistical model, and (c)

check to see if the empirical distributions of the two simulations match. This can serve as a

partial empirical check if (1) cannot be established analytically.

The investigator may be motivated to use a statistical model that is known from expe-

rience to be in accord with the data. This can make the uncovered map more interpretable

and easier to compute and facilitate the analysis in other ways as well. This could, however,

lead to a violation of (1). The likelihood is then based on the statistical model closest in

Kullback-Liebler divergence to the scientific model rather than the scientific model itself.
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Elaborations of the statistical model in order to satisfy (1) beyond those needed to fit the

data may not have much effect on inference for θ or the functionals of p(yt|xt−1, θ) of interest.

Deleting a feature that is both in the data and in the scientific model is another matter.

This sort of deletion can change results rather dramatically.

5 Inference Off the Manifold: Model Assessment

In this section η ∈ H becomes the parameter of interest. The scientific model p(y|x, θ) may

be viewed as a sharp prior that restricts η to lie on the manifoldM⊂ H. What one would

like to do is see how results change as this prior is relaxed. However, once we have moved off

the manifoldM we can no longer view results from the perspective of the scientific model

p(y|x, θ) and must view them from the perspective of the statistical model f(y|x, η) because
the scientific model loses meaning off the manifold. Therefore, seeing how results change

must be taken to mean seeing how the marginal posterior distribution of a parameter or

functional of the statistical model changes. Denote the vector of functionals of the statistical

model of interest by

Υ : f(·|·, η) 7→ υ. (5)

For convenience, if an element of η is of interest, we make it an element of υ.

We assume that we have a discrete set of points on the manifold {ηj ∈M : j = 1, . . . , G}.
The analysis of Section 4 generates a discrete set of points {θj ∈ Θ : j, . . . , G} at which the

map g has been evaluated; putting ηj = g(θj) provides such a set of points. Relaxation of

the prior will be formulated in terms of a weighted distance of η from the manifoldM. We

can cheaply compute the distance from η to the manifold as

d(η,M) = min
j=1,...,G

(η − ηj)′Aj (η − ηj) , (6)

where Aj are scaling matrices. Let ĵ denote the index j at which the minimum occurs, let

Ĵ denote the map Ĵ : η 7→ ĵ, and let ĥ(η) = ηĴ(η).

The prior we propose is the product of preferences along the manifold, preferences about

how close the statistical model is to the manifold, and general preferences about η

πκ(η) ∝ w1[ĥ(η)] exp

(

−d(η,M)

2κ

)

w3(η), (7)
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where w1(η) and w3(η) are suitably chosen positive functions and we assume the middle

w2(η, κ) term assures integrability. The three terms in the product (7) correspond to our

three kinds of preferences regarding η. The prior becomes more diffuse and the scientific

model less influential as the scale factor κ increases. Note that none of the individual terms

is thought of as being a prior in its own right, each is just a part of the overall construction.

To check that (7) results in a reasonable prior, draws of η may be simulated from the prior

and prior marginals of interest checked.

The functions w1(η) and w3(η) in (7) may be related to the preferences along M that

we had for θ of the scientific model, but there is no logical necessity that this be the case.

If we desire to use roughly the same kind of preferences alongM for η as we used for θ, we

can use ηj = g(θj) to generate our points on the manifold, put w1[ĥ(η)] ∝ π(θĴ(η)), where

π(θ) is given by (3), and put w3(η) = 1. Note that π(θĴ(η)) is a composite function that

depends only on η that is easily retrieved from our stored map. With these choices, if η1 and

η2 both have the same distance from the manifold, then πκ(η1)/πκ(η2) = π(θĴ(η1))/π(θĴ(η2)).

Recall that one of our motivating considerations was the problem of sparse data and that

this problem is overcome by the introduction of prior information. A small κ may imply

sufficient prior information for inference. With large κ, additional prior information may be

needed in the form of a choice of w3(η).

The computation of the posterior distribution of η using the statistical model f(y|x, η)
and prior πκ(η) can be accomplished by a routine application of the Metropolis algorithm

because πκ(η) is easily computable and an analytic expression for f(y|x, η) is available.
Our proposal is that the scientific model be assessed by plotting a suitable measure of the

location and scale of the posterior distribution of υ against κ or, better, sequential density

plots. What one expects to see, for a well fitting scientific model, is that the location measure

does not move by a scientifically meaningful amount as κ increases, which indicates that the

model fits, and that the scale measure increases, which indicates that the scientific model

has empirical content.

For the scaling matrices Aj, we put A1 = . . . = AG = Σ−1
η in (6) where Ση is computed as

follows: Initialize to zero. Whenever the Metropolis-Hastings chain for computing the mle
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of η at Step 3 of the Metropolis algorithm in Subsection 4.1 must be run, update

Ση ← Ση + (η1 − η2)(η1 − η2)′ (8)

where η1 is a point on the chain immediately after transients have died out and η2 is the last

point on the chain. This method of scaling the distance measure is reasonable because it puts

η on the scale of the posterior: Distance is being measured in units of standard deviation.

The distance function (6) can be made invariant to a linear reparameterization of the

statistical model and first order invariant to a nonlinear transformation by letting Aj be

the inverse of the covariance of the draws ηjt from the chain used to obtain ηj = g(θj) at

Step 3 of the Metropolis algorithm. The scaling proposed in the paragraph above will achieve

approximate invariance if the Σηj are relatively homogeneous.

One should note that using posterior draws from the scientific model to compute the

imageM of the map g(·) does make use of the data to determine the prior πκ(η). We do not

regard this as a problem because the θ draws will contain enough extreme values to make

sure that the extent of M is large enough. If one is particularly worried about this, one

could run the θ chain with a smaller amount of data to make sure thatM is over explored.

6 Building and Running GSM

6.1 Availability

C++ code and this Guide as a PostScript or PDF file are at http://www.aronaldg.org.

This program is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation; either

version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this

program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,

Boston, MA 02110-1301 USA.
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6.2 Building and Running GSM

The GSM code will on Linux machines and on Macs that have Xcode installed. On a

Windows machine it will run under either Cygwin from http:/www.cygwin.com or MinGW

from http://www.mingw.org.

Download gsm.tar from http://www.aronaldg.org. On a Unix machine use tar -xf gsm.tar

to expand the tar archive into a directory that will be named gsm. On a Windows machine

use unzip; i.e., Windows recognizes a Unix tar archive as a zip file. The distribution has the

following directory structure:

gsmman

gsmrun

gsmsrc

lib

libscl

libsmm

libsnp

snpman

snprun

snpsrc

svfx

tt1d

tt2d

Often one changes the name gsm of the parent directory to a name that represents the project

one is working on. For the example in the manual gsm was renamed sv as short for stochastic

volatility.

First the three libraries libscl, libsnp, and libgsm must be built, in that order. Change

directory to lib/libscl/gpp and type make. Building libsnp and libgsm is similar.

To run the SNP example that comes with the distribution, within the directory snprun

copy makefile.gpp to makefile, type make and then ./snp. Similarly for GSM, within

gsmrun copy makefile.gpp to makefile, type make and then ./gsm sv.ctrl.000.dat.
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7 The Example

We will illustrate the ideas in the remainder of the Guide using the GSM program to estimate

a stochastic volatility model. The main advantage of this example is that the model and

code are both simple and easily understood. Of course this simplicity means that there

are other ways of estimating the stochastic volatility model that are less computationally

intensive than GSM.

The data set consists of 834 observations on the daily US dollar to German mark exchange

rate over the years 1975 to 1990 expressed as a percentage change from the previous week.

This is the same series used in both the SNP User’s Guide and the EMM User’s Guide.

7.1 The Scientific Model: A Stochastic Volatility Model

Let yt denote the percent change in the price of a security. The stochastic volatility model in

the form used by Gallant, Hsieh, and Tauchen (1997) with a slight modification to produce

a leverage effect (correlation between return innovations and volatility innovations) is

yt − a0 = a1(yt−1 − a0) + exp (vt) u1t (9)

vt − b0 = b1(vt−1 − b0) + u2t (10)

u1t = z1t (11)

u2t = s
(

r z1t +
√
1− r2 z2t

)

(12)

where z1t, z2t are iid Gaussian random variables. The parameter vector is

θ = (a0, a1, b0, b1, s, r)

Early references are Clark (1973) and Tauchen and Pitts (1983). More recent references

are Gallant, Hsieh, and Tauchen (1991, 1997), Andersen (1994), and Durham (2003). See

Shephard (2004) for more background and references.

There is controversy regarding the timing convention in equation (9) and the references

above are not in agreement. The alternative timing convention is

yt − a0 = a1(yt−1 − a0) + exp (vt−1) u1t (13)
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which is consistent with an Euler discretization of the continuous time stochastic volatility

model. See Yu (2005) for more details but be aware that his specifications do not include

an autoregressive term to account for the well known slight predictability in daily returns so

that his empirical results may not be relevant.

Reasonable starting values are essential to success with GSM. Fitting yt to a0+a1(yt−1−
a0) by least squares, one finds that a0 = 0.055934, a1 = 0.02224, and the standard deviation

of the residuals is 1.49930 = exp(0.404998). For these data, we expect little leverage and set

r = 0 to start and impose a normal prior that states P (|r− 0.0| < 0.05) = 0.95 to reflect this

view. Setting b0 = 0 and using EeX = exp(µ + σ2/2) for normally distributed X, we have

s = 0.9. For data from financial markets, the volatility is usually quite persistent. Therefore

we set b1 = 0.95 and impose a normal prior that implies P (|b1 − 0.95| < 0.1) = 0.95.

7.2 The Statistical Model: An SNP Time Series Model

The GSM package as distributed presumes application to stationary time series data for

which the SNP model of Gallant and Nychka (1987) as modified for time series applications

by Gallant and Tauchen (1992) is an ideal choice of a statistical model. The best discussion

of the SNP model for our purposes is that of the SNP User’s Guide (Gallant and Tauchen,

2004). One is by no means restricted to this choice and two tinker toy cross sectional

examples that were used in Gallant and McCulloch (2008) are included with the package

for illustration. But the SNP model is difficult to code in any generality so it is included in

the package to spare users the trouble. The SNP constructor uses an SNP parmfile as its

input. Therefore first step is to estimate the SNP model using the SNP package to get that

parmfile.

Instead of working through a full SNP specification search, which is described in detail

for this example in the SNP User’s Guide, we show how to implement the GSM estimator

using a fit found there, namely that described by the parmfile 11114000.fit.

The settings for that fit are Lu = 1, Lg = 1, Lr = 1, Lp = 1, Kz = 4, Kx = 0. These

settings define an AR(1) model for {yt} with a GARCH(1,1) conditional scale function and

a time homogeneous nonparametric innovation density with fat tails accommodated via

Kz = 4. The dependence on the past is through the linear location function and GARCH
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scale function. This model is optimal under the Schwarz criterion. Even though labeled

as optional in the SNP parmfile, the location and scale information in the blocks labeled

TRANSFORM START VALUES FOR mean and TRANSFORM START VALUES FOR variance are es-

sential and must be present. In fact, it is best to just use a parmfile generated by SNP

and not edit it at all. When running the parallel version of the code, iprint must be set

to zero. For the uniprocessor version it can be one; which will produce useful diagnostic

information in a file named detail.dat. In the parallel version, at best that information

would be splattered to standard output by each process in random order; at worst it would

cause a crash. For use with GSM one would often use a more richly parameterized model

than the Schwarz preferred model as discussed in Section 1. Here it might have been better

to use a parmfile with leverage (Lv>0). Here is the SNP parmfile:

PARMFILE HISTORY (optional)
#
# This parmfile was written by SNP Version 9.0 using the following line from
# control.dat, which was read as char*, char*, float, float, int, int
# ---------------------------------------------------------------------------
# input_file output_file fnew fold nstart jseed
# ------------ ------------ --------- --------- --------- -------------------
# 11114000.in0 11114000.f27 0.00e+000 1.00e+000 25 454589
# ---------------------------------------------------------------------------
# If fnew is negative, only the polynomial part of the model is perturbed.
# Similarly for fold.
#
OPTIMIZATION DESCRIPTION (required)

SpotRate Project name, pname, char*
9.0 SNP version, defines format of this file, snpver, float
15 Maximum number of primary iterations, itmax0, int

385 Maximum number of secondary iterations, itmax1, int
1.00e-008 Convergence tolerance, toler, float

1 Write detailed output if print=1, int
0 task, 0 fit, 1 res, 2 mu, 3 sig, 4 plt, 5 sim, 6 usr, int
0 Increase simulation length by extra, int

3.00e+000 Scale factor for plots, sfac, float
457 Seed for simulations, iseed, int
50 Number of plot grid points, ngrid, int
0 Statistics not computed if kilse=1, int

DATA DESCRIPTION (required)
1 Dimension of the time series, M, int

834 Number of observations, n, int
14 Provision for initial lags, must have 3<drop<n, int
0 Condition set for plt is mean if cond=0, it-th obs if it, int
0 Reread, do not use data from prior fit, if reread=1, int

dmark.dat File name, any length, no embedded blanks, dsn, string
4 Read these white space separated fields, fields, intvec
TRANSFORM DESCRIPTION (required)

0 Normalize using start values if useold=1 else compute, int
0 Make variance matrix diagonal if diag=1, int
0 Spline transform x if squash=1, logistic if squash=2, int

4.00e+000 Inflection point of transform in normalized x, inflec, float
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POLYNOMIAL START VALUE DESCRIPTION (required)
4 Degree of the polynomial in z, Kz, int
0 Degree of interactions in z, Iz, int

0.00e+000 Zero or positive to get positive SNP for EMM, eps0, float
1 Lags in polynomial part, Lp, int
0 Max degree of z polynomial that depends on x, maxKz, int
0 Max interaction of z polynomial that depends on x, maxIz, int
0 Degree of the polynomial in x, Kx, int
0 Degree of the interactions x, Ix, int

MEAN FUNCTION START VALUE DESCRIPTION (required)
1 Lags in VAR part, Lu, int
1 Intercept if icept=1, int

VARIANCE FUNCTION START VALUE DESCRIPTION (required)
1 Lags in GARCH (autoregressive) part, may be zero, Lg, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Qtype, char
1 Lags in ARCH (moving average) part, may be zero, Lr, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Ptype, char
0 Lags in leverage effect of GARCH, may be zero, Lv, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Vtype, char
0 Lags in additive level effect, may be zero, Lw, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Wtype, char

POLYNOMIAL DESCRIPTION (optional)
0 Increment or decrement to Kz, int
0 Increment or decrement to Iz, int

0.00e+00 Increment or decrement to eps0, float
0 Increment or decrement to Lp, int
0 Increment or decrement to maxKz, int
0 Increment or decrement to maxIz, int
0 Increment or decrement to Kx, int
0 Increment or decrement to Ix, int

MEAN FUNCTION DESCRIPTION (optional)
0 Increment or decrement to Lu, int
0 Increment or decrement to icept, int

VARIANCE FUNCTION DESCRIPTION (optional)
0 Increment or decrement to GARCH lag Lg, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Qtype, char
0 Increment or decrement to ARCH lag Lr, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Ptype, char
0 Increment or decrement to leverage effect lag Lv, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Vtype, char
0 Increment or decrement to level effect lag Lw, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Wtype, char

POLYNOMIAL START VALUES FOR a0 (optional)
-5.16076965515111090e-002 1
4.29554878971911480e-002 1
4.02774315405815190e-002 1
1.16366622989738270e-001 1

POLYNOMIAL START VALUES FOR A (optional)
1.00000000000000000e+000 0

MEAN FUNCTION START VALUES FOR b0 (optional)
7.28194529718470680e-002 1

MEAN FUNCTION START VALUES FOR B (optional)
5.83255326811739850e-002 1

VARIANCE FUNCTION START VALUES FOR Rparms (optional)
1.59426597892471020e-001 1

-3.78958421916034740e-001 1
-8.98044691523147480e-001 1
TRANSFORM START VALUES FOR mean (optional)

5.51578971010593040e-002
TRANSFORM START VALUES FOR variance (optional)

2.23657818199155180e+000
SUMMARY STATISTICS (optional)
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Fit criteria:
Length rho = 9
Length theta = 10
n - drop = 820
-2 ln likelihood = 2158.82095597 2.15882095596669840e+003
sn = 1.29425717 1.29425716784574240e+000
aic = 1.30504853 1.30504853475221720e+000
hq = 1.31482568 1.31482567843091890e+000
bic = 1.33054979 1.33054979411746220e+000

Index theta std error t-statistic descriptor
1 -0.05161 0.03478 -1.48376 a0[1] 1
2 0.04296 0.03224 1.33255 a0[2] 2
3 0.04028 0.01866 2.15792 a0[3] 3
4 0.11637 0.01830 6.35780 a0[4] 4
5 1.00000 0.00000 0.00000 A(1,1) 0 0
6 0.07282 0.05159 1.41142 b0[1]
7 0.05833 0.03542 1.64655 B(1,1)
8 0.15943 0.03705 4.30340 R0[1]
9 -0.37896 0.03683 -10.28892 P(1,1) s
10 -0.89804 0.01891 -47.47874 Q(1,1) s

For estimation of this SNP specification by MCMC, restrict the following
elements of theta to be positive: 8 9 10

The simulations from the scientific model must actually identify the parameters of the

statistical model. This can be a problem when trying to tune chains. For example, if the pa-

rameters a1 and b1 of the stochastic volatility model are set to zero then, in a practical sense,

the 11114000.fit is not identified and the subchain computes the likelihood so inaccurately

as to make it nearly impossible to get chains properly tuned.

One approach to remedy this problem is to have a good idea what the parameter values

of the scientific model ought to be. Another is to use the EMM package, distributed at

the same ftp site as GSM, to get starting values and tune the chains for both the scientific

model and the statistical model. With GSM one is trying to tune two chains simultaneously.

Because they interact, this can be difficult. Using EMM, one can focus on one chain at

a time, which is much easier. In the EMM distribution is a model labeled self that fits

an SNP model to itself using EMM. This can be used to tune the chain for the statistical

model. The coding required to use the EMM package is nearly identical to that for the GSM

package, including the use of prior information, so EMM can be used to get an initial tune

of the chain for the scientific model also.
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8 Using the GSM Package

The structure for the example distributed with the distribution is presumed to be as above:

All user-supplied C++ classes, and all other code, excepting library code, resides in the

directories (folders), snpsrc and gsmsrc for SNP and GSM respectively. Input and output

files for SNP are in directory snprun and those for GSM are in gsmrun. The specific code

to implement the stochastic volatility scientific model and the SNP statistical model is in

directory svfx as files gsmusr.h and gsmusr.h.

8.1 User Supplied Class Declaration

The user supplies a class that represents the scientific model, which here we shall call

sv_sci_mod. This code, as just mentioned, is in directory svfx. The declaration for the

class is in file gsmusr.h, the code implementing it is in file gsmusr.cpp. The functionality

that sv_sci_mod must provide is dictated by inheritance from class sci_mod_base declared

in libgsm/libgsm_base.h. Here is the relevant portion of libgsm/libgsm_base.h

namespace libgsm {

struct den_val {
bool positive;
REAL log_den;

den_val() : positive(false), log_den(-REAL_MAX) { }
den_val(bool p, REAL l) : positive(p), log_den(l) { }

};

class sci_mod_base {
public:
virtual INTEGER len_parm() = 0;
virtual INTEGER len_func() = 0;
virtual void get_parm(scl::realmat& parm) = 0;
virtual void set_parm(const scl::realmat& parm) = 0;
virtual bool support(const scl::realmat& parm) = 0;
virtual den_val prior(const scl::realmat& parm,

const scl::realmat& func) = 0;
virtual bool gen_sim(scl::realmat& sim,

scl::realmat& func) = 0;
virtual ~sci_mod_base() { }

};
}

and here is the corresponding gsmusr.h

#include "libgsm.h"
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namespace gsm {

class sv_sci_mod;

typedef sv_sci_mod sci_mod_type;

class sv_sci_mod : public libgsm::sci_mod_base {
private:
scl::realmat theta;
INTEGER slen;
INTEGER spin;
const INTEGER ltheta;
const INTEGER lfunc;

public:
sv_sci_mod

(const scl::realmat* dat_ptr, const std::vector<std::string>& pfvec,
const std::vector<std::string>& alvec, std::ostream& detail);

INTEGER len_parm() {return ltheta;}
INTEGER len_func() {return lfunc;}
void get_parm(scl::realmat& parm) { parm = theta; }
void set_parm(const scl::realmat& parm) { theta = parm; }
bool support(const scl::realmat& parm);
libgsm::den_val prior(const scl::realmat& parm,

const scl::realmat& func);
bool gen_sim(scl::realmat& sim, scl::realmat& func);

};
}

Class sv_sci_mod gets bound to program gsm via the statement

typedef sv_sci_mod sci_mod_type;

as shown.

The types REAL, INTEGER, and INT_32BIT are defined by typedef’s in scltypes.h which

gets included with libscl.h. On most machines these are double, int, and int, respec-

tively. Class realmat is presented in realmat.h which gets included with libscl.h. This is

a fairly complete matrix class that supports most linear algebra related to statistical appli-

cations including equation solving, inversion, and singular value decomposition. In general

there is much in libscl that will aid the user in writing a sci_mod, including a nonlinear

equation solver and a nonlinear optimizer.

As discussed in Section 1, the idea behind func is that there is more information about

a simulation that one needs to know about a scientific model besides the value of theta. A

moment of a latent variable is an obvious example. Hereafter, theta will usually be called

sci_parm and func will be called sci_func, the reason being that the statistical model has

corresponding quantities stat_parm and stat_func and we want to be certain that it is
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clear which we mean. The MCMC chains for the posterior of these quantities are written to

files by program gsm as does much else as described later.

Often sci_func is computed to know if the simulation from the scientific model is useable.

For instance, in the asset pricing model analyzed in Gallant and McCulloch (2008) the

real rate is a latent variable whose average over the simulation must be kept near 1%. If

sci_parm generates a real rate that is not near 1%, then that sci_parm should be rejected

by the Metropolis-Hastings algorithm mcmc in libgsm. To determine usability, sci_func

gets passed by mcmc to member prior of sci_mod which makes the decision and returns the

verdict as a den_val. If den_val.positive is false, then the sci_parm that generated the

simulation is rejected by the Metropolis-Hastings algorithm. If den_val.positive is true,

then den_val.log_den is added to the log objective function before the Metropolis-Hastings

accept/reject decision is made; i.e. acts as an informative prior.

Member support of sci_mod plays a similar role: it returns false if if sci_parm is to

be rejected. The difference between support and prior is that support is called before the

simulation and prior after. The intent is to save the cost of an unnecessary simulation if

sci_parm violates support conditions that can be cheaply determined. Be warned: method

set_parm is called before support. The reason is that for some models, such as SNP,

calling set_parm changes the state of various objects and support conditions are determined

by checking the resultant state rather than directly checking the parameters. This calling

sequence may require bullet-proofing of the code in set_parm.

As discussed in Section 1, exactly the same considerations apply to members support

and prior of stat_mod, although for the SNP statistical model distributed with the GSM

package there are only a few support conditions that impose some sign conventions. These

are handled automatically and do not require user intervention. In general this is the case:

Whatever is said for sci_mod also applies to stat_mod. The two exceptions are that the

stat_mod proposal does not put stat_parm on a grid and therefore does not need the

information to do so and that stat_mod has an additional prior termed πκ in Section 1 and

called assess_prior in the code that is used for model assessment.

The sci_mod constructor gets passed a pointer dat_ptr to the data, two std::vectors of

std::string named pfvec and alvec and a std::ostream named detail to which details
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of the construction can be written. However, when the parallel version of the code is used,

the constructor should not write anything. The data is passed because some simulators may

want to use the data for initial lags. The contents of pfvec and alvec are entirely controlled

by the user through the parmfile that is described immediately below; pfvec contains the

contents of a file whose filename is specified as a line of the parmfile and alvec contains

whatever additional lines the user chooses to add to the parmfile.

For the stochastic volatility model that we are using for illustration, pfvec is absent and

alvec contains two lines of substance that determine the length N of the simulation returned

by gen_sim and how many initial simulations to discard in order to dissipate transients. The

other two lines of alvec are a header and trailer that are passed to but are to be ignored

by the constructor. On the other hand, the SNP stat_mod gets nearly all the information

needed for construction from pfvec, which is actually a parameter file produced by SNP.

The functionality of the member functions of sci_mod are straightforward. Member

gen_sim is the most important. It returns the simulation in a realmat named sim of row

dimension the same as the data, namelyM, and column dimension N and also the functional

of the scientific model computed from the simulation as a realmat that contains the vector

func of dimension sci_mod.len_func() by 1.

If one uses a statistical model other than the SNP statistical model, then entirely anal-

ogous code is substituted for class snp_stat_mod in the files gsmusr.h and gsmusr.cpp.

There are examples in directories tt1d and tt2d of the distribution. In the distribution,

svfx and tt1d have code for use of the BFGS polish but tt2d does not.

Before illustrating the code for class sv_sci_mod we need to discuss the parameter file

upon which part of it depends.

8.2 The Input Parameter File

The GSM input parameter file contains several blocks of control information. An example,

taken from some debugging runs, follows. It was obtained using the EMM package. The

parameter settings in the blocks for the SNP statistical model are from the EMM parmfile in

directory self of the EMM distribution and for the scientific model they are from a parmfile

in directory svfx of the EMM distribution.
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PARMFILE HISTORY (optional)
#
# This parmfile was written by GSM Version 1.5 using the following line from
# control.dat, which was read as char*, char*
# ---------------------------------------------------------------------------
# parmfile.in0 tst
# ---------------------------------------------------------------------------
#
# stat_mod parameters
#
# eta 1 is a0[1] (degree 1)
# eta 2 is a0[2] (degree 2)
# eta 3 is a0[3] (degree 3)
# eta 4 is a0[4] (degree 4)
# eta 5 is b0[1]
# eta 6 is B(1,1)
# eta 7 is R0[1] (support and penalty impose positivity on R0)
# eta 8 is P(1,1) (support and penalty impose positivity on P)
# eta 9 is Q(1,1) (support and penalty impose positivity on Q)
#
#
# sci_mod parameters
#
# theta 1 is a0 mean of level process
# theta 2 is a1 autoregressive parameter of level process
# theta 3 is b0 mean of volatility process
# theta 4 is b1 autoregressive parameter of volatility process
# theta 5 is s scale of volatility process variance
# theta 5 is r correlation beteen level and volatility processes
#
# ---------------------------------------------------------------------------
#
ESTIMATION DESCRIPTION (required)

svfx Project name, pname, char*
1.5 GSM version, defines format of this file, gsmver, float

1 Write detailed output if print=1, int
0 Prior draws in sci_mod chain if sci_draw_from_prior=1, int
1 Run sci_mod chain if run_sci_chain=1, int
0 Prior draws in stat_mod chain if stat_draw_from_prior=1, int
1 Run stat_mod chain (i.e. assess_chain) if run_stat_chain=1, int

1.0 Value of kappa for assess prior, kappa, float
DATA DESCRIPTION (required)

1 Dimension of the data, M, int
834 Number of observations, n, int

dmark.dat File name, any length, no embedded blanks, dsn, string
4 Read these white space separated fields, fields, intvec
STAT_MOD DESCRIPTION (required)

9 Number of parameters, len_stat_parm, int
2 Number of functionals, len_stat_func, int

STAT_MOD PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
11114000.fit File name, code __none__ if none, stat_parmfile, string
#begin additional lines

100 Number of observations in simulated data, lsim (=N), int
10 Initial simulations to eliminate transients, spin, int

#end additional lines
STAT_MOD MCMC DESCRIPTION (required) (describes assess chains)

740726 Seed for stat_mod MCMC simulations, stat_seed, int
100 Number stat_mod MCMC simulations per file, len_stat_chain, int

1 Number of extra MCMC simulation files, num_stat_files, int
1.0 Rescale proposal scaling by this value, stat_sclfac, float

STAT_MOD PARAMETER START VALUES (required)
1.10674395197598967e-02 1 a0[1] 1
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-3.91003511770859902e-02 1 a0[2] 2
4.33068128029127008e-04 1 a0[3] 3
1.14430261931776966e-01 1 a0[4] 4
1.01291480786568121e-03 1 b0[1]
9.99252079756945966e-02 1 B(1,1)
2.11708991450607092e-01 1 R0[1] Postitivity imposed
5.53673061392817134e-01 1 P(1,1) s Posiitivity imposed
8.41406889779417799e-01 1 Q(1,1) s Posiitivity imposed

STAT_MOD PROPOSAL SCALING (required)
6.95600000000000038e-03 a0[1] 1
6.44799999999999974e-03 a0[2] 2
3.73200000000000007e-03 a0[3] 3
3.66000000000000006e-03 a0[4] 4
1.03180000000000008e-02 b0[1]
7.08400000000000002e-03 B(1,1)
7.40999999999999992e-03 R0[1]
7.36600000000000102e-03 P(1,1) s
3.78400000000000004e-03 Q(1,1) s

STAT_MOD PROPOSAL GROUPING (optional) (frequencies are relative)
0.2 1 5

1 1.0 -0.6
5 -0.6 1.0

0.1 2
2 1.0

0.1 3
3 1.0

0.1 4
4 1.0

0.1 6
6 1.0

0.2 7 9
7 1.0 -0.5
9 -0.5 1.0

0.1 8
8 1.0

SCI_MOD DESCRIPTION (required)
6 Number of parameters, len_sci_parm, int
8 Number of functionals, len_sci_func, int

SCI_MOD PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
__none__ File name, code __none__ if none, sci_parmfile, string
#begin additional lines

50000 Number of observations in simulated data, lsim (=N), int
100 Initial simulations to eliminate transients, spin, int

#end additional lines
SCI_MOD MCMC DESCRIPTION (required)

740726 Seed for sci_mod MCMC simulations, sci_seed, int
10 Number sci_mod MCMC simulations per file, len_sci_chain, int
1 Number of extra MCMC simulation files, num_sci_files, int
0 Use analytic expression to compute mle if analytic_mle=1, int
15 Length of sub chain to compute mle, len_sub_chain, int
0 Number of extra sub chains, num_sub_chains, int
15 Number of quasi-Newton iterates, num_polish_iter, int

1.00e-09 Tolerance for quasi-Newton, polish_toler, float
1.0 Rescale proposal scaling by this value, sci_sclfac, float
2.0 Rescale parameter increments by this value, sci_incfac, float

SCI_MOD PARAMETER START VALUES (required)
7.78808593750000000e-02 1 a0
9.74121093750000000e-02 1 a1
1.21093750000000000e-01 1 b0
9.23828125000000000e-01 1 b1
2.28515625000000000e-01 1 s
1.56250000000000000e-02 1 r
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SCI_MOD PROPOSAL SCALING (required)
1.95312500000000000e-03 a0
1.95312500000000000e-03 a1
3.90625000000000000e-03 b0
3.90625000000000000e-03 b1
3.90625000000000000e-03 s
3.90625000000000000e-03 r

SCI_PARAMETER INCREMENTS (required) (must be (fractional) powers of two)
4.88281250000000000e-04 a0
4.88281250000000000e-04 a1
9.76562500000000000e-04 b0
9.76562500000000000e-04 b1
9.76562500000000000e-04 s
9.76562500000000000e-04 r

SCI_MOD PROPOSAL GROUPING (optional) (frequencies are relative)
0.1 1

1 1.0
0.1 2

2 1.0
0.2 3 4 5

3 1.0 0.7 -0.7
4 0.7 1.0 -0.8
5 -0.7 -0.8 1.0

0.1 6
6 1.0

A description of each block of the input file follows.

8.2.1 PARMFILE HISTORY

This block is optional. It is written by program gsm to the output parmfiles parmfile.fit

and parmfile.end at the end of every run. It consists of seven lines, each beginning with a

#, that should be left alone. After these seven lines, the user can add additional lines that

begin with a # and these will get copied from the input parmfile to the output parmfile. In

the displayed parmfile are additional lines that describe the parameters of the statistical and

scientific models.

Each run of gsm produces output parmfiles parmfile.fit and parmfile.end that may be

used to restart computations: parmfile.fit restarts at the posterior mode; parmfile.end

starts at the end of the chain that produced it. If run_stat_chain=1, then an additional

parmfile parmfile.alt is produced that will restart stat_mod’s assess_chain at its poste-

rior mode.

GSM is controlled by the contents of a file control.dat, each line of which produces an

output parmfile. That line is placed in the sixth line of the PARMFILE HISTORY block

as shown. Each line gives the name of the parmfile to be read and the prefix that is to
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be prepended to all output files. Thus, the name of the new parmfile would actually be

sv.parmfile.fit. We shall omit this prefix in the discussion that follows.

8.2.2 ESTIMATION DESCRIPTION

In the block labeled ESTIMATION DESCRIPTION, there are parameters that govern the com-

putations:

pname: Project name. Chosen by the user for identification purposes.

gsmver: Version of the GSM program. Necessary for backward compatibility because parm-

file formats can change between versions.

print: If print=1, then voluminous debugging information is written to file detail.dat. To

completely suppress printing, the control variable print in the SNP parmfile should be set

to 0 also. For the parallel version of the code, both must be set to 0 to prevent at best a

mess and at worst a crash.

sci draw from prior: When sci_draw_from_prior=1 the output files sci_parm.000.dat,

. . . contain draws from the prior rather than the posterior. This is useful for determin-

ing where a prior actually puts its mass. Also, some algorithms for computing posterior

odds require this information. One must set sci_chain=1 when sci_draw_from_prior=1.

It is usually best to leave sci_mod tuning parameters at the correct values for the case

draw_from_prior=0 when simulations from sci_mod require nonlinear root finding, opti-

mization, or equation solving in order to keep these computations from being destablized by

larger proposal scaling.

sci chain: The MCMC chain for the scientific model is run when sci_chain=1. The

output are files named sci_parm.000.dat containing the MCMC posterior draws of the

parameters of the scientific model, sci_func.000.dat containing the values of sci_func

that correspond, stat_parm.000.dat containing the values of stat_parm that correspond

(i.e. η = g(θ) where g(·) is the implied map, η is stat_parm and θ is sci_parm), etc. Two

files are of special importance, implied_map.new and assess_sigma.new, which we next

discuss.

stat draw from prior: When draw_from_prior=1 the output files as_st_parm.000.dat,

. . . contain draws from the prior rather than the posterior. One must set stat_chain=1

33



when stat_draw_from_prior=1. It is usually best to leave sci_mod tuning parameters at

the correct values for the case draw_from_prior=0 when simulations from sci_mod require

nonlinear root finding, optimization, or equation solving in order to keep these computations

from being destablized by larger proposal scaling.

stat chain: MCMC chain for the statistical model run with the assess_prior (i.e. πκ)

imposed is run when stat_chain=1. The assess prior cannot be computed unless the implied

map g(·) and scale matrix Σ described in Section 1 are known. Thus, we must either have

sci_chain=1 or have copied implied_map.new and assess_sigma.new from a previous

run to the files implied_map.dat and assess_sigma.dat respectively if g(·) and Σ are to

be known to gsm. Here it is important to be aware of prefixes. The output .new files

will have the prefix prepended and the input .dat files must have that prefix as well; e.g.

sv.implied_map.dat. The output files for the assess chain are labeled as_st_parm.dat,

as_st_func.dat, etc.

kappa: The parameter kappa is the value to be used for assess_prior; i.e. the subscript κ

of the prior πκ.

8.2.3 DATA DESCRIPTION

In the block labeled DATA DESCRIPTION are parameters that specify the dimension of the

data, the number of observations, and govern reading of the data. The data is presumed to

be stored in a file containing rows that have values separated by blanks containing the data

for each observation yt and perhaps additional values such as dates or the index t. There

should be one line for each t = 1, . . . , n. (The presence of the line terminating character is

important as the C++ function getline does the reading.)

M: The dimension of the vector yt.

n: The number of observations to be read. The value can be smaller than the number of

observations in the file in which case those at the end will not be read.

dsn: The name of the file from which the data is to be read.

fields : Lastly, one has fields. One must use care here because errors can cause the pro-

gram to crash with misleading diagnostic messages, if any at all. As just mentioned, the

presumptions is that the data are arranged in a table with time t as the row index and the
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elements of yt in the columns. The blank separated numbers here specify the fields (columns)

of the data in the order in which they are to be assigned to the elements y1t, y2t, . . . , yMt of

yt. It does not hurt to have too many fields listed because only the first M are read. The

disaster is when there are too few (less than M) or one of them is larger than the actual

number of columns in the data set. A few of the first and last values of yt read in are printed

in the file detail.dat which should be checked to make sure the data was read correctly.

Fields can be specified as a single digit or as a range. Thus, one can enter either “1 2 3 5”

or “1:3 5”. (At time of writing, SNP does permit fields to be entered as a range.)

8.2.4 STAT MOD DESCRIPTION

The STAT MOD DESCRIPTION block is straightforward, it gives the dimensions of the

parameters of the statistical model.

len stat parm : The dimension of stat_parm, which is the parameter vector of the statis-

tical model that is denoted as η in Section 1.

len stat func: The dimension of stat_func, which is the vector of functionals of the sta-

tistical model that are computed from a simulation of the statistical model; stat_func is

denoted as Ψ in Section 1.

8.2.5 STAT MOD PARMFILE

The vectors stat_pfvec and stat_alvec of type vector<string> that are passed to the

stat_mod constructor are defined in the STAT MOD PARMFILE block. Note that the size

of the simulation used to compute stat_func is not set by the GSM program but rather is

determined by the user supplied stat_mod constructor. If the user wants the simulation size

to be a value specified in the parmfile, then that value goes in this block as in our sample

parmfile.

stat parmfile: This is the name of a file containing lines of the user’s choosing. For our

sample parmfile this file is 11114000.fit which is the output parmfile written by SNP. This

file is read and passed to the stat_mod constructor as the std::vector of std::string

stat_pfvec. If there is no stat_parmfile then code __none__ as the filename.

#begin additional lines, #end additional lines: Lines between these two markers are
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read and passed to the stat_mod constructor as stat_alvec of type vector<string>. The

two marker lines are passed as well so that the first user line is stat_alvec[1] and not

stat_alvec[0].

8.2.6 STAT MOD MCMC DESCRIPTION

The STAT MOD MCMC DESCRIPTION block mostly controls the MCMC simulations

for model assessment. For this chain, draws are from the statistical model with the

stat_mod_prior and the assess_prior imposed. This contrasts with the subchain used

to compute the mle for the implied map in which case neither prior is imposed.

stat seed: Seed for simulations. This seed affects only the chains for model assessment.

The seed for the subchain is set by the GSM program and not is under the user’s control.

len stat chain: The MCMC chain is broken up into pieces and written to files with names

as_st_parm_000.dat, as_st_parm_001.dat, etc.; len_stat_chain determines the number

of draws per file.

num stat files: Determines how many files in addition to as_st_parm_000.dat are gen-

erated. Total length of the MCMC chain is R= len_stat_chain*(num_stat_files+1).

Many other files are produced to describe the chain such as as_st_func_000.dat and

as_stat_logl_000.dat. These individual chains can be concatenated in serial order to

produce one long chain. Concatenation will usually but not always produce the same chain

as would have been generated with len_stat_chain=R and num_stat_files=0 because a

recomputation of the stat_mod likelihood may occur at the boundaries.

stat sclfac: Rescales the proposal standard deviations that are set in the STAT PROPOSAL

SCALING block without changing relative values. This setting affects both the chain

for model assessment and the subchain for computing the implied map. When writing

parmfile.end, parmfile.fit, and parmfile.alt, the values in the new STAT PROPOSAL

SCALING block are rescaled and and the new stat sclfac is set to 1.0.

8.2.7 STAT MOD PARAMETER START VALUES

The STAT MOD PARAMETER START VALUES block specifies the first value for both

the model assess chain and the subchain for the implied map. The simulation it gen-
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erates must satisfy the support conditions; i.e. stat_mod::gen_sim must return true,

stat_mod::support must return true, and stat_mod::prior must return a value of

libgsm::dev_val.positive=true for this initial value of stat_parm (i.e. η). The num-

bers to the right, 0 or 1, determine whether that element is held fixed or is active. If 0, then

the proposal never moves that element of stat_parm. One can add annotation to the right

as we have done in the example. As many characters of this annotation as will fit on a line

are retained in parmfile.end, parmfile.fit, and parmfile.alt.

8.2.8 STAT MOD PROPOSAL SCALING

These are the standard deviations of the proposal. They should be roughly proportional

to the standard errors of an estimate of stat_parm if such is known. If not, they can be

determined from gsm output as discussed in Section 9. Annotation can be added to the right

as in the example.

8.2.9 STAT MOD PROPOSAL GROUPING

Statistical model chains use a group move proposal which defaults to a single move proposal

when the optional STAT MOD PROPOSAL GROUPING block is missing from the parmfile.

When the STAT MOD PROPOSAL GROUPING block is missing, the proposal randomly

selects an element of stat_parm to move and then draws from a normal; i.e. a move-one-at-

a-time random walk. When the STAT MOD PROPOSAL GROUPING block is present the

proposal randomly selects one of the groups defined therein to move and draws from a user

specified multivariate normal.

Each sub-block of the STAT MOD PROPOSAL GROUPING block is a matrix, which

defines a group. The number in the (1,1) position is the relative frequency with which that

group is to be sampled. Continuing down the first column are the indexes of the variables

in the group; continuing along the first row are these same indexes. Filling in the rest of the

matrix is the correlation matrix for this group. Every index of stat_parm must be in some

group and may be in in only one group.

For example, the sub-block
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0.2 1 5

1 1.0 -0.6

5 -0.6 1.0

states that elements 1 and 5 of stat_parm are to be moved together with a relative frequency

0.2 and a correlation of -0.6.

The values in the STAT MOD PROPOSAL SCALING block, scaled by stat_sclfac, are

used as standard deviations to convert the correlation matrices to variance matrices. If some

variables are fixed by coding 0’s to the right of the values in the STAT MOD PROPOSAL

SCALING block, then gsm will pull them out of their listed groups and put them in a separate

group that is moved with relative frequency 0.0. This is done automatically without user

intervention. The details of the constructed proposal groups are written to file detail.dat.

The file detail.dat contains a listing of the groups and scaling that actually get used

and should be examined to be sure that all the blocks that collectively determine the group

move proposal were correctly interpreted.

8.2.10 SCI MOD DESCRIPTION

The SCI MOD DESCRIPTION block is analogous to the STAT MOD DESCRIPTION block

described in Subsection 8.2.4.

8.2.11 SCI MOD PARMFILE

The SCI MOD PARMFILE block is analogous to the STAT MOD PARMFILE block de-

scribed in Subsection 8.2.5.

8.2.12 SCI MOD MCMC DESCRIPTION

The SCI MOD MCMC DESCRIPTION block is analogous to the STAT MOD MCMC DE-

SCRIPTION block described in Subsection 8.2.5 with these exceptions:

analytic mle: Explicit formulas or fast algorithms to compute the maximum likelihood

esitimator are available for some statistical models. These formulas can be coded and used

instead of MCMC subchains and quasi-Newton iterations to compute the maximum likeli-

hood estimator. In this case one sets analytic_mle = 1. An example is tt1d included with
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the distribution. This option is not available for the SNP statistical model.

len sub chain: The subchain is the statistical model chain that is run within iterations

of the scientific model chain to determine the implied map; len_sub_chain determines the

number of draws for this computation.

num sub chains: When positive, the subchain is run num sub chains extra times. Each

time the subchain is restarted at the mode of the previous subchain. This option is useful

when num polish iter is positive. If it is used, one would reduce len sub chain correspond-

ingly; i.e., if num sub chains is increased from 0 to 2, then set len sub chain to half its

previous value.

num polish iter: If derivatives are coded for stat_mod, then a derivative based hill climber

can be used to aid in the computation of the stat_mod mle. If derivatives are not coded,

set no_polish_iter=0. If derivatives are coded, then no_polish_iter determines the

maximum number of BFGS quasi-Newton iterations to be run using the last value of the

MCMC subchain as the start. This is the value used as the likelihood. However, the next

MCMC subchain starts from last computed value of the MCMC subchain, not the value

computed by the BFGS hill climber.

polish toler: The tolerance for the BFGS quasi-Newton iterations. Iterations stop when

num_polish_iter is exceeded, the tolerence check succeeds, or the algorithm fails. If the

hill climber fails to produce an improvement, the largest value in the subchain is used.

sci incfac: To increase speed, the chain is cached. This cache can be thought of as a

std::vector of stuct of type libgsm::sci_val for input and output purposes. Its internal

representation is as a std::map containing stuct of type libgsm::map_val indexed by

sci_parm of type realmat. The difference between a map_val and a sci_val is that a

sci_val contains sci_parm and a map_val does not. A sci_val has all information required

to make an MCMC draw from the scientific model. After every run, a new cache named

implied_map.new is produced which the user should copy to implied_map.dat if the run

was successful. To generate the cache, sci_parm, which is θ in Section 1, is put on grid as

determined by the SCI MOD PARAMETER INCREMENTS block described below. The

variable sci_incfac allows one to make this grid coarser or finer without changing the

relative increments; sci_incfac should be a power of two, e.g. 8 or 0.125.
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8.2.13 SCI MOD PARAMETER START VALUES

The SCI MOD PARAMETER START VALUES block is analogous to the STAT MOD

PARAMETER START VALUES block described in Subsection 8.2.7.

8.2.14 SCI MOD PROPOSAL SCALING

The SCI MOD PROPOSAL SCALING block is analogous to the STAT MOD PROPOSAL

SCALING block described in Subsection 8.2.8.

8.2.15 SCI PARAMETER INCREMENTS

The block labeled SCI PARAMETER INCREMENTS determines the grid for caching.

These increments should be determined by scientific relevance and be as coarse as possi-

ble. They should also be either integer or fractional powers of two. Here are some fractional

powers of two.

5.00000000000000000e-01 = 0.50000000000000000000000
2.50000000000000000e-01 = 0.25000000000000000000000
1.25000000000000000e-01 = 0.12500000000000000000000
6.25000000000000000e-02 = 0.06250000000000000000000
3.12500000000000000e-02 = 0.03125000000000000000000
1.56250000000000000e-02 = 0.01562500000000000000000
7.81250000000000000e-03 = 0.00781250000000000000000
3.90625000000000000e-03 = 0.00390625000000000000000
1.95312500000000000e-03 = 0.00195312500000000000000
9.76562500000000000e-04 = 0.00097656250000000000000
4.88281250000000000e-04 = 0.00048828125000000000000
2.44140625000000000e-04 = 0.00024414062500000000000
1.22070312500000000e-04 = 0.00012207031250000000000
6.10351562500000000e-05 = 0.00006103515625000000000
3.05175781250000000e-05 = 0.00003051757812500000000
1.52587890625000000e-05 = 0.00001525878906250000000
7.62939453125000000e-06 = 0.00000762939453125000000
3.81469726562500000e-06 = 0.00000381469726562500000
1.90734863281250000e-06 = 0.00000190734863281250000
9.53674316406250000e-07 = 0.00000095367431640625000
4.76837158203125000e-07 = 0.00000047683715820312500
2.38418579101562500e-07 = 0.00000023841857910156250
1.19209289550781250e-07 = 0.00000011920928955078125

Increments can be no coarser than the values in SCI MOD PROPOSAL SCALING if the

proposal is to distribute mass on the grid in a reasonble way. Setting increments the same as

the values in SCI MOD PROPOSAL SCALING will permit moves of at most two increments

up or down; setting it half will permit moves of at most four increments up or down. The

implied maximum move in terms of grid increments is printed in the file detail.dat to help
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guide the choice. Annotation to the right of the increments is copied into parmfile.fit,

parmfile.end, and parmfile.alt.

8.2.16 SCI MOD PROPOSAL GROUPING

The SCI MOD PROPOSAL GROUPING block is analogous to the STAT MOD PRO-

POSAL GROUPING block described in Subsection 8.2.9.

There is one important difference: Storage requirements increase exponentially with

group size because the support of the proposal density is a grid. This can become a problem

when a large number of parameter values are fixed by coding a 0 to the right of their start

value in the SCI MOD PARAMETER START VALUES block because GSM will put them

all in one group and then terminate with an error message rather than allow itself to consume

excessive memory.

To fix the problem, one can adjust proposal scalings downward and/or parameter in-

crements upward. Alternatively, code a 1 to the right and add a SCI MOD PROPOSAL

GROUPING block where all parameters are in groups small enough not to consume exces-

sive space; e.g. put each parameter in its own group so all groups have size one. To hold the

parameters in a group fixed, put the move frequency of that group to zero.

8.3 User Supplied Class Definition

Having now described the GSM parmfile, we can return to a discussion of the user supplied

code for the scientific model in gsmusr.h and gsmusr.cpp.

Looking at the header gsmusr.h in Subsection 8.1, we see that there are four member

functions that remain to be written: the constructor, the member that does the simulation,

the member that checks that a proposed θ satisfies the model’s support conditions, and

the prior. Specifically, code must be supplied in gsmusr.cpp to implement these lines from

gsmusr.h

sv_sci_mod
(const scl::realmat* dat_ptr, const std::vector<std::string>& pfvec,
const std::vector<std::string>& alvec, std::ostream& detail);

bool support(const scl::realmat& parm);
libgsm::den_val prior(const scl::realmat& parm, const scl::realmat& func);
bool gen_sim(scl::realmat& sim, scl::realmat& func);

Everything else has been coded in the header gsmusr.h.
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The job of the constructor is to initialize the private members of usrmod by parsing the

two vectors of strings from the SCI MOD PARMFILE block of the parmfile that get passed

to the constructor as the vectors of strings pfvec and alvec. For the stochastic volatility

model we do not need the data for anything, pfvec is empty, and we will not write anything

to the output stream detail. All we need deal with is alvec. Here is the constructor which

parses alvec.

gsm::sv_sci_mod::sv_sci_mod
(const realmat* dat_ptr, const vector<string>& pfvec,
const vector<string>& alvec, ostream& detail)

: ltheta(6), lfunc(8)
{

vector<string>::const_iterator pfv_ptr = alvec.begin();
slen = atoi((++pfv_ptr)->substr(0,12).c_str());
spin = atoi((++pfv_ptr)->substr(0,12).c_str());

}

We will compute four stats (funcs) for the generated data, min, max, mean, and standard

deviation, and the same four for the latent volatility factor; a total of eight. Otherwise the

code that implements gen_sim below is a straightforward implementation of equations (9)

through (12) of Subsection 7.1 with precaution taken to force class mcmc of mcmc to reject

the simulation when the exp function overflows by returning false when that happens. The

documentation for the matrix class realmat is in its header realmat.h which is in the

libscl distribution. Here is the code.

#include <cerrno>
#include "libgsm.h"
#include "gsm.h"
#include "gsmusr.h"

using namespace scl;
using namespace libgsm;
using namespace gsm;
using namespace std;

bool gsm::sv_sci_mod::gen_sim(realmat& sim, realmat& func)
{

INT_32BIT seed = 740726;

sim.resize(1,slen);
realmat latent(1,slen);

REAL a0 = theta[1];
REAL a1 = theta[2];
REAL b0 = theta[3];
REAL b1 = theta[4];
REAL s = theta[5];
REAL r = theta[6];
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REAL rr2 = sqrt(1.0 - pow(r,2));

REAL vlag = 0.0;
REAL ylag = 0.0;
errno = 0;

for (INTEGER t=1; t<=spin; ++t) {
REAL z1 = unsk(seed);
REAL z2 = unsk(seed);
REAL u1 = z1;
REAL u2 = s*(r*z1 + rr2*z2);
REAL v = b0 + b1*(vlag - b0) + u2;
REAL y = a0 + a1*(ylag - a0) + u1*exp(v); // or u1*exp(vlag)
vlag = v; // see User’s Guide
ylag = y;

}

if (errno == ERANGE) return false;

REAL ymin = REAL_MAX;
REAL ymax = -REAL_MAX;
REAL ymean = 0.0;
REAL ysdev = 0.0;
REAL vmin = REAL_MAX;
REAL vmax = -REAL_MAX;
REAL vmean = 0.0;
REAL vsdev = 0.0;

for (INTEGER t=1; t<=slen; ++t) {
REAL z1 = unsk(seed);
REAL z2 = unsk(seed);
REAL u1 = z1;
REAL u2 = s*(r*z1 + rr2*z2);
REAL v = b0 + b1*(vlag - b0) + u2;
REAL y = a0 + a1*(ylag - a0) + u1*exp(v); // or u1*exp(vlag)
vlag = v; // see User’s Guide
ylag = y;
sim[t] = y;
latent[t] = v;
ymin = y < ymin ? y : ymin;
ymax = y > ymax ? y : ymax;
ymean += y;
ysdev += pow(y,2);
vmin = v < vmin ? v : vmin;
vmax = v > vmax ? v : vmax;
vmean += v;
vsdev += pow(v,2);

}

if (errno == ERANGE) return false;

if (lfunc != 8) error("Error, gsmusr, wrong size for func");
if (func.size() != lfunc) func.resize(lfunc,1);

ymean = ymean/REAL(slen);
ysdev = sqrt( (ysdev - REAL(slen)*pow(ymean,2))/REAL(slen) );

vmean = vmean/REAL(slen);
vsdev = sqrt( (vsdev - REAL(slen)*pow(vmean,2))/REAL(slen) );

func[1] = ymin;
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func[2] = ymax;
func[3] = ymean;
func[4] = ysdev;
func[5] = vmin;
func[6] = vmax;
func[7] = vmean;
func[8] = vsdev;

return true;
}

We have four support conditions to check. The absolute value of r, which is theta[6], must

be less than one; s, which is theta[5], must be positive; and the autoregressive parameters

a1 and b1, which are theta[2] and theta[4] respectively, must be less than one. Here is

the code that checks them.

bool gsm::sv_sci_mod::support(const realmat& parm)
{

if (parm[5] <= 0.0) return false;
if (fabs(parm[6]) >= 1.0) return false;
if (fabs(parm[2]) >= 1.0) return false;
if (fabs(parm[4]) >= 1.0) return false;
return true;

}

A word of warning here. The model parameters are set before the support condition is

checked. This is because SNP cannot check support until the parameters are set. Therefore

the code that sets parameters will have to be bullet-proofed if trying to set invalid parameters

causes problems. The support condition will be called immediately after the parameters are

set, so one can assume no other method will be called before support is checked.

We have no reason to reject a completed simulation other than exp overflow, which we

have already checked for during the simulation itself, so the prior need only concern itself

with r and b1. Here it is.

den_val gsm::sv_sci_mod::prior(const realmat& parm, const realmat& func)
{

const REAL minus_log_root_two_pi = -9.1893853320467278e-01;

den_val sum(true,0.0);

REAL r = parm[6];
REAL rmu = 0.0;
REAL rsd = 0.05/1.96;
REAL rz = (r - rmu)/rsd;
REAL rld = minus_log_root_two_pi - log(rsd) - 0.5*pow(rz,2);

sum += den_val(true,rld);

44



REAL b1 = parm[4];
REAL b1mu = 0.95;
REAL b1sd = 0.1/1.96;
REAL b1z = (b1 - b1mu)/b1sd;
REAL b1ld = minus_log_root_two_pi - log(b1sd) - 0.5*pow(b1z,2);

sum += den_val(true,b1ld);

return sum;
}

9 Running the Example

In this section we illustrate the use of the package with a sequence of sample runs.

To keep a record of our work, we will separately name each control file which means we

will have to use a command line argument when we execute gsm. The control file for the

first run is sv.ctrl.000.dat. In our example, this has one line, which is

sv.parm.000.in0 sv

Here, sv.parm.000.in0 is the name of the input parameter file and sv is the prefix to

be added to all output files. The control file can have additional similar lines which allow

different parmfiles for the same or different projects to be run at one time. The prefix must

be different for every line or results will be overwritten.

For each run, we increment: sv.ctrl.001.dat, sv.parm.001.in0, sv.ctrl.002.dat,

sv.parm.002.in0, and so on.

9.1 Tuning the Subchain

The initial parameter file sv.parm.000.in0 is

ESTIMATION DESCRIPTION (required)
svfx Project name, pname, char*
1.5 GSM version, defines format of this file, gsmver, float

1 Write detailed output if print=1, int
0 Prior draws in sci_mod chain if sci_draw_from_prior=1, int
1 Run sci_mod chain if run_sci_chain=1, int
0 Prior draws in stat_mod chain if stat_draw_from_prior=1, int
0 Run stat_mod chain (i.e. assess_chain) if run_stat_chain=1, int

1.0 Value of kappa for assess prior, kappa, float
DATA DESCRIPTION (required)

1 Dimension of the data, M, int
834 Number of observations, n, int

dmark.dat File name, any length, no embedded blanks, dsn, string
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4 Read these white space separated fields, fields, intvec
STAT_MOD DESCRIPTION (required)

9 Number of parameters, len_stat_parm, int
2 Number of functionals, len_stat_func, int

STAT_MOD PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
11114000.fit File name, code __none__ if none, stat_parmfile, string
#begin additional lines

100 Number of observations in simulated data, lsim (=N), int
10 Initial simulations to eliminate transients, spin (=N0), int

#end additional lines
STAT_MOD MCMC DESCRIPTION (required) (describes assess chains)

740726 Seed for stat_mod MCMC simulations, stat_seed, int
2 Number stat_mod MCMC simulations per file, len_stat_chain, int
0 Number of extra MCMC simulation files, num_stat_files, int

0.125 Rescale proposal scaling by this value, stat_sclfac, float
STAT_MOD PARAMETER START VALUES (required)
-0.05161 1 a0[1] 1
0.04295 1 a0[2] 2
0.04028 1 a0[3] 3
0.11637 1 a0[4] 4
0.07282 1 b0[1]
0.05833 1 B(1,1)
0.15943 1 R0[1]
0.37897 1 P(1,1) s
0.89804 1 Q(1,1) s

STAT_MOD PROPOSAL SCALING (required)
0.03478 a0[1] 1
0.03224 a0[2] 2
0.01867 a0[3] 3
0.01830 a0[4] 4
0.05159 b0[1]
0.03542 B(1,1)
0.03705 R0[1]
0.03683 P(1,1) s
0.01892 Q(1,1) s

SCI_MOD DESCRIPTION (required)
6 Number of parameters, len_sci_parm, int
8 Number of functionals, len_sci_func, int

SCI_MOD PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
__none__ File name, code __none__ if none, sci_parmfile, string
#begin additional lines

50000 Number of observations in simulated data, lsim (=N), int
1000 Initial simulations to eliminate transients, spin, (=N0) int

#end additional lines
SCI_MOD MCMC DESCRIPTION (required)

740726 Seed for sci_mod MCMC simulations, sci_seed, int
25 Number sci_mod MCMC simulations per file, len_sci_chain, int
1 Number of extra MCMC simulation files, num_sci_files, int
0 Use analytic expression to compute mle if analytic_mle=1, int

100 Length of sub chain to compute mle, len_sub_chain, int
0 Number of extra sub chains, num_sub_chains, int
0 Number of quasi-Newton iterates, num_polish_iter, int

1.00e-10 Tolerance for quasi-Newton, polish_toler, float
1.0 Rescale proposal scaling by this value, sci_sclfac, float
1.0 Rescale parameter increments by this value, sci_incfac, float

SCI_MOD PARAMETER START VALUES (required)
0.0546875 1 a0
0.0234375 1 a1
0.0 1 b0
0.9453125 0 b1
0.8984375 1 s
0.0 0 r
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SCI_MOD PROPOSAL SCALING (required)
0.001953125 a0
0.001953125 a1
0.001953125 b0
0.001953125 b1
0.001953125 s
0.001953125 r

SCI_PARAMETER INCREMENTS (required) (must be (fractional) powers of two)
0.000244140625 a0
0.000244140625 a1
0.000244140625 b0
0.000244140625 b1
0.000244140625 s
0.000244140625 r

This file was described in detail in Subsection 8.2 and there is little more about it that

needs to be said here except where the numbers came from.

The parameter values and scale for the statistical model come directly from the SNP

parmfile shown in Subsection 7.2. Because that model was fit with n = 834 and our simula-

tion from the scientific model has N = 50000, we rescale by 0.125
.
=
√

n/N .

The parameter start values for the scientific model are set to a (fractional) power of two

close to the values in Subsection 7.1. Initially we will fix b1 and r at a (fractional) power of

two near the means of their priors, which are 0.95 and 0.0, respectively, by coding 0 to their

right instead of 1.

The reason that all parameter values were changed from the values in Subsection 7.1 to

a nearby (fractional) power of two is that only values on the grid will be proposed which

has the effect of moving a parameter value that is not on the grid regardless of the 0’s or

1’s coded to the right of them. If we do not start at a power of two and have a 0 coded,

then that value will actually get moved from its parmfile value to the nearest (fractional)

power of two at every draw. Those that have a 1 to the right will suffer the same fate until

a draw is accepted. None of this does any real harm but it does make accept/reject counts

look strange although, strange as they may appear, they are, technically, correct.

The parameter increments are set to a power of two near 0.0002 and the scaling for the

proposal is a power of two about ten times that. This is just a guess and for the moment

it does not matter much because we are only trying to tune the η chain for the statistical

model.

Another way to get starting values, as was mentioned in Section 7, would be to fit the
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model using the EMM package. Fitting the SNP model to itself using EMM provides start

values and tuning information for the subchain (i.e. the η chain). Fitting the scientific model

by EMM using the SNP statistical model as the score generator provides reasonable starting

values for the scientific model and tuning parameters for the scientific model MCMC chain

(i.e. the θ chain). That is how the parmfile shown in Section 8.2 was obtained.

We now execute gsm by typing

gsm sv.ctrl.000.dat

We get two warning messages.

Warning, gsm, could not read implied map, will compute afresh
Warning, gsm, could not read assess sigma, will compute afresh

These warning messages are because the files sv.implied_map.dat and assess_sigma.dat

were not present. For the next few runs we will not be using results from previous runs

so we will keep getting these messages. When we get closer to getting the θ and η chains

tuned we will copy sv.implied_map.new and assess_sigma.new to sv.implied_map.dat

and assess_sigma.dat, respectively. If tuning parameters do not change too much, these

files will be accepted and used. If not, they will be rejected with warning messages.

The result is the following set of files. There would be more if run_stat_chain=1;

summary files are not listed.

sv.assess_sigma.new sv.sci_sub_logl.000.dat
sv.detail.dat sv.sci_sub_logl.001.dat
sv.implied_map.new sv.sci_sub_parm.000.dat
sv.parmfile.000.end sv.sci_sub_parm.001.dat
sv.parmfile.001.end sv.sci_sub_rej.000.dat
sv.parmfile.end sv.sci_sub_rej.001.dat
sv.parmfile.fit sv.stat_func.000.dat
sv.sci_func.000.dat sv.stat_func.001.dat
sv.sci_func.001.dat sv.stat_logl.000.dat
sv.sci_mode.000.dat sv.stat_logl.001.dat
sv.sci_mode.001.dat sv.stat_parm.000.dat
sv.sci_parm.000.dat sv.stat_parm.001.dat
sv.sci_parm.001.dat sv.stat_prior.000.dat
sv.sci_prior.000.dat sv.stat_prior.001.dat
sv.sci_prior.001.dat sv.stat_sub_logl.000.dat
sv.sci_rej.000.dat sv.stat_sub_logl.001.dat
sv.sci_rej.001.dat

The contents of these files all relate to the MCMC chain for the scientific model (i.e. the

θ chain). The log posterior is the sum of the values in the files sv.sci_prior.000.dat,

sv.stat_logl.000.dat, and sv.stat_prior.000.dat. These files have logical length
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len_sci_chain and their values are aligned with the parameter values in sv.sci_parm.000.dat,

which has logical dim ension len_sci_parm rows and len_sci_chain columns. Prepended

to each file are two integers giving the row and column dimensions as discussd below.

It is important to understand the differences among the logl files. The values in

sv.stat_logl.000.dat are for the statistical model evaluated at η = g(θ) and at the data.

The values in sv.stat_sub_logl.000.dat are for the statistical model evaluated at η = g(θ)

and at the simulation from the scientific model at θ . (sv.stat_sub_logl.000.dat is new to

Version 1.4.) The contents of sv.sci_sub_logl.000.dat are discussed below. The critical

file is sv.stat_logl.000.dat because it is the one used to compute the posterior. The

others are to provide help in tuning MCMC chains.

The first two entries in each of these files are the row and column numbers. They are writ-

ten by vecwrite and can be read by vecread from library libscl; vecread and vecwrite

are presented in realmat.h and defined in realmat.cpp. They follow the same formatting

conventions as Matlab R©. The files sv.sci_func.000.dat and sv.stat_func.000.dat are

similarly formatted and aligned. If the compiler is correctly written and the machine is

32 bit and adheres to IEEE standards, then reading these files with vecread will produce

the same internal binary representation of the realmat that wrote them. The format-

ting of sv.implied_map.new is determined by operator>> of struct sci_val of libgsm,

which is presented in libgsm_base.h and defined in libgsm_base.cpp. What is written

by operator>> can be read using operator<<. The file sv.sci_mode.000.dat is that

entry in the implied map that corresponds to the mode. Everything for the additional

files of the form ...001... is the same. Files can be meaningfully concatenated; e.g.

sv.sci_parm.dat=sv.sci_parm.000.dat+sv.sci_parm.001.dat. Often files of the form

...000... are discarded to dissipate transients. The parmfiles with extensions .fit and

.end and files of the form ...sub... and ...rej... are used to tune the MCMC chains as

discussed next.

For initial tuning, information of most interest is the rejection rate of the sci chain

(i.e. the θ chain) in sv.sci_rej.000.dat, the likelihoods of the first 25 subchains (i.e. η

chains) in sv.sci_sub_logl.000.dat, the first 25 subchains in sv.sci_sub_parm.000.dat,

the rejection rates of the first 25 subchains sv.sci_sub_rej.000.dat, and this portion of

49



sv.detail.dat:

**********************************************************************
* *
* Implied maximum move of grid_group_move proposal *
* formula is INTEGER(2.0*sci_scale[i]/sci_incr[i]) *
* *
**********************************************************************

Row 1 16
Row 2 16
Row 3 16
Row 4 16
Row 5 16
Row 6 16

The above states that we have set the proposal scaling and the proposal increments for the

scientific model such that an element of θ can move at most 16 increments to the right or

left.

The file sv.sci_rej.000.dat looks like this:

Col 1 Col 2 Col 3 Col 4

Row 1 1.00000 0.20000 5.00000 5.00000
Row 2 1.00000 0.32000 8.00000 8.00000
Row 3 1.00000 0.12000 3.00000 3.00000
Row 4 0.0 0.0 0.0 0.0
Row 5 1.00000 0.36000 9.00000 9.00000
Row 6 0.0 0.0 0.0 0.0
Row 7 1.00000 1.00000 25.00000 25.00000

The fourth column gives the number of moves for each parameter with the last row being the

total. The third column gives the number of rejections. The second column is the proportion

that each parameter was moved; i.e. the elements of the fourth column divided by the last

element of the fourth column. The first column gives the rejection rates, by parameter and

in total; i.e. the elements of the third column divided by the corresponding elements of the

fourth column. In this instance we have rejected every move.

The later columns of the file sv.sci_sub_rej.000.dat look like this:

Col 13 Col 14 Col 15 Col 16 Col 17 Col 18

Row 1 0.33333 0.36364 0.57143 0.57143 0.30769 0.58824
Row 2 0.80000 0.52632 0.42857 0.36364 0.42857 0.25000
Row 3 0.36364 0.33333 0.083333 0.50000 0.0 0.25000
Row 4 0.63636 0.58333 0.42857 0.55556 0.50000 0.66667
Row 5 0.36364 0.28571 0.41667 0.44444 0.66667 0.33333
Row 6 0.50000 0.60000 0.54545 0.38462 0.50000 0.54545
Row 7 0.44444 0.41667 0.090909 0.50000 0.69231 0.50000
Row 8 0.35714 0.36364 0.44444 0.30000 0.22222 0.44444
Row 9 0.50000 0.72727 0.62500 0.50000 0.50000 0.71429
Row 10 0.46000 0.47000 0.40000 0.46000 0.41000 0.50000
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Figure 5. Subchain from Parameter File sv.parm.000.in0. Ten successive runs of the η

subchain. Each run is 100 iterations of which every fifth is plotted. The values of log-likelihood

of the simulated data set are on the vertical axis. Vertical bars mark where θ changes. Jumps are

because {ŷt}Nt=1
changes at each vertical bar.

These are the first columns of the rejection matrix for the subchain; there are 25 columns in

total with zero right padding when the actual number of valid entries is less than 25. The

file sv.sci_sub_logl.000.dat contains the information needed to produce Figure 5. It too

has 25 columns with right padding when the actual is less.

Comparing Figure 5 to Figure 3 we see that we are far from having a correctly tuned η

chain. The most probable reason that the chain for the scientific model (i.e. the θ chain)

does not move is that we have a horrid start value for the subchain (i.e. the η chain) and

hence do not correctly compute η̂ =
1≤i≤100

argmax
∑N

t=1 log f(ŷt|x̂t−1, ηi). The evidence that we

are not computing η̂ accurately is the steady rise of the log likelihood seen Figure 5. What

can happen is that the computed η̂ of the first subchain happens to have the largest value
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of the likelihood evaluated at the data, which is the value
∑n

t=1 log f(ỹt|x̃t−1, η̂) . This large,

erroneous value can block all subsequent moves. This seems to be the problem here although

determining the exact cause is not important at this early stage while our focus is on the

subchain.

In Version 1.1 of GSM a change was made to try and eliminate this particular cause

of sticky behavior: If the θ chain sticks at a θ for a number of times in succession, the η̂

corresponding to θ is recomputed. The number of times the chain is allowed to stick before

this recomputation occurs is twice the length of θ. Also, in Version 1.1 a BFGS polish was

added as discussed in Subsection 9.5.

To determine the cause of a sticky θ chain, or any other mystifying behavior, change

undef in the line #undef SCI_MCMC_DEBUG in mcmc.cpp in directory lib/libgsm/src to

define, recompile, and run with output redirection; e.g. gsm sv.ctrl.000.dat>gsm.out.

Similarly, one can examine the moves of the η chain by changing #undef STAT_MCMC_DEBUG.

Version 1.2 added the capability to draw from the prior of the scientific model; Version 1.3

added the same for the statistical model.

The changes between Versions 1.3 and 1.4 are as follows. The chains sci_sub_logl,

sci_sub_parm, and sci_sub_reject are computed differently. Now, the subchains in these

files are those actually run. Previous versions of GSM excluded the first. Also now, if a

polish succeeds, the value computed by the polish replaces the end value of a _sub_ chain.

Previously versions appended. If a polish fails, the replacement is from the mode of the

chain. If there is no polish, no replacement occurs. The ability to run the subchain more

than once was added; see Subsection 9.5 for more details.

Although parmfiles have been updated to Version 1.4 syntax, all results in the Guide

were actually produced by Versions 1.0, excepting that the results in Subsection 9.5 are from

Version 1.1.

We next copy sv.parmfile.end to sv.parm.001.in0 and set len_sci_chain to 100,

and run again. As discussed in Section 8, sv.parmfile.fit and sv.parmfile.end are

for restarting the chain. As noted earlier, the difference between sv.parmfile.end and

sv.parmfile.fit is that the .end parmfile has its parameter values set to those at the end

of the chain whereas the .fit parmfile has its values set to those of the mode of the posterior.
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The parmfile sv.parmfile.000.end is for restarting at the end of sv.sci_parm.000.dat;

similarly for sv.sci_parm.001.end, but, because it is the last, sv.sci_parm.001.end and

sv.sci_parm.end are the same. However, we have not yet correctly computed the mode of

the posterior so there is no point to using the .fit parmfile. But the .end parmfile allows

us to begin where we left off, which is useful.

What happens is much the same as we have just seen. The subchain is not yet burned

in. We will copy sv.parmfile.end to sv.parm.002.in0 and run again. What we need is

a plot that looks like Figure 3. What we have at the end of run 001 (not shown) looks like

Figure 5.

On termination of run 002, it looks like burn-in may have been achieved. A plot of

sv.sub_logl_001.dat (not shown) looks like Figure 3. We will run one more time, but

with b1 and r free. We still have a 100% rejection rate for the scientific model chain which

means that the increment is set wrong. Setting the increment is a delicate process. Too

small and inaccuracies in computing the likelihood become large relative to the increment in

the likelihood which can cause problems, among which can be a sticky chain. Too large and

the chain sticks for sure because the proposed move is too far from the mode of the posterior.

We will try a reduction in the increment to see what happens. If worse comes to worse we

can increase the simulations size N of the scientific model and/or increase len_sub_chain

but for now we will hold off because the entire cost of the computations depends on those

two numbers and we want to keep them as small as we can get away with.

We copy sv.parmfile.end to sv.parm.003.in0, set the zeros to the right of b1 and r

to ones; set sci_sclfac to 0.25, set sci_incfac to 0.5, and run again.

On termination of run 003, the files sv.sci_rej.001.dat and sv.sci_sub_rej.001.dat

are as follows:

Col 1 Col 2 Col 3 Col 4

Row 1 0.60000 0.15000 9.00000 15.00000
Row 2 0.57143 0.14000 8.00000 14.00000
Row 3 0.77778 0.18000 14.00000 18.00000
Row 4 0.61905 0.21000 13.00000 21.00000
Row 5 0.68750 0.16000 11.00000 16.00000
Row 6 0.87500 0.16000 14.00000 16.00000
Row 7 0.69000 1.00000 69.00000 100.000

Col 19 Col 20 Col 21 Col 22 Col 23 Col 24
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Row 1 0.50000 0.55556 0.71429 0.50000 0.53333 0.38462
Row 2 0.60000 0.72727 0.35714 0.45455 0.90000 0.58333
Row 3 0.30000 0.12500 0.41667 0.25000 0.18182 0.29412
Row 4 0.23077 0.27273 0.11111 0.42857 0.33333 1.00000
Row 5 1.00000 1.00000 1.00000 0.92857 1.00000 1.00000
Row 6 0.23077 0.23077 0.35294 0.22222 0.20000 0.27273
Row 7 0.77778 0.88889 0.90000 1.00000 0.92308 1.00000
Row 8 0.0 0.22222 0.0 0.25000 0.090909 0.0
Row 9 0.60000 0.37500 0.61538 0.84615 0.27273 0.62500
Row 10 0.46000 0.54000 0.51000 0.55000 0.48000 0.60000

It is also of interest to examine the moves made by the parameters of the subchain. This

information is in sv.sub_parm_001.dat which contain the first 25 subchains of the second

half of the run. These, together with sv.sub_logl_001.dat are plotted in Figure 6. The

figure and rejection rates suggest that the scale for the proposal for η5 and η7 should be

reduced and that for η8 should be increased. Because a plot of sv.sub_logl_001.dat (not

shown, but see bottom panel of Figure 6) looks reasonable, our present guess is that the

increment should be left alone for the moment. But more information would help, so we will

now set about getting it.

We copy sv.parmfile.end to sv.parm.004.in0. In the STAT MOD PROPOSAL

SCALING block, we halve the proposal scale factors for η5, and η7, which are the loca-

tion parameters of the mean function and the the variance function of the SNP statistical

model, respectively, and double the scale of η8, which is the MA part of the GARCH variance

function. We will also decrease len_sci_chain to 50, increase num_sci_files to 9, and run

again. The reason for breaking the chain up into smaller pieces is to generate a large number

of observations from the files sv.sub_parm_00x.dat in order to get more information on

the subchains. This will also enable us to compute correlations to configure a group move

proposal for the subchain.
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Figure 6. Subchain from Parameter File sv.parm.003.in0. Two sets of ten successive

runs of the η subchain. Each run is 100 iterations of which every point is plotted. The values of

ηi are shown in the first nine panels and the log-likelihood of the simulated data set in the last.

The dotted lines mark where θ changes.
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Here are the rejection rates at the end of run004 from file sv.sci_sub_rej.009.dat:

Col 19 Col 20 Col 21 Col 22 Col 23 Col 24

Row 1 0.45455 0.77778 0.81250 0.66667 0.58333 0.60000
Row 2 0.26667 0.45455 0.60000 0.60000 0.50000 0.50000
Row 3 0.35714 0.53846 0.38462 0.0 0.40000 0.14286
Row 4 0.57143 0.20000 0.12500 0.0 0.33333 0.10000
Row 5 0.86667 0.87500 0.90000 0.92857 0.90000 0.80000
Row 6 0.46154 0.090909 0.0 0.20000 0.27273 0.45455
Row 7 0.77778 0.90909 0.61538 0.80000 0.71429 0.76471
Row 8 0.0 0.090909 0.16667 0.50000 0.10000 0.20000
Row 9 0.41667 0.50000 0.37500 0.50000 0.58333 0.53846
Row 10 0.49000 0.48000 0.47000 0.51000 0.48000 0.45000

We have some improvement, but not as much as one might have hoped. We copy

sv.parmfile.end to sv.parm.005.in0. For the subchain, we will divide the proposal scale

factor for η5 by four and η7 by two because their rejection rate is still much higher than oth-

ers. A plot of the subchain (not shown) suggests that the scale for η5 needs more reduction

than the scale for η7. Figure 7, which plots every move of the parameters of the scientific

model, suggests that we may be able to get away with increasing the increment because

it looks like nearly every accepted move was larger than the smallest possible increment.

There is certainly an incentive for doing so: the larger the increment, the faster the chain

will run because proposed moves will be found in the implied map more frequently. We set

sci_incfac to 2.0.

Here are the overall rejection rates at the end of run005:

theta_1 0.6851154 eta_1 0.5396179
theta_2 0.6636797 eta_2 0.535367
theta_3 0.6054365 eta_3 0.272621
theta_4 0.6315368 eta_4 0.2483388
theta_5 0.571847 eta_5 0.7391988
theta_6 0.5449495 eta_6 0.2325578

eta_7 0.6191235
eta_8 0.2210103
eta_9 0.530551

theta 0.63 eta 0.437

Inspection of a plot every move of the parameters of the scientific model (not shown), suggests

that we may be still able to get away with increasing the increment because, once again, it

looks like nearly every accepted move was larger than the smallest possible increment.
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Figure 7. MCMC Chain from Parameter File sv.parm004.in0. The panels are draws of the

elements of θ = (a0, a1, b0, b1, s, r) in order from top to bottom; the last panel is proportional to the

log posterior density evaluated at θ. Every fifth point is plotted. R = 500.
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We copy sv.parmfile.end to sv.parm.006.in0 and make the following adjustments:

We set sci_incfac to 2.0. We reduce the scale for η1, η2, and η9 by 10%; we reduce the scale

of η5 and η7 by 50%; and we increase the scale for η3, η4, η6, and η8 by 50%. To compensate

for the general increase, we set stat_sclfac to 0.5.

The correlations among the parameters of the subchain from run005 are as follows with

those less than 0.6 in absolute value put to zero:

V1 V2 V3 V4 V5 V6 V7 V8 V9
V1 1 0 0 0 0 0 0 0.0000000 0.0000000
V2 0 1 0 0 0 0 0 0.0000000 0.0000000
V3 0 0 1 0 0 0 0 0.0000000 0.0000000
V4 0 0 0 1 0 0 0 0.0000000 0.0000000
V5 0 0 0 0 1 0 0 0.0000000 0.0000000
V6 0 0 0 0 0 1 0 0.0000000 0.0000000
V7 0 0 0 0 0 0 1 0.0000000 0.0000000
V8 0 0 0 0 0 0 0 1.0000000 -0.6579042
V9 0 0 0 0 0 0 0 -0.6579042 1.0000000

The relationship between η8 and η9 is linear as is seen from the scatter plots shown in

Figure 8. To introduce a group move strategy that reflects these correlations, we insert the

following block into sv.parm.006.in0:

STAT_MOD PROPOSAL GROUPING (optional) (frequencies are relative)
0.1 1

1 1.0
0.1 2

2 1.0
0.1 3

3 1.0
0.1 4

4 1.0
0.1 5

5 1.0
0.1 6

6 1.0
0.1 7

7 1.0
0.2 8 9

8 1.0 -0.66
9 -0.66 1.0
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Figure 8. Scatter Plots of Chain from Parameter File sv.parm.005.in0. Every 100th point

is plotted. R = 25000.
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The run looks good. Here are the rejection rates.

theta_1 0.5899856 eta_1 0.2909092
theta_2 0.7010823 eta_2 0.2862135
theta_3 0.6625397 eta_3 0.2372093
theta_4 0.6037121 eta_4 0.1894127
theta_5 0.6615296 eta_5 0.3408927
theta_6 0.6066162 eta_6 0.1811702

eta_7 0.2227835
eta_8 0.2939598
eta_9 0.2939598

theta 0.642 eta 0.25724

Plots of sv.sci_sub_logl.dat (not shown) look like Figure 3. We are finished tuning the

subchain.

9.2 Tuning the Sci Mod Chain

We now have to tune the chain for the scientific model. Also we must keep running the chain

until the posterior quits climbing and it looks like the mode has been reached.

We copy sv.ctrl.parmfile.end to parm.007.in0, leave all settings the same except

that we increase len_sci_chain to 200. At the present settings of the increment and scale,

we are only allowing two increment moves at most. We repeat with parm.008.in0, copying

sv.implied_map.new to sv.implied_map.dat.

Then, having processors to spare, we copy sv.ctrl.parmfile.end to parm.009.in0

and sv.implied_map.new to sv.implied_map.dat into four separate directories and try

four simultaneous runs with (sci_sclfac, sci_incfac)=(1,1), (2,1), (2,2), and (4,2). The

run that performed best in terms of moving uphill the most was (sci_sclfac, sci_incfac)

= (4,2). At the conclusion of the run, here are the moves that were made:

------------- increment --------------

-4 -3 -2 -1 0 1 2 3 4 reject

theta_1 5 18 35 42 165 26 28 15 7 0.49
theta_2 3 16 17 26 163 46 26 17 6 0.51
theta_3 7 14 28 41 168 24 32 12 5 0.50
theta_4 1 8 14 35 180 42 34 18 9 0.51
theta_5 4 7 15 26 166 45 35 22 7 0.50
theta_6 6 17 23 40 175 36 25 9 8 0.52

total 26 80 132 210 1017 219 180 93 42 0.51

These moves are plotted in Figure 9.
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Figure 9. MCMC Chain from Parameter File sv.parm009.in0. The panels are draws of the

elements of θ = (a0, a1, b0, b1, s, r) in order from top to bottom; the last panel is proportional to the

log posterior density evaluated at θ. Every move is plotted. R = 2000.
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We repeat, copying sv.ctrl.parmfile.end to parm.010.in0 and sv.implied_map.new

to sv.implied_map.dat four times and try four simultaneous runs with (sci_sclfac,

sci_incfac)=(1,1), (1,2), (2,2), and (4,2).

The results are much the same: the best run has (sci_sclfac, sci_incfac)=(4,2) as

before. The overall rejection rate is 0.285 and we are still climbing.

We repeat, copying sv.ctrl.parmfile.end to parm.011.in0 six times and try six si-

multaneous runs with (sci_sclfac, sci_incfac)=(1,1), (1,2), (2,2), (2,4), (4,2), (4,4).

We will not copy sv.implied_map.new to sv.implied_map.dat, because, due to the hill

climbing, it is mostly filled with excess baggage.

All runs appear to have found the mode. Of them, four merit consideration: (1,2), (2,2),

(4,2), and (4,4) with overall rejection rates of 0.25, 0.44, 0.54, and 0.70 respectively. The

other runs either have too high a rejection rate or show a tendency to stick at one value of

θ for long periods. The runs (2,2), (4,2), and (4,4) stick some also with (2,2) sticking the

worst. This is probably just chance; given a long enough run sticking would probably be

worse for (4,2) and (4,4). Being risk averse, we will select the file parm.011.new from the

(1,2) run as our final tuning of the chain for the scientific model. We now move to a parallel

machine.

9.3 Running on a Parallel Machine

The parallel version of GSM, which is gsm_mpi, is similar to the serial version, which is gsm,

but with some quirks caused by restrictions imposed by the LAM implementation of MPI

for which the code was written. These are that path names must be absolute, that command

line parameters should not be used, and that subnodes cannot print anything.

The way the absolute path name requirement is handled is to supply a header pathname.h

that contains the absolute path name and builds it into the code at compile time. This header

is generated automatically by the makefile makefile.mpi included with the distribution. It

assumes that the build occurs in the same directory in which data, parmfiles, etc. are found.

The command line requirement is met by always using the file control.dat rather than

entering a file name on the command line. Also, for the parallel version, only the first line

of control.dat is read and processed.
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The no print requirement is handled by always coding print=0 on the SNP parmfile. If

this is not done, at best an unintelligible mess will be printed to standard output, at worst

the program will crash.

For our example, here is pathname.h which was generated automatically by the makefile:

#define PATHNAME "/home/arg/r/gsm_guide/svfx_mpi"

This is control.dat:

sv.parm.012.in0 sv

and here follows sv.parm.012.in0, which was obtained by copying sv.parmfile.fit

from run011 with (sci_sclfac, sci_incfac)=(1,2) and editing the relative file names

dmark.dat and 11114000.fit to absolute file names. This last step is not necessary. Rela-

tive file names in the parmfile will work.

PARMFILE HISTORY (optional)
#
# This parmfile was written by GSM Version 1.5 using the following line from
# control.dat, which was read as char*, char*
# ---------------------------------------------------------------------------
# sv.parm.011.in0 sv
# ---------------------------------------------------------------------------
#
ESTIMATION DESCRIPTION (required)

svfx Project name, pname, char*
1.5 GSM version, defines format of this file, gsmver, float

1 Write detailed output if print=1, int
0 Prior draws in sci_mod chain if sci_draw_from_prior=1, int
1 Run sci_mod chain if run_sci_chain=1, int
0 Prior draws in stat_mod chain if stat_draw_from_prior=1, int
0 Run stat_mod chain (i.e. assess_chain) if run_stat_chain=1, int

1.0 Value of kappa for assess prior, kappa, float
DATA DESCRIPTION (required)

1 Dimension of the data, M, int
834 Number of observations, n, int

/home/arg/r/gsm_guide/svfx_mpi/dmark.dat
4 Read these white space separated fields, fields, intvec
STAT_MOD DESCRIPTION (required)

9 Number of parameters, len_stat_parm, int
2 Number of functionals, len_stat_func, int

STAT_MOD PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
/home/arg/r/gsm_guide/svfx_mpi/11114000.fit
#begin additional lines

100 Number of observations in simulated data, lsim (=N), int
10 Initial simulations to eliminate transients, spin (=N0), int

#end additional lines
STAT_MOD MCMC DESCRIPTION (required) (describes assess chains)

740726 Seed for stat_mod MCMC simulations, stat_seed, int
2 Number stat_mod MCMC simulations per file, len_stat_chain, int
0 Number of extra MCMC simulation files, num_stat_files, int

1.0 Rescale proposal scaling by this value, stat_sclfac, float
STAT_MOD PARAMETER START VALUES (required)
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9.43702329096275487e-03 1 a0[1] 1
-4.47167172729224585e-02 1 a0[2] 2
4.22254530258357394e-03 1 a0[3] 3
1.28819308482844674e-01 1 a0[4] 4
2.93581996731074046e-02 1 b0[1]
3.44346668251972353e-04 1 B(1,1)
3.19200429080221559e-01 1 R0[1]
6.09862061919064113e-01 1 P(1,1) s
8.03802290575046374e-01 1 Q(1,1) s

STAT_MOD PROPOSAL SCALING (required)
1.95637499999999978e-03 a0[1] 1
1.81350000000000001e-03 a0[2] 2
1.75031249999999992e-03 a0[3] 3
1.71562500000000014e-03 a0[4] 4
2.00000000000000037e-04 b0[1]
3.32062499999999979e-03 B(1,1)
3.75000000000000008e-04 R0[1]
6.90825000000000033e-03 P(1,1) s
1.06425000000000009e-03 Q(1,1) s

STAT_MOD PROPOSAL GROUPING (optional) (frequencies are relative)
0.1 1

1 1.0
0.1 2

2 1.0
0.1 3

3 1.0
0.1 4

4 1.0
0.1 5

5 1.0
0.1 6

6 1.0
0.1 7

7 1.0
0.2 8 9

8 1.0 -0.66
9 -0.66 1.0

SCI_MOD DESCRIPTION (required)
6 Number of parameters, len_sci_parm, int
8 Number of functionals, len_sci_func, int

SCI_MOD PARMFILE (required) (constructor sees as vector<string> pfvec, alvec)
__none__ File name, code __none__ if none, sci_parmfile, string
#begin additional lines

50000 Number of observations in simulated data, lsim (=N), int
1000 Initial simulations to eliminate transients, spin, (=N0) int

#end additional lines
SCI_MOD MCMC DESCRIPTION (required)

740726 Seed for sci_mod MCMC simulations, sci_seed, int
1000 Number sci_mod MCMC simulations per file, len_sci_chain, int

9 Number of extra MCMC simulation files, num_sci_files, int
0 Use analytic expression to compute mle if analytic_mle=1, int

100 Length of sub chain to compute mle, len_sub_chain, int
0 Number of extra sub chains, num_sub_chains, int
0 Number of quasi-Newton iterates, num_polish_iter, int

1.00e-10 Tolerance for quasi-Newton, polish_toler, float
1.0 Rescale proposal scaling by this value, sci_sclfac, float
1.0 Rescale parameter increments by this value, sci_incfac, float

SCI_MOD PARAMETER START VALUES (required)
1.05468750000000000e-01 1 a0
-7.81250000000000000e-03 1 a1
3.32031250000000000e-01 1 b0
9.02343750000000000e-01 1 b1
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2.65625000000000000e-01 1 s
1.95312500000000000e-02 1 r

SCI_MOD PROPOSAL SCALING (required)
7.81250000000000000e-03 a0
7.81250000000000000e-03 a1
7.81250000000000000e-03 b0
7.81250000000000000e-03 b1
7.81250000000000000e-03 s
7.81250000000000000e-03 r

SCI_PARAMETER INCREMENTS (required) (must be (fractional) powers of two)
3.90625000000000000e-03 a0
3.90625000000000000e-03 a1
3.90625000000000000e-03 b0
3.90625000000000000e-03 b1
3.90625000000000000e-03 s
3.90625000000000000e-03 r

Running on a parallel machine requires initiation of MPI prior to execution. This is

handled by a shell script emm_mpi.lam_7.0.sh included with the distribution:

#! /bin/sh

# This shell script works for an 8 box cluster with 2 mono core CPUs
# per box running LAM Version 7.0. The host node is named n0 and the
# subnodes are named n1, n2, n3, n4, n5, n6, n7.

echo n0 > lamhosts
echo n1 >> lamhosts
echo n2 >> lamhosts
echo n3 >> lamhosts
echo n4 >> lamhosts
echo n5 >> lamhosts
echo n6 >> lamhosts
echo n7 >> lamhosts

test -f gsm_mpi.err && mv -f gsm_mpi.err gsm_mpi.err.bak
test -f gsm_mpi.out && mv -f gsm_mpi.out gsm_mpi.out.bak

rm -f core core.*

lamboot -v lamhosts

RC=$?

case $RC in
0) ;;
1) exit 1;;
esac

make -f makefile.mpi.lam_7.0 >gsm_mpi.out 2>&1 && \
mpirun -v -O -D -s h N N \
${PWD}/gsm_mpi >>gsm_mpi.out 2>gsm_mpi.err

RC=$?

case $RC in
0) exit 0 ;;
esac

exit 1;
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Also included with the distribution are shell scripts and makefiles for Version 7.1 of LAM

and for Version 2.1 of OpenMPI.

The results of a run are a set of files similar to those for the serial version. The main

omission is that files for tuning the subchain are not written. Instead of files being named like

sv.sci_sub_parm.001.dat they are named like sv.sci_sub_parm.015.001. This would be

ifile=001 produced by processor 15. (There are 16 processors numbered 0 to 15 because

each of the eight nodes has two processors.) Files from one processor can be meaningfully

concatenated. Files from different processors start at the same value of θ (which should be

the mode of the posterior to prevent initial transients) but use a different seed. The files

sv.implied_map.new and sv.assess_sigma.new are jointly produced by all processors.

The implied maps of each processor are passed to the others as the run progresses so that

a point visited by any processor is made available to the others. If two processors visit the

same point, that point with the larger mle evaluated at the simulation is the one that is

retained in the map.

Our chains look good. Here are the rejection rates over all processors

theta_1 0.18
theta_2 0.19
theta_3 0.18
theta_4 0.22
theta_5 0.21
theta_6 0.22

total 0.20

Figure 10 shows the moves of the elements of θ for the first processor; the others look about

the same.

Putting θ on a grid serves two purposes: (1) It reduces the accuracy to which the subchain

must compute the mle because points are separated. (2) It speeds computations because a

previous point on the chain is likely to be repeated. Our risk aversion hurt us with respect

to (2) because we only had about a 5% reuse rate. In retrospect, we probably should have

been more aggressive and set sci_incfac to a larger value.

Figure 11 shows the posterior densities for the elements of θ over all processors.

66



0 2000 4000 6000 8000 10000

−0
.0

5
0.

05

0 2000 4000 6000 8000 10000

−0
.0

5
0.

05
0.

15

0 2000 4000 6000 8000 10000

0.
00

0.
15

0.
30

0 2000 4000 6000 8000 10000

0.
85

0.
95

0 2000 4000 6000 8000 10000

0.
15

0.
25

0 2000 4000 6000 8000 10000

−0
.0

4
0.

02
0.

08

0 2000 4000 6000 8000 10000

−1
09

5
−1

08
5

Figure 10. MCMC Chain from Processor 1 using Parameter File sv.parm012.in0. The

panels are draws of the elements of θ = (a0, a1, b0, b1, s, r) in order from top to bottom; the last panel

is proportional to the log posterior density evaluated at θ. Every tenth move is plotted. R = 10, 000.
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Figure 11. Posterior Densities from all Processors using Parameter File sv.parm012.in0.

The panels are posterior densities for θ = (a0, b0, b1, c1, d1, s, r) in order from top to bottom. Every

twenty-fifth move is used. R = 150, 000.
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9.4 Model Assessment

Model assessment is straightforward and fast. The serial version of gsm is adequate al-

though the parallel version can perform model assessment. We copy sv.parm.012.in0 to

sv.parm.013.in0 and modify the blocks that control the model assessment chain as follows:

ESTIMATION DESCRIPTION (required)
svfx Project name, pname, char*
1.5 GSM version, defines format of this file, gsmver, float

1 Write detailed output if print=1, int
0 Prior draws in sci_mod chain if sci_draw_from_prior=1, int
0 Run sci_mod chain if run_sci_chain=1, int
0 Prior draws in stat_mod chain if stat_draw_from_prior=1, int
1 Run stat_mod chain (i.e. assess_chain) if run_stat_chain=1, int

1.0 Value of kappa for assess prior, kappa, float

STAT_MOD MCMC DESCRIPTION (required) (describes assess chains)
740726 Seed for stat_mod MCMC simulations, stat_seed, int
10000 Number stat_mod MCMC simulations per file, len_stat_chain, int

15 Number of MCMC simulation files, num_stat_files, int
4.0 Rescale proposal scaling by this value, stat_sclfac, float

It is also necessary to retune the statistical model chain. The rescaling stat_sclfac=4

above compensates for the fact that we are now running the chain on n = 834 observations

rather than the N = 50000 for the subchain runs. But we also have to do a bit more tinkering

using techniques similar to those described in Subsection 9.1. The parmfile parmfile.alt

can be used to restart runs from the mode of chain that wrote it. Some additional guidance

is provided by the fact that an unfettered chain should give roughly the same results as for

the mle in 11114000.fit. We retuned with kappa set to 10. The retuning is shown in the

following two blocks.

STAT_MOD PROPOSAL SCALING (required)
3.90000000000000000e-03 a0[1] 1
3.60000000000000000e-03 a0[2] 2
3.50000000000000000e-03 a0[3] 3
3.40000000000000000e-03 a0[4] 4
3.20000000000000000e-03 b0[1]
6.64000000000000000e-03 B(1,1)
3.00000000000000000e-03 R0[1]
4.50000000000000000e-03 P(1,1) s
2.00000000000000000e-03 Q(1,1) s

STAT_MOD PROPOSAL GROUPING (optional) (frequencies are relative)
0.2 1 5

1 1.0000000 -0.7211482
5 -0.7211482 1.0000000

0.1 2
2 1.0

0.1 3
3 1.0
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Figure 12. Persistence. The solid line is a plot of the posterior density of ψ = η2
8
+ η2

9
, which

is a measure of volatility persistence when the stochastic volatility scientific model is imposed on

the SNP statistical model. The dotted line is the posterior density of ψ when the prior πκ with

κ = 1 is imposed on the statistical model.

0.1 4
4 1.0

0.1 6
6 1.0

0.3 7 8 9
7 1.0000000 0.7418488 -0.9137840
8 0.7418488 1.0000000 -0.8653144
9 -0.9137840 -0.8653144 1.0000000

When assessing results we will discard sv.as_st_parm.000.dat to dissipate transients

because we are not starting this chain at the posterior mode. This will leave us with

a concatenated chain sv.as_st_parm.000.dat + . . .+ sv.as_st_parm.015.dat of length

R = 150000. We also copy the files sv.implied_map.new and sv.assess_sigma.new from

the parallel run to sv.implied_map.dat and sv.assess_sigma.dat.

First we will look at ψ = η28 + η29 which is a measure of volatility persistence. Figures 12
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Figure 13. Persistence. The solid line is a plot of the posterior density of ψ = η2
8
+ η2

9
, which

is a measure of volatility persistence when the stochastic volatility scientific model is imposed on

the SNP statistical model. The dotted line is the posterior density of ψ when the prior πκ with

κ = 100 is imposed on the statistical model.

and 13 plot this measure for κ = 1 and 100, respectively. In Figure 12 we see the effect of

imposing πκ when it binds: the location of ψ aligns. In Figure 13 πκ has negligible effect and

the location shifts to the posterior under the SNP statistical model, which is considerably

lower.

Figures 14 and 15 plot the posterior densities of the parameters of the SNP statistical

model under the priors πκ for κ = 1 and 100, respectively. The main effect of imposing the

stochastic volatility scientific model on the SNP statistical model is to force symmetry on

the SNP conditional density by making η1 and η3, which are the linear and cubic terms of

the polynomial part of the SNP conditional density, nearly zero. The other effect is to thin

the tails by making η2, which is the quadratic term, negative and η4, which is the quartic

part, less positive. The shift in η5, which is the location parameter of the conditional density,
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is a side effect. If the polynomial terms that control skewness, (η1, η3), shift, then η5 must

shift to compensate.
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Figure 14. Parameters of the Statistical Model. The solid line is a plot of the posterior

densities of the parameters η of the SNP statistical model when the stochastic volatility scientific

model is imposed. The dotted lines are the posterior densities when the prior πκ with κ = 1 is

imposed.
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Figure 15. Parameters of the Statistical Model. The solid line is a plot of the posterior

densities of the parameters η of the SNP statistical model when the stochastic volatility scientific

model is imposed. The dotted lines are the posterior densities when the prior πκ with κ = 100 is

imposed.
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9.5 Polishing the Subchain

Version 1.1 of GSM added the capability to add a BFGS quasi-Newton polish to the end of the

subchain. Here we copy sv.parm.012.in0, from Subsection 9.3 above, to sv.parm.014.in0

and make changes to the two blocks affected by the change from Version 1.0 to Version 1.1

so that they read as follows:

ESTIMATION DESCRIPTION (required)
svfx Project name, pname, char*
1.5 GSM version, defines format of this file, gsmver, float

1 Write detailed output if print=1, int
0 Prior draws in sci_mod chain if sci_draw_from_prior=1, int
1 Run sci_mod chain if run_sci_chain=1, int
0 Prior draws in stat_mod chain if sci_draw_from_prior=1, int
0 Run stat_mod chain (i.e. assess_chain) if run_stat_chain=1, int

1.0 Value of kappa for assess prior, kappa, float

SCI_MOD MCMC DESCRIPTION (required)
740726 Seed for sci_mod MCMC simulations, sci_seed, int

1000 Number sci_mod MCMC simulations per file, len_sci_chain, int
9 Number of extra MCMC simulation files, num_sci_files, int

0 Use analytic expression to compute mle if analytic_mle=1, int
49 Length of sub chain to compute mle, len_sub_chain, int
0 Number of extra sub chains, num_sub_chains, int
11 Number of quasi-Newton iterates, num_polish_iter, int

1.00e-05 Tolerance for quasi-Newton, polish_toler, float
1.0 Rescale proposal scaling by this value, sci_sclfac, float
1.0 Rescale parameter increments by this value, sci_incfac, float

Reducing the subchain from 100 to 49 and adding a BFGS polish reduced run time by

about 1/3. Recall that the BFGS polish uses the subchain to get its starting values so there

is a limit to how small one can make it. With this example, len_sub_chain=49 seems to

be about as small as one can go without causing the θ chain to stick excessively. Running

the parallel version of the code with this choice, all results are effectively the same as those

shown in Subsection 9.3.

Runs with len_sub_chain< 49 allow b1 to drift to one increment from 1.0 and then stick.

This seems to be because the accuracy of the computation of

η̂ =
η

argmax
N
∑

t=1

log f(ŷt|x̂t−1, ηi)

by the combined subchain and polish deteriorates as b1 moves toward 1.0 in a perverse way

that causes
n
∑

t=1

log f(ỹt|x̃t−1, η̂)
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xFigure 16. Normal vs Beta Prior for b1. The solid line is a plot of the beta density with

with α = 20 and a mode of m = 0.95, which implies β = (α− 1−ma+ 2m)/m. The dashed line

is the normal density with µ = m and σ = 0.1/1.96.

to be over estimated. This, in turn, causes the chain to stick at the over estimated value.

The feature that was added in Version 1.1 that restarts the subchain when this happens

gets it unstuck eventually, but it appears that the root cause of the problem is the normal

prior on b1. Figure 16 plots the (truncated) normal prior that we have used thus far and

an alternative beta prior that downweights points near 1.0 but is a reasonable substitute for

the normal prior over the rest of the support.

We will substitute the beta prior and rerun. In the distributed code, the beta or normal

prior can be toggled with the compiler directive USE_BETA_PRIOR in gsmusr.cpp. This

change helped a little, but not enough to warrant a setting lower than len_sub_chain=49.

The prior would have to be more aggressive to achieve further reduction.

Rather than polishing once at the end of the subchain, one might try running the sub-

chain, polishing, running, polishing, etc. To do this, e.g., three times, set num_sub_chains
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to 3. Because len_sub_chain is already small, one probably would not want to reduce it

further.
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