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Abstract

We use recently proposed Bayesian statistical methods to compare the habit persistence

asset pricing model of Campbell and Cochrane, the long-run risks model of Bansal and

Yaron, and the prospect theory model of Barberis, Huang, and Santos. We improve these

Bayesian methods so that they can accommodate highly nonlinear models such as the three

aforementioned. Our substantive results can be stated succinctly: If one believes that the

extreme consumption fluctuations of 1930–1949 can recur, although they have not in the last

sixty years even counting the current recession, then the long-run risks model is preferred.

Otherwise, the habit model is preferred.

Keywords and Phrases: Statistical Tests, Habit, Long-Run Risks, Prospect Theory, Asset

Pricing.

JEL Classification: E00, G12, C51, C52
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Introduction

The goal of this article is to fill a void in the literature. There are, to our knowledge, no

head-to-head, statistical (i.e. likelihood based or asymptotically equivalent) comparisons of

asset pricing models from macro/finance. This paper fills the void. The asset pricing models

considered are the habit persistence model of Campbell and Cochrane (1999), CC hereafter,

the long-run risks model of Bansal and Yaron (2004), BY hereafter, and the prospect theory

model of Barberis, Huang, and Santos (2001), BHS hereafter. There are two reasons for this

choice: These three models are arguably the leading contenders and the authors describe

their computational methods precisely enough to permit replication of their results.

The need for a statistical comparison of asset pricing models is underscored by the ongo-

ing debate between advocates of the long-run risks and habit models. Beeler and Campbell

(2009) claim that the long-run risks model is rejected by historical data on the basis of the

predictability of excess returns, consumption growth, dividend growth, and their respective

volatilities by the price to dividend ratio. Bansal, Kiku, and Yaron (2009) argue that the

long-run risks model provides adequate predictability results when using a vector autore-

gression (VAR) based on consumption growth, price to dividend ratio, and the real risk-free

rate. Bansal, Kiku and Yaron also argue that the habit model provides counterfactual pre-

dictability results for the price to dividend ratio when using lagged consumption growth as a

regressor. Because the argument is based on the selective use of statistics by the advocates,

it can be continued indefinitely without resolution. In contrast, the likelihood of model out-

put contains all the information in these models. Therefore, likelihood based inference, in

principle, resolves the debate definitively.

We know of only one other study that attempts a head-to-head, statistical comparison of

asset pricing models: Bansal, Gallant, and Tauchen (2007), BGT hereafter. BGT compared

the habit model to the long-run risks model using frequentist methods. Their methods could

not distinguish between the two models because frequentist non-nested model comparison

methods require abundant data. Abundant data are not available in macro/finance. The

typical sampling frequency used to calibrate and assess macro/finance models is annual and

there are only about 80 annual observations available on the U.S. economy. The papers cited
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above use annual data. BHS insist that annual is the only frequency that is appropriate to

their model. Using more abundant higher frequency data to compare models is not an option.

They were not designed to explain high frequency data.

Failing to achieve a definitive statistical result, BGT proceeded to compare the models

using the more traditional methods of macro/finance, which consist of enumerating some

moments, evaluating them both from the data and from a model simulation, and comparing,

often without taking sampling variability into account. On the basis of such comparisons,

BGT conclude that the long-run risks model is preferred. Of these comparisons, they relied

mostly on the fact that the habit model provides counter factual predictability results for

the price to dividend ratio when using lagged consumption growth as a regressor.

In addition to the fact that the BGT comparison, in the end, was not statistical, there are

other concerns. BGT did not actually compare the models proposed by CC and BY. They

modified them to impose cointegration on macro variables that ought not diverge. They

also used a general purpose method to solve them; specifically, a Bubnov-Galerkin method

(Miranda and Fackler, 2002, p 152–3). Our view is that fairness dictates that one should

use the model that was actually proposed by the originator in comparisons, not a modified

model, and that one should use the same solution method that was proposed. To state our

view succinctly, the model is the simulation algorithm proposed by the originator; it is not

the mathematical equations that suggested the algorithm.

The data we use are annual, per capita, real, U.S., stock returns, consumption growth,

and the price to dividend ratio from 1925–2008. The comparisons are for the periods 1930–

2008 and 1950–2008. The data from 1925–1929 are only used to prime recursions because

they are of lower quality than the data from 1930 onwards. The data are plotted in Figure 1.

Note in the figure that consumption growth is far more volatile in the 1930–1949 period

than in the period from 1950–2008. It turns out that the difference in consumption growth

volatility dramatically influences results.

(Figure 1 about here)

Gallant and McCulloch (2009), GM hereafter, introduced a Bayesian method for fitting

a model from a scientific discipline (scientific model for short) for which a likelihood is not

readily available to sparse data. They synthesize a likelihood by means of an auxiliary
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model and simulation from the scientific model. GM used the term “statistical model”

for “auxiliary model.” We do not because the consonance between “scientific model” and

“statistical model” causes confusion and also because we call into question the premise on

which GM chose the term “statistical model.”

In the GM framework, the auxiliary model must nest the scientific model for the method-

ology to be logically correct. GM argue that it is better to use an auxiliary model that rep-

resents the data well, even if it does not nest the scientific model. We conduct a sensitivity

analysis employing six auxiliary models of differing complexity to determine if the choice

of auxiliary model makes a difference to our results. The six models are shown in Table 1.

Model f1 is closest to that used by GM; f5 is the nesting model for univariate (stock returns

alone) and bivariate (consumption growth and stock returns) data.

We use the protocol set forth in GM to establish nesting, which, briefly, is as follows. The

models shown in Table 1 are the beginning of a sequence (whose progression is described

in Subsection 2.4) that, if continued, is dense for the space in which the scientific model

must lie. Therefore, what needs to be done to find a nesting model is to select the correct

truncation point. Here we use the Schwarz (1978) criterion to select it followed by some

diagnostic checks that GM discuss.

Increasing the dimension of a multivariate time series often simplifies the conditioning

structure. That happens here: f0 is the nesting model for trivariate (stock returns, con-

sumption growth, and price to dividend ratio) data. We check our f0 results using models

f1 through f3. Computations to fit a nonlinear model to data that does not identify it well

are often unstable, as they are for models f4 and f5 when fitted to trivariate simulations.

Therefore, we do not consider f4 and f5 for trivariate data. The prospect theory model

puts its mass on a two dimensional subspace. This violates the GM regularity conditions.

Therefore, we do not consider the prospect theory model for trivariate data.

(Table 1 about here)

We find that the computational methods that GM proposed are not sufficiently accurate

to compare the habit, long-run risks, and prospect theory models. This is due to the fact that

the auxiliary model f5 that nests these three is more complex than the auxiliary models that

GM considered. A contribution of this paper is a refinement of GM’s methods that increases
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accuracy to the point that auxiliary models as complex as f5 can be used in applications.

1 Models Considered

The intuitive notions behind any consumption based asset pricing model are that agents

receive wage, interest, and dividend income from which they purchase consumption. Agents

seek to reallocate their consumption over time by trading shares of stock that pay a random

dividend and bonds that pay interest with certainty. This reallocation is done for the purpose

of insuring against spells of unemployment, providing for retirement, etc. Trading activity

enters the model via the constraint that an agent’s purchase of consumption, bonds, and

stock cannot exceed wage, interest, and dividend income in any period. When applying

the model to a national economy, consumption and dividends can be used as the driving

processes instead of wages and dividends because wages can be recovered by subtracting

dividends from consumption. (Someone must own the stock so the dividends must be received

while for bonds someone pays interest and another receives so there are no net interest

receipts.) Agents are endowed with a utility function that depends on the entire consumption

process. The first order conditions of their utility maximization problem determine a map

from present and past values of the driving processes to the present price of a stock and

a bond. These models are simulated by first simulating the driving processes and then

evaluating the map that determines stock and bond prices. For each model, we shall describe

the driving processes and the utility function, leaving a description of the algorithm for

computing the map to the cited literature.

Our prior, which is the same for all models, is

π(θ) = N

[

raf | 0.896,
(

1

1.96

)2 ] p∏

i=1

N



θi | θ∗i ,
(
0.1θ∗i
1.96

)2 

 , (1)

where raf = limn→∞(1/n)
∑n

t=1 r
a
ft is the ergodic mean of the risk-free rate raft and the θ∗i are

the parameter values published by the proposer. Campbell (2003) notes that any reasonable

asset pricing model must incorporate the indirect evidence that the risk-free rate is very

low with low volatility. Campbell’s evidence suggests that the mean risk-free rate for the

U.S. is 0.896 percent per annum. BGT argue that imposing the risk-free rate a priori will

produce better estimates than using an ex ante risk-free rate series because any empirical ex
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ante risk-free rate series is mostly noise due to the difficulty of determining ex ante inflation

(Mishkin, 1981). The proposers used their judgment to determine the θ∗i . They took data,

some of which differed from ours, partially into account in forming their judgment but none

could have used data more recent than 2003. Thus our prior is partially, if not completely,

independent of our data. This prior appears to strike the right balance. It is tight enough

to achieve MCMC chains that mix well despite the use of sparse data. It is loose enough to

allow the data to be influential. Making it looser still causes numerical problems. For the

purposes of this paper, it is pointless to consider a tighter prior.

Throughout this section, lower case denotes the logarithm of an upper case quantity;

e.g., ct = log(Ct), where Ct is consumption during time period t, and dt = log(Dt), where

Dt is dividends paid during period t. The exceptions are the geometric risk-free interest rate

rft = − logPf,t−1 and the geometric stock return inclusive of dividends rdt = log(Pdt+Dt)−

logPd,t−1, where Pf,t−1 is the price of a discount bond at the beginning of time period t that

pays $1 with certainty at the end of period t, Pd,t−1 is the price of a stock at the beginning

of time period t, and Pdt its price at the end.

1.1 The Habit Persistence Model

The driving processes for the habit persistence model are

Consumption: ct − ct−1 = g + vt, (2)

Dividends: dt − dt−1 = g + wt,

Random shocks:




vt

wt



 ∼ NID








0

0



,




σ2 ρσσw

ρσσw σ2
w







 .

The utility function is

E0
( ∞∑

t=0

δt
(StCt)1−γ − 1

1− γ

)

, (3)

where habit persistence is implemented by two equations:

Surplus ratio: st − s̄ = φ (st−1 − s̄) + λ(st−1)vt−1, (4)

Sensitivity function: λ(s) =






1
S̄

√
1− 2(s− s̄)− 1 s ≤ smax

0 s > smax

. (5)
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γ is a measure of curvature, which scales attitudes toward risk, and δ is the agent’s dis-

count factor. Et is conditional expectation with respect to St, which is the state vari-

able; st = log(St). The quantities S̄ and smax can be computed from model parameters

as S̄ = σ
√
γ/(1− φ) and smax = s̄ + (1 − S̄2)/2. The variable Xt = Ct(1 − St) is called

external habit. By substituting StCt = Ct−Xt in (3) one can see that utility is extremely low

when consumption is close to Xt for γ > 1. Habit Xt is determined by past consumption as

is seen by noting that vt−1 = log(Ct−1/Ct−2)− g in (4). Given the habit model’s parameters

θ = (g, σ, ρ, σw,φ, δ, γ), (6)

{Ct, rdt, rft}12Nt=1 are simulated at the monthly frequency and aggregated to the annual fre-

quency

Ca
t =

11∑

k=0

C12t−k, (7)

cat = log(Ca
t ), (8)

radt =
11∑

k=0

rd,12t−k, (9)

raft =
11∑

k=0

rf,12t−k, (10)

where N is the annual simulation size.

The prior is (1). For the habit model, the scale factor used for φ and δ is 0.001 rather

than the 0.1 shown in (1) to overcome an identification problem. The MCMC chain will not

mix when the scale factor for φ and δ in (1) is 0.1 because a move in φ can be nearly exactly

offset by a move in δ. The value 0.001 is the largest value for which MCMC chains will mix.

Because of the first term of the right hand side of (1), (1) is not an independence prior; in

simulations from the prior no correlation between parameters is zero.

Measures of location and scale for the prior and posterior distributions of habit model

parameters are shown in the top panel of Table 2. The prior and posterior densities of the

risk-free rate, equity premium, equity returns, and the standard deviation of equity returns

are plotted in the left column of Figure 2. Overall, Table 2 and Figure 2 suggest that the

prior is sufficiently informative to fill in where data are sparse but it allows the data to move

the posterior where data are informative.
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(Table 2 about here)

(Figure 2 about here)

Where differences in the three models are the most obvious visually is in their out-of-

sample forecasts for the next five years. The mean posterior forecast for the habit model,

computed as described in Subsection 2.6, is plotted in the left column of Figure 3. The habit

model predicts an end to the current recession in 2009 and return to steady-state growth by

2010. This is dictated by (2), (7), and (8) which imply that annual consumption growth for

the habit model is a first order autoregression with an autogression parameter of about 0.25

(Working, 1960). Stock returns are predicted to be high in 2009 with a return to steady-state

returns by 2013.

(Figure 3 about here)

1.2 The Long-run Risks Model

The driving processes for the long-run risks model are

Consumption: ct+1 − ct = µc + xt + σtηt+1,

Dividends: dt+1 − dt = µd + φdxt + πdσtηt+1 + φuσtut+1,

Long-Run Risks: xt+1 = ρxt + φeσtet+1,

Stochastic Volatility: σ2
t+1 = σ̄2 + ν(σ2

t − σ̄2) + σwwt+1,

Random Shocks: (ηt, et, wt, ut) ∼ NID(0, I).

The long-run risks model derives its name from the random shifts in the location of con-

sumption and dividends due to xt. Note that long-run risks xt and stochastic volatility σ2
t

evolve autonomously. The utility function is

Ut =

[

(1− δ)C
ψ−1
ψ

t + δ
(
Et U1−γ

t+1

) ψ−1
ψ(1−γ)

] ψ
ψ−1

. (11)

γ and δ have the same interpretation as for the habit model; ψ, which summarizes prefer-

ences across time periods, is a separate parameter. Separation of attitudes toward risk and

preferences accross time is the main advantage of (11). Et is the conditional expectation with

respect to xt and σt, which are the state variables.
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The long-run risks model is richly parametrized

θ = (δ, γ,ψ, µc, ρ,φe, σ̄
2, ν, σw, µd,φd, πd,φu). (12)

It is so richly parametrized that identification would have to come from the prior even were

data abundant because half of the models in Table 1 have fewer parameters than θ. The

time increment is one month. Aggregation of monthly {ct, rdt, rft}12Nt=1 to the annual frequency

{cat , radt, raft}Nt=1 is by means of (7) through (10).

The prior is (1). The autoregressive parameters ρ and η cause problems. The solution

method proposed by BY degrades as ρ and η increase from their published values. Because

the degradation is continuous in ρ and η, there is no logical threshold that one can impose

on ρ and η to completely prevent degradation. Our solution to this problem is to set the

scale factor for ρ and ν in (1) to 0.01 rather than 0.1 and attenuate the tails for ρ and ν

above 0.995.

Measures of location and scale for the prior and posterior distributions of the parameters

of the long-run risks model are shown in the middle panel of Table 2. The prior and posterior

densities of the risk-free rate, equity premium, equity returns, and the standard deviation

of equity returns are plotted in middle column of Figure 2. As for the habit model, Table 2

and Figure 2 suggest that the prior is sufficiently informative to fill in where data are sparse

but it allows the data to move the posterior where data are informative.

The mean posterior forecast for the long-run risks model is plotted in in the middle

column of Figure 3. The long-run risks model predicts an end to the current recession in

2010 and slow increase in the growth rate thereafter. Stock returns are predicted to be at

their steady-state values over the entire forecast period. A flat response of asset returns to

a consumption growth and asset return shock is a structural characteristic of the long-run

risks model. It is due to the fact that stochastic volatility is autonomous and therefore not

affected by consumption growth and asset returns shocks. The stochastic volatility process

is the factor that affects the risk premium in the long-run risks model.
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1.3 The Prospect Theory Model

The driving processes for the prospect theory model are

Aggregate Consumption: c̄t+1 − c̄t = gC + σCηt+1

Dividends: dt+1 − dt = gD + σDεt+1

Random Shocks:




ηt

εt



 ∼ NID








0

0



,




1 ω

ω 1







 .

The prospect theory model distinguishes between aggregate consumption C̄t, which is not

a choice variable, and the agent’s consumption Ct, which is. In addition to these variables,

let Rt denote the gross stock return; let Rf denote the gross risk-free rate; let St denote the

share of wealth allocated to the risky asset; let

Xt+1 = St(Rt+1 − Rf ) (13)

denote the relative gain or loss on the risky asset; let

zt+1 = η

(

zt
R̄

Rt+1

)

+ (1− η) (14)

denote the benchmark level, where R̄ is chosen to make median {zt} = 1. The prospect

theory utility function is

E0
[ ∞∑

t=0

(

ρt
C1−γ

t − 1

1− γ
+ b0C̄

−γ
t ρt+1St v̂(Rt+1, zt)

)]

, (15)

where

v̂(Rt+1, zt) =






Rt+1 − Rf zt ≤ 1, Rt+1 ≥ ztRf

(ztRf − Rf) + λ(Rt+1 − ztRf) zt ≤ 1, Rt+1 < ztRf

Rt+1 − Rf zt > 1, Rt+1 ≥ Rf

λ(zt)(Rt+1 − Rf) zt > 1, Rt+1 < Rf

(16)

and

λ(zt) = λ+ k(zt − 1). (17)

Et is the conditional expectation with respect to the benchmark level zt, which is the state

variable. In (15) the agent’s discount factor is ρ and risk aversion parameter is γ. The
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second term of (15) is the utility from gains or losses, where b0 is a scale factor. From a plot

of v̂(Rt+1, zt), Figure 1 of BHS, one can see that when there are no prior gains and losses

(z = 1), agents dislike losses more than they appreciate gains. When there are prior losses

(z > 1) the dislike intensifies. When there are prior gains (z < 1), an agent is “playing on the

house’s money” and pain is delayed until the “house’s money has been lost”. The parameter

η in (14) controls sensitivity to past gains and losses. When η is zero, its lower bound, the

benchmark does not depend at all on past gains and losses. The dependence increases as η

approaches its upper bound of one. Agents always dislike losses more than they appreciate

gains; η just determines the delay. See BHS for the relation of the prospect theory utility

function to the psychology literature.

Like the long-run risks model, the prospect theory model is richly parameterized:

θ = (gC , gD, σC , σD,ω, γ, ρ,λ, k, b0, η) (18)

Identification requires the prior for most of the auxiliary models considered. The time

increment is one year: Simulate directly and set cat = log(C̄t), radt = rdt, and raft = rft.

Measures of location and scale for the prior and posterior distributions of the parameters

of the prospect theory model are shown in the bottom panel of Table 2. The prior and

posterior densities of the risk-free rate, equity premium, equity returns, and the standard

deviation of equity returns are plotted in the right column of Figure 2. As previously, Table 2

and Figure 2 suggest that the prior is sufficiently informative to fill in where data are sparse

but it allows the data to move the posterior where data are informative.

The mean posterior forecast for the prospect theory model is plotted in the right column

of Figure 3. The the prospect theory model predicts steady-state growth throughout the

forecast period. This is dictated by the fact that annual consumption growth for the prospect

theory model is iid. Stock returns are predicted to be double their steady-state value in 2009,

reach steady-state by 2011, and remain at steady-state thereafter.

2 Inference for General Scientific Models

We describe the Bayesian methods proposed by GM and the modifications that we found

necessary. Public domain code implementing the method for the auxiliary models in Table 1
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and a User’s Guide are available at http://econ.duke.edu/webfiles/arg/gsm.

2.1 Estimation of Scientific Model Parameters

Let the transition density of the scientific model be denoted by

p(yt|xt−1, θ), θ ∈ Θ, (19)

where xt−1 = (yt−1, . . . , yt−L) if Markovian and xt−1 = (yt−1, . . . , y1) if not. We presume that

there is no straightforward algorithm for computing the likelihood but that we can simulate

data from p(·|·, θ) for given θ. We presume that simulations from the scientific model are

ergodic. We assume that there is a transition density

f(yt|xt−1, η), η ∈ H (20)

and a map

g : θ '→ η (21)

such that

p(yt|xt−1, θ) = f(yt|xt−1, g(θ)) θ ∈ Θ. (22)

We assume that f(y|x, η) and its gradient (∂/∂η)f(y|x, η) are easy to evaluate. f is called

the auxiliary model and g is called the implied map. When (22) holds f is said to nest p.

Whenever we need the likelihood
∏n

t=1 p(yt|xt−1, θ), we use

L(θ) =
n∏

t=1

f(yt|xt−1, g(θ)), (23)

where {yt, xt−1}nt=1 are the data and n is the sample size. After substituting L(θ) for
∏n

t=1 p(yt|xt−1, θ), standard Bayesian MCMC methods become applicable. That is, we have

a likelihood L(θ) from (23) and a prior π(θ) from (1) and need nothing beyond that to

implement Bayesian methods by means of MCMC. A good introduction to these methods is

Gamerman and Lopes (2006).

The difficulty is computing the implied map g accurately enough that the accept/reject

decision in an MCMC chain (step 5 in the algorithm below) is correct when f is a nonlinear

model. We describe the algorithms that we have found effective next.
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Given θ, η = g(θ) is computed by minimizing Kullback-Leibler divergence

d(f, p) =
∫ ∫

[log p(y|x, θ)− log f(y|x, η)] p(y|x, θ) dy p(x|θ) dx

with respect to η. The advantage of Kullback-Leibler divergence over other distance measures

is that the part that depends on the unknown p(·|·, θ),
∫∫

log p(y|x, θ) p(y|x, θ) dy p(x|θ) dx,

does not have to be computed to solve the minimization problem. We approximate the

integral that does have to be computed by

∫ ∫
log f(y|x, η) p(y|x, θ) dy p(x|θ) dx ≈ 1

N

N∑

t=1

log f(ŷt|x̂t−1, η),

where {ŷt, x̂t−1}Nt=1 is a simulation of length N from p(·|·, θ). Upon dropping the division by

N , the implied map is computed as

g : θ '→
η

argmax
N∑

t=1

log f(ŷt | x̂t−1, η). (24)

We use N = 5000, which requires 60000 monthly simulations in the case of the habit and

long-run risks models. Results (posterior mean, posterior standard deviation, etc.) are not

sensitive to N ; doubling N makes no difference other than doubling computational time. By

accident we once set N = 60000 in the prospect theory model; this also made no difference.

It is essential that the same seed be used to start these simulations so that the same θ always

produces the same simulation.

GM run a Markov chain {ηt}Kt=1 of length K to compute η̂ that solves (24). There are

two other Markov chains discussed below so, to help distinguish among them, this chain

is called the η-subchain. While the η-subchain must be run to provide the scaling for the

model assessment method that GM propose, the η̂ that corresponds to the maximum of
∑N

t=1 log f(ŷt | x̂t−1, η) over the η-subchain is not a sufficiently accurate evaluation of g(θ)

for our auxiliary models. This is mainly because our auxiliary models use a multivariate

specification of generalized autoregressive conditional heteroskedasticity (GARCH) that En-

gle and Kroner (1995) call BEKK. Likelihoods incorporating BEKK are notoriously difficult

to optimize. We use η̂ as a starting value and maximize (24) using the BFGS algorithm

(Fletcher, 1987, 26–40). This also is not a sufficiently accurate evaluation of g(θ). A second

refinement is necessary. The second refinement is embedded within the MCMC chain {θt}Rt−1
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of length R that is used to compute the posterior distribution of θ. It is called the θ-chain.

(We use R = 25000 past the point transients have dissipated.) Its computation proceeds as

follows.

The θ-chain is generated using the Metropolis algorithm. The Metropolis algorithm is an

iterative scheme that generates a Markov chain whose stationary distribution is the posterior

of θ. To implement it, we require a likelihood, a prior, and transition density in θ called the

proposal density. The likelihood is (23).

The prior may require quantities computed from the simulation {ŷt, x̂t−1}Nt−1 used to

compute (23). Our prior requires raf . The sequence {r̂aft}Nt−1 is available from the simulation.

The risk free rate for the prior is the average raf = 1
N

∑N
t−1 r̂

a
ft. (For the habit and prospect

models, raft is constant over the simulation.) Quantities computed in this fashion can be

interpreted as the evaluation of a functional of the scientific model of the form Ψ : p(·|·, θ) '→

ψ. Thus, our prior is a function of the form π(θ,ψ). However, the functional ψ is a composite

function, θ '→ p(·|·, θ) '→ ψ, so that π(θ,ψ) is ultimately a function of θ only. Therefore, we

will only write π(θ,ψ) when it is necessary to call attention to the subsidiary computation

p(·|·, θ) '→ ψ.

Let q denote the proposal density. For a given θ, q(θ, θ∗) defines a distribution of potential

new values θ∗. We use a move-one-at-a-time, random-walk, proposal density that puts its

mass on discrete, separated points, proportional to a normal. Two aspects of the proposal

scheme are worth noting. The first is that the wider the separation between the points in the

support of q the less accurately g(θ) needs to be computed for α at step 5 of the algorithm

below to be correct. As an example, the long-run risks model is not sensitive to the risk

aversion parameter γ so that values of γ could be separated as much as 1/4 without making

any difference to the usefulness of the θ-chain with respect to inference regarding economics.

A practical constraint is that the separation cannot be much more than a standard deviation

of the proposal density or the chain will not move. Our separations are typically 1/8 of a

standard deviation of the proposal density. In turn, the standard deviations of the proposal

density are typically no more than the standard deviations in Table 2 and no less than one

order of magnitude smaller. The second aspect worth noting is that the prior is putting

mass on these discrete points in proportion to π(θ). Because we never need to normalize
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π(θ) this does not matter. Similarly for the joint distribution f(y|x, g(θ))π(θ) considered as

a function of θ. However, f(y|x, η) must be properly normalized as a function of y, at least

to the extent that (24) is computed correctly.

The algorithm for the θ-chain is as follows. Given a current θo and the corresponding

ηo = g(θo), we obtain the next pair (θ ′, η ′) as follows:

1. Draw θ∗ according to q(θo, θ∗).

2. Draw {ŷt, x̂t−1}Nt=1 according to p(yt|xt−1, θ∗).

3. Compute η∗ = g(θ∗) and the functional ψ∗ from the simulation {ŷt, x̂t−1}Nt=1.

4. Compute α = min
(
1, L(θ∗)π(θ∗,ψ∗) q(θ∗, θo)

L(θo)π(θo,ψo) q(θo,θ∗)

)
.

5. With probability α, set (θ ′, η ′) = (θ∗, η∗), otherwise set (θ′, η ′) = (θo, ηo).

It is at step 3 that we make our second modification. At that point we have putative

pairs (θ∗, η∗) and (θo, ηo) and corresponding simulations {ŷ∗t , x̂∗
t−1}Nt=1 and {ŷot , x̂o

t−1}Nt=1. We

use η∗ as a start and recompute ηo using the BFGS algorithm, obtaining η̂o. If

N∑

t=1

log f(ŷot | x̂o
t−1, η̂

o) >
N∑

t=1

log f(ŷot | x̂o
t−1, η

o),

then η̂o replaces ηo. In the same fashion, η∗ is recomputed using ηo as a start. Once

computed, a (θ, η) pair is never discarded. Neither are the corresponding L(θ) and π(θ,ψ).

Because the support of the proposal density is discrete, points in the θ-chain will often recur,

in which case g(θ), L(θ), and π(θ,ψ) are retrieved from storage rather than computed afresh.

If the modification just described results in an improved (θo, ηo), that pair and corresponding

L(θo) and π(θo,ψo) replace the values in storage; similarly for (θ∗, η∗). The upshot is that

the values for g(θ) used at step 4 will be optima computed from many different random

starts after the chain has run awhile.

To provide the scaling for the prior used in absolute model assessment, there is a sub-

sidiary computation that needs to be carried out at step 3. It is as follows. Initialize

Sη and L to zero. Each time the η-subchain {ηt}Kt=1 is run, increment L, replace Sη by

Sη + (ηK/2 − ηK)(ηK/2 − ηK)′ and set

Ση =
1

L
Sη. (25)
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We use K = 200. All that is important is that transients have died out by the time the mid-

point K/2 of the η-subchain has been reached and that ηK/2 and ηK are nearly uncorrelated.

We compute posterior probabilities using a method that requires one to save the values

θ′, L(θ′), π(θ′,ψ′) available at step 5. It also requires that these same values for a chain

that draws from the prior for θ be saved. To draw from the prior, replace α at step 4 by

α = min
(
1, π(θ

∗,ψ∗) q(θ∗, θo)
π(θo,ψo) q(θo,θ∗)

)
.

The algorithm for the η-subchain is as follows. We use a move-one-at-a-time, random

walk proposal density with continuous support. Given the current ηo, obtain the next value

η′ in the chain as follows;

1. Draw η∗ according to q(ηo, η∗).

2. Compute α = min
(
1,

[
∏N

t=1
f(ŷt|x̂t−1,η∗)] q(η∗, ηo)

[
∏N

t=1
f(ŷt|x̂t−1,ηo)] q(ηo,η∗)

)
.

3. With probability α, set η ′ = η∗, otherwise set η ′ = ηo.

In Subsection 2.3 we shall require another chain, called the η-chain, that is computed from

the data and a prior πκ. The algorithm for that chain replaces α with

α = min

(

1,
[
∏n

t=1 f(yt|xt−1, η∗)] πκ(η∗) q(η∗, ηo)

[
∏n

t=1 f(yt|xt−1, ηo)] πκ(ηo) q(ηo, η∗)

)

.

Draws from the prior are also required. This is done by putting α = min
(
1, πκ(η

∗) q(η∗, ηo)
πκ(ηo) q(ηo,η∗)

)
.

2.2 Relative Model Comparison

Relative model comparison is standard Bayesian inference although there are a few details

that need to be discussed in order to connect it to Subsection 2.1.

One computes the marginal density,
∫ ∏n

t=1 f(yt|xt−1, g(θ)) π(θ) dθ, for the three scientific

models p1(y|x, θ1), p2(y|x, θ2), p3(y|x, θ3) with respective priors π1(θ1), π2(θ2), π3(θ3) using

method f5 of Gamerman and Lopes (2006, section 7.2.1). The advantage of that method

is that knowledge of the normalizing constants of f(·|·, η) and π(θ) are not required and

it appears to be accurate in tests that we conducted. The computation is straightforward

because the relevant information from the θ-chains for the prior and posterior are available

after completion of the computations discussed in Subsection 2.1. It is important, however,
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that the auxiliary model be the same for all three models when the computations in Sub-

section 2.1 are carried out. Otherwise the normalizing constant of f would be required.

One divides the marginal density for each model by the sum for the three models to get the

probabilities for relative model assessment.

Note that what one is actually doing is comparing the three models f(y|x, g1(θ1)),

f(y|x, g2(θ2)), f(y|x, g3(θ3)), with respective priors π1(θ1), π2(θ2), π3(θ3). This is an impor-

tant observation. Inference is actually being conducted with likelihoods
∏n

t=1 f(yt|xt−1, g1(θ1)),
∏n

t=1 f(yt|xt−1, g2(θ2)),
∏n

t=1 f(yt|xt−1, g3(θ3)), not
∏n

t=1 p1(yt|xt−1, θ1),
∏n

t=1 p2(yt|xt−1, θ2),
∏n

t=1 p3(yt|xt−1, θ3). If f nests all pi, i.e., if (22) holds, then the former and the latter are the

same. If not, the matter needs consideration. In GM’s application they give two examples.

In the first, the presence or absence of GARCH in the auxiliary model makes a dramatic

difference to habit model parameter estimates. In the second, changing the thickness of the

tails of the auxiliary model makes no difference. They argue on the basis of common sense

and their examples that what is actually required is that the auxiliary model fit the observed

data, not that it nests p. That is why they use the term statistical model for f . However,

their argument is not a proof. We examine this issue in Section 4.

The realization that what one is actually doing is comparing the three models f(y|x, g1(θ1)),

f(y|x, g2(θ2)), f(y|x, g3(θ3)), with respective priors π1(θ1), π2(θ2), π3(θ3), allows us to per-

form a change of measure to η-space and illustrate relative model comparison graphically. In

η-space, the prior πi for model i restricts η to a manifold Mi = {η ∈ H : η = gi(θi), θi ∈ Θi}

with each η = gi(θi) in Mi receiving prior weight πi(η) = πi(θi) (recall that Θi is discrete).

Think of this manifold as a line in η-space. This is shown graphically in Figure 4 for two

hypothetical models. Although conceptually a line, what is plotted in Figure 4 has area with

gray fill to represent the density of the prior along the line. A density weighted integral along

the line would have approximately the same value as an integral over the area shown. Also

shown in Figure 4 are the likelihood contours of a hypothetical auxiliary model f(y|x, η).

The marginal density for model i is
∫
Mi

∏n
t=1 f(yt|xt−1, η) πi(η) dη, which is approximately

the integral over the gray areas for the hypothetical models in Figure 4. As shown in the

figure, the likelihood is larger over M2 than over M1, which implies the same for the inte-

grals over M2 and M1. Thus, the second model has the higher marginal likelihood and is
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therefore preferred.

(Figure 4 about here)

2.3 Absolute Model Assessment

We now shift our focus. The model of interest is the auxiliary model f(·|·, η) and its param-

eter η. The role of the scientific model p(·|·, θ) is to define the implied map g(θ) and the

manifold

M = {η ∈ H : η = g(θ), θ ∈ Θ} . (26)

The scientific model can be viewed as a sharp prior on f that restricts the posterior

distribution of η to lie on the manifold M. Think of it as a line in η-space. If this prior is

relaxed, the line becomes a region with volume in η-space. Relaxation can be indexed by a

scale parameter κ. As κ increases, the size of the region increases and posterior for η will

move along a path toward the likelihood of the data under f . Figure 5 is an illustration.

One can select waypoints κi along this path, view them as the discrete values of a parameter,

assign them equal prior probability, and compute their posterior probability. If waypoints

near M receive high posterior probability, then the data support the scientific model. If

waypoints far from M receive high posterior probability, then the data do not support the

scientific model. The idea is illustrated graphically in Figure 5 for the case when a model

is rejected and in Figure 6 for the case when a model is accepted. The formal development

proceeds as follows.

(Figure 5 about here)

(Figure 6 about here)

We add the additional assumption that the auxiliary model is identified and has more

parameters than the scientific model. This assumption implies that g−1(η) exists on M. If

the scientific model is identified g−1(η) will map to a single point; if not, g−1(η) will be a set.

We impose closeness to M by means of the prior

πκ(η) ∝ π
(
g−1(ηo)

)
exp

(
−1

2
(η − ηo)′ (κΣη)

−1 (η − ηo)
)

(27)

where

ηo =
η̂∈M

argmin (η − η̂)′ (Ση)
−1 (η − η̂) , (28)
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π(θ) is the prior (1) for the scientific model, and Ση is given by (25). It is easy and cheap

to evaluate (28) once the computations described in Subsection 2.1 have been carried out

because the implied map g is represented by pairs (θ, η) stored together with π(θ) at the

conclusion of Subsection 2.1 computations. Store is traversed to find the pair (θo, ηo) such

that ηo solves (28). Then π(g−1(ηo)) = π(θo). (If g−1(ηo) maps to a set, π(g−1(ηo)) is the

sum of π(θ) over that set. Recall that Θ is discrete and normalization is not required.) The

pairs (θ, η) and scale Ση used to compute (28) and (27) are those for the θ-chain that draws

from the prior because they are not tainted by data.

Choose three (for specificity) values κ1, κ2, and κ3, ordered from small to large. Consider

f under priors πκ1 , πκ2 , and πκ3 to be three different models and compute the posterior

probability for the three models with each having prior probability 1/3. That is, the pair

(f(·|·, η), πκ(η)) is considered to be a model and the posterior probability of each κ choice is

proportional to the marginal likelihood
∫ ∏n

t=1 f(yt|xt−1, η) πκ(η) dη.

If the posterior probability of model κ1 is small, that is evidence against the scientific

model. Conversely, if it is large, that is evidence in favor of the scientific model.

2.4 The Auxiliary Model

The observed data are yt for t = 1, . . . , n. We first discuss the case where yt is multivariate.

Lagged values of yt are denoted as xt−1. For auxiliary models f0 through f4, xt−1 = yt−1.

For auxiliary model f5, xt−1 = (yt−1, yt−2).

The data are modeled as

yt = µxt−1 +Rxt−1zt

where

µxt−1 = b0 +Bxt−1, (29)

which is the location function of a VAR, and Rxt−1 is the Cholesky factor of

Σxt−1 = R0R
′
0 (30)

+QΣxt−2Q
′ (31)

+P (yt−1 − µxt−2)(yt−1 − µxt−2)
′P ′ (32)

+max[0, V (yt−1 − µxt−2)]max[0, V (yt−1 − µxt−2)]
′. (33)
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In our specification, R0 is an upper triangular matrix, P and V are diagonal matrices, and Q

is scalar; max(0, x) is applied elementwise. This is the BEKK form of multivariate GARCH

described in Engle and Kroner (1995) with an added leverage term (33). In computations,

max(0, x) in (33) is replaced by a twice differentiable cubic spline approximation that plots

slightly above max(0, x) over (0,0.1) and coincides elsewhere. Auxiliary model f0 has term

(30) only, f1 has terms (30), (31), and (32), and f2 through f5 have all four terms.

The density h(z) of the iid zt is the square of a Hermite polynomial times a normal

density, the idea being that the class of such h is dense in Hellenger norm and can therefore

approximate a density to within arbitrary accuracy in Kullback-Leibler distance (Gallant and

Nychka, 1987). The density h(z) is the normal when the degree of the Hermite polynomial

is zero, which is the case for auxiliary models f0 through f2. For model f3 the degree is four.

For models f4 and f5 the degree is four but the constant term of the Hermite polynomial

is a linear function of yt−1. This has the effect of adding a nonlinear term to the location

function (29) and the variance function (30). It also causes the higher moments of h(z) to

depend on yt−1 as well.

The univariate auxiliary models are the same as the above but µxt−1 in (29) has dimension

one and becomes the location function of a first order autoregression and Σxt−1 in (30) has

dimension one and becomes a GARCH(1,1) with a leverage term added.

2.5 Diagnostic Checks

The idea behind diagnostic checking is straightforward: If one has compared two scientific

models (p1, π1) and (p2, π2) using the same auxiliary model f(·|η) and the fit of (p2, π2)

is preferred, then one can examine the posterior means (or modes) η̂1 and η̂2 of f(·|η)

corresponding to the two fits to see which elements changed. The same is true for absolute

model assessment. If one fits (f, πκ1) and (f, πκ2) and concludes that (f, πκ1) fails to fit the

data, then one can examine the changes in the elements of the posterior means (or modes)

of f(·|η) corresponding to the two fits to see which elements changed.

The changes in the elements of η̂1 and η̂2 need to be normalized to facilitate meaningful

comparison. Let η̂1i and η̂2i denote the respective ith elements of η̂1 and η̂2. Let σ̂2i denote the

ith posterior standard deviation of the second fit, i.e., the preferred fit. The normalization
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we suggest is

ti =
η1i − η2i
σ2i

. (34)

Table 4 is an example.

There is a caveat. The ti are often informative but are subject to the same risk as the

interpretation of t-statistics in a regression, namely, a failure to fit one characteristic of the

data can show up not in the parameters that describe that characteristic but elsewhere due

to correlation (colinearity). Nonetheless, despite this risk, inspection of the ti is often the

most informative diagnostic available.

The methods proposed here are likelihood methods which means that at the conclusion

of an estimation exercise a transition density that represents the data under the fitted model

is available. The most useful are f(y|x, g(θ)) with θ set to the posterior mode from a fit of

(p, π) and f(y|x, η) with η set to the posterior mode from a fit of (f, πκ). One can apply

standard diagnostics to these transition densities such as comparative plots as in Figure 7.

2.6 Forecasts

A forecast can be viewed as a functional Υ : f(·|·, η) '→ υ of the auxiliary model that can be

computed from f(·|·, η) either analytically or by simulation. If f(·|·, η) nests the scientific

model p(·|·, θ) then, due to the map η = g(θ), this forecast can also be viewed both as a

forecast from the scientific model and as function of θ. As such, it can be computed at each

draw in the θ-chain for the posterior and the posterior mean, mode, and standard deviation

obtained. Similarly for draws from the prior. An example is Figure 3.

3 Habit, Long-Run Risks, Prospect?

Table 3 presents the posterior probabilities for a relative model comparison and an absolute

model assessment of the three asset pricing models fitted to the three data series over the

two sample periods.

(Table 3 about here)

For the univariate series, all three models fit reasonably well and none of them strongly

dominates. Our interest in the univariate case is due to the fact that this conclusion depends
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on the choice of auxiliary model. We explore this issue in Section 4.

Our interest in the trivariate series stems from fact that BGT, Beeler and Campbell

(2008), and Bansal, Kiku, and Yaron (2009) argue that the main difference between the

habit model and the long-run risks model occurs with respect to predictability regressions

that involve the price to dividend ratio series.

It is difficult to properly adjust dividend payouts for stock repurchases and other distor-

tions caused by tax policy so as to make the measured data resemble the theoretical construct

of asset pricing models. It is apparent from Figure 1 that the price to dividend series does

not look like the realization of a stationary process. An informal check on the ability of a

model to explain dividends is to simulate it for ten thousand years and see if the best match

(with respect to a variance weighted mean squared error metric) of any contiguous segment

of the simulation to the data looks like Figure 1. It does not. For all models and for both

sample periods, the best match cannot produce the hump seen in the third panel of Figure 1.

As mentioned earlier, because the prospect theory model puts its (conditional) mass on

a two-dimensional subspace, it cannot be fit to the trivariate series. However, the informal

check just described is possible and the prospect theory model fails more definitively under

it than either the habit or long-run risks model.

With respect to the remaining two models, in the relative model comparison presented

in Table 3, the long-run risks model dominants over the 1930–2008 period whereas the habit

model dominants over the 1950–2008 period. Both models fail to fit the data in the absolute

model assessment. Interestingly, the failure of the habit persistence model in the 1950–2008

period is not as stark as for the long-run risks model. These results are for the nesting model

f0.

The fundamental objective of asset pricing models is to explain the relationship between

asset prices and consumption. From this perspective, dividends can be treated as an internal

construct that need not have any corresponding observable counterpart. Therefore, the

bivariate results presented in Table 3 are the most important substantively.

As seen in Table 3, in the relative model comparison, the long-run risks model is dominant

over the 1930–2008 period whereas the habit model is dominant over the 1950–2008 period.

In the absolute model assessment, the habit model fails in the 1930–2008 period and the
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prospect theory model fails in the 1950–2008. These results are for the nesting model f5.

It is of interest to determine why the habit persistence model fails to fit the bivariate

series using the diagnostic checks described in Subsection 2.5. For this purpose it is more

informative to use the simpler auxiliary model f1 rather than the nesting model f5. Because

the habit model has seven parameters and f1 has twelve, this is a legitimate choice for the

habit model.

Table 4 presents the diagnostics for the habit model. In the table the fit of (f1, πκ)

with κ = 0.1 is compared to the fit with κ = 10 for the bivariate series over the period

1930–2008 and over the period 1950–2008. It is clear from the table what the problem is.

The largest diagnostic, t = −4.98, indicates that P11, which is the feedback of consumption

growth into its own volatility, is too small in absolute value. The habit model fails to put

enough conditional heteroskedasticity into the consumption growth process. The problem

disappears in the 1950–2008 period because, as seen by comparing the entries for κ = 10

across the row for P11, the conditional volatility in the data drops substantially.

(Table 4 about here)

Figure 7 plots the conditional volatility of the three models over the 1930–2008 period.

The solid line in Figure 7 is the long-run risks model, which is the most correct of the

three according to the relative model comparison in Table 3. The shaded region shows

±1.96 posterior standard deviations about this line. All three models track the conditional

volatility of stock returns about the same after taking the standard deviations into account.

Where they differ is in how they track the conditional volatility of consumption growth and

the conditional correlation between consumption growth and stock returns. The same plot

for the 1950–2008 period (not shown) looks qualitatively similar: agreement in the middle

panel and disagreement in the other two.

(Figure 7 about here)

Plots of the conditional mean of consumption growth (not shown) indicate that the

habit model and long-run risks model agree over the 1930–2008 period except over the years

1930–1940. They both track the data moderately well. Because, as was seen in Figure 3,

the conditional mean of consumption growth for the prospect theory model must plot as

a straight line, it does not track well. All models disagree in plots (not shown) of the
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conditional mean of stock returns, with long-run risks plotting as a straight line; all track

the data poorly.

4 Sensitivity Analysis

There is much experience with the data shown in Figure 1. That experience suggests that

about the richest model one would be willing to fit to these data is a model with one-lag

VAR location, GARCH scale, and normal innovations. The exact specification one gets using

standard model selection procedures, such as upward F -testing, is sensitive to the sample

period used. One can get slightly richer or coarser specifications. It is fair to say that the

consensus view is that a one-lag VAR location, GARCH scale, and normal innovations is the

richest model one ought to entertain, which is model f1 of Table 1.

We do not discuss the trivariate series in this section other than to remark that for it,

f0 is the nesting model, results for f0 are reported in Table 3, conclusions do not change

under auxiliary models f1 through f3, and computations for models f4 through f5 cannot be

undertaken because simulations do not identify them (BFGS becomes unstable). Similarly,

we do not discuss results for the for the bivariate consumption growth and stock returns

data because the results shown in Table 3 are the same for all models in Table 1. Finally, we

do not discuss absolute model assessment because there is no logical requirement that the

auxiliary model nest the scientific model for the purpose of absolute model assessment. All

that is logically required is that the auxiliary model have more parameters than the scientific

model. Other than that, one is free to choose an auxiliary model as judgment suggests.

For the univariate (and bivariate) series, a model that will nest the three scientific models

that we consider has the following characteristics: a two-lag linear conditional mean function

with a one-lag nonlinear conditional mean term added to it, a one-lag GARCH conditional

variance function with a one-lag leverage term and a one-lag nonlinear conditional variance

term added, and a flexible innovation distribution that permits fat tails and bumps. We

denote this model by f5. It is the last of the six in Table 1. GM found the same to be true

for the habit model, except that they used data from 1933–2001 with the years 1930–1932

used to prime recursions. They dismissed f5 out of hand as absurd and worked with f0

and f1. They did verify that a fat tailed innovation distribution did not change results.
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Using model f0 most closely corresponds to calibration as customarily implemented in the

macro/finance literature. The sufficient statistics for f0 are the mean and variance of yt and

the first order autocorrelations. One is, effectively, finding parameter values that best match

three moments for univariate data, nine for bivariate, and eighteen for trivariate.

As discussed in Subsection 2.1 and in GM, the logically correct view toward using f1,

which fits the data, instead of f5, which nests the scientific model, is that it is not the

likelihood of the scientific model that is being used. It is some other likelihood. Therefore

it is not the scientific models that are actually being estimated and compared. Another

point of view is the argument advanced by GM that using a sensible auxiliary model is akin

to method of moments estimation. One only asks that the scientific models match certain

features of the data and allows them to ignore others. What to do? About all one can do is

try a battery of auxiliary model specifications and see what happens.

Table 5 displays the results for the relative comparisons for the univariate stock returns

data over the periods 1930–2008 and 1950–2008. There is considerable sensitivity to speci-

fication of the auxiliary model over the 1930–2008 period. Conclusions are affected by the

choice of auxiliary model. Our view is that, because there can be sensitivity to auxiliary

model choice, and because one is not actually comparing scientific models if the auxiliary

model is not nesting, it is best to use the nesting auxiliary model in general, which is f5 in

this instance.

(Table 5 about here)

5 Conclusion

We used Bayesian statistical methods proposed by GM to compare the habit persistence

asset pricing model of CC, the long-run risks model of BY, and the prospect theory model

of BHS. This comparison fills a void in the literature.

We undertook two types of comparisons, relative and absolute, over two sample periods,

1930–2008 and 1950–2008, using three series, trivariate (consumption growth, stock returns,

and the price to dividend ratio), bivariate (consumption growth and stock returns), and

univariate (stock returns). The prior for each model is that the ergodic mean of the real

interest rate be 0.896 within ±1 with probability 0.95 together with a preference for model
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parameters that are near their published values.

For the univariate series and for both sample periods, the models perform about the same

in the relative comparison and fit the data reasonably well in the absolute assessment.

For the bivariate series, in the relative comparison the long-run risks model dominates

over the 1930–2008 period, while the habit persistence model dominates over the 1950–2008

period; in the absolute assessment, the habit model fails in the 1930–2008 period and the

prospect theory model fails in the 1950–2008 period.

For the trivariate series, in the relative comparison the long-run risks model dominates

over the 1930–2008 period, while the habit persistence model dominates over the 1950–2008

period; in the absolute assessment, both the habit model and the long-run risks model fail

in both periods. The prospect theory model cannot be fitted to a trivariate series because

it puts its (conditional) mass on a two-dimensional subspace.

The estimator proposed by GM is a simulation based estimator. Simulations from a

scientific model, which here is either the habit model, the long-run risks model, or the

prospect theory model, are used to determine a map η = g(θ) from the parameters θ of

the scientific model to the parameters η of an auxiliary model f(yt|xt−1, η), where yt is the

observed data and xt−1 are lags. Thereafter, L(θ) = ∏n
t=1 f(yt|xt−1, g(θ)) is used whenever

a likelihood is required. Theory requires that the auxiliary model nest the scientific model.

GM argue that one is better served by an auxiliary model that represents the data well.

We undertook a sensitivity analysis and recomputed our results for six auxiliary models

ordered by complexity. The first produces estimates that mimic values obtained by methods

customarily employed in macro/finance. The second represents the data. The sixth nests

the three scientific models considered. We find that results can be sensitive to the choice

of auxiliary models. Most importantly, results can differ between the model that represents

the data well and the model that nests the scientific model. In view of this difference and

the fact that theory supports the latter, our view is that the nesting auxiliary model ought

to be used. Our substantive conclusions are based on the nesting model.

We found that the computational methods that GM proposed are not sufficiently accurate

to compare the habit, long-run risks, and prospect theory models. A contribution of this

paper is a refinement of GM’s methods that allows comparision of these three models.
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Table 1. Auxiliary Models

f0 f1 f2 f3 f4 f5

Mean 1 lag 1 lag 1 lag 1 lag 1 lag 2 lags

Variance constant garch garch garch garch garch

leverage leverage leverage leverage

Errors normal normal normal flexible flexible flexible

nonlinear nonlinear

Parms univar 3 5 6 10 11 12

Parms bivar 9 12 14 22 24 28

Parms trivar 18 22 25 37

Multivariate GARCH variance matrices are of the BEKK form (Engle and Kroner,
1995) with one lag throughout. A nonlinear error density adds nonlinear terms that
depend on one lag to the conditional mean and variance. When evaluated, data are
centered and scaled and lags are attenuated by a spline transform. See Gallant and
Tauchen (2009) for details. The functional form is displayed in Subsection 2.4. Parms
is the number of parameters, which depends on the dimension of the data: univariate,
bivariate, or trivariate. The habit persistence model has 7 parameters, the long-run
risks model has 13, and the prospect theory model has 11.
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Table 2. Prior and Posterior Model Parameters

Prior Posterior

Parameter Mode Mean Std.Dev. Mode Mean Std.Dev.

Habit Model
g 0.00157547 0.00156519 0.00008128 0.00166893 0.00159147 0.00007473
σ 0.00440979 0.00431169 0.00022113 0.00502777 0.00501054 0.00018533
ρ 0.20068359 0.20053348 0.01072491 0.19445801 0.19892873 0.00931413
σw 0.03228760 0.03247938 0.00169052 0.03193665 0.03175960 0.00138630
φ 0.98826599 0.98830499 0.00042475 0.98769760 0.98773761 0.00033629
δ 0.99046326 0.99041700 0.00043605 0.99033737 0.99033565 0.00044495
γ 2.04296875 2.04076156 0.08924751 1.97558594 1.96336336 0.07720679

rf 0.97796400 1.07587200 0.13273052 1.02530400 0.96219600 0.12647089
rd − rf 6.04969200 5.98359600 0.07700698 6.26854800 6.23908800 0.07426341
σrd 19.67246807 19.69228275 0.14078849 20.17062220 20.14121148 0.14442220

Long-Run Risks Model
δ 0.99961090 0.99934096 0.00031172 0.99964905 0.99943058 0.00029362
γ 9.89062500 10.07348625 0.48583545 9.92187500 10.00010750 0.50121255
ψ 1.49609375 1.49614344 0.07859747 1.53906250 1.50321312 0.07244585
µc 0.00148392 0.00148142 0.00007031 0.00151825 0.00149122 0.00007685
ρ 0.98413086 0.98408021 0.00468241 0.98284912 0.98435210 0.00320064
φe 0.03204346 0.03202031 0.00160150 0.03204346 0.03202844 0.00162241
σ̄2 0.00004041 0.00004124 0.00000196 0.00004160 0.00004061 0.00000196
ν 0.98730469 0.98738766 0.00441105 0.98199463 0.98223563 0.00299350
σw 0.00000168 0.00000170 0.00000009 0.00000169 0.00000170 0.00000008
µd 0.00120926 0.00119140 0.00006114 0.00121307 0.00120186 0.00006030
φd 2.78906250 2.80749125 0.14620180 2.88281250 2.82820500 0.15095447
πd 4.07031250 4.11655125 0.20586470 4.17187500 4.15665625 0.19923412
φu 6.14062500 6.27596375 0.31996896 6.45312500 6.19978500 0.30424633

rf 0.94398000 1.16133600 0.12177703 0.90874800 1.11896400 0.11709356
rd − rf 4.30737600 4.98738000 0.48844526 4.11223200 4.59213600 0.28433000
σrd 18.28002188 18.85677597 0.17586080 19.07839616 18.58935179 0.13239826

Prospect Theory Model
gC 0.01828003 0.01792775 0.00093413 0.01846313 0.01795106 0.00095215
gD 0.01870728 0.01833821 0.00095276 0.01849365 0.01845027 0.00097794
σC 0.03918457 0.03764040 0.00200690 0.03295898 0.03356905 0.00201110
σD 0.12231445 0.12023010 0.00611083 0.11962891 0.11738381 0.00597238
ω 0.14794922 0.15018164 0.00694094 0.14892578 0.15015283 0.00801015
γ 0.98632812 0.98511422 0.05145608 0.96484375 0.97603082 0.04958596
ρ 0.99972534 0.99783899 0.00163604 0.99969482 0.99783430 0.00202090
λ 2.17968750 2.24709750 0.11486810 2.23437500 2.18521953 0.11761822
k 9.82812500 9.86375625 0.53189914 9.90625000 9.84252984 0.53634137
b0 2.00195312 2.00328703 0.10967111 1.89355469 1.93699477 0.12735310
η 0.91601562 0.89845969 0.04412695 0.85375977 0.85965642 0.02405305

rf 1.75579200 1.91283600 0.05667617 1.76136000 1.91498400 0.06495191
rd − rf 5.92353600 5.49249600 0.19235810 4.88326800 4.78360800 0.12334973
σrd 27.97748380 26.75881163 0.92424294 22.90177286 22.79236714 0.29273615

Parameter values are for the monthly frequency for the habit and long-run risks models and for
the annual frequency for the prospect theory model. Mode is that of the multivariate density.
Returns are geometric, annualized, and expressed as a percent for all models. In the data, returns
are rd − rf = 5.59− 0.89 = 4.7 and σrd = 19.72. The auxiliary model is f5 as described in Table 1.
The data are annual consumption growth and stock returns for the years 1930–2008, see Figure 1.
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Table 3. Posterior Probabilities

Relative Model Comparison

Sample Period

1930–2008 1950–2008

Series hab lrr pro hab lrr pro

Trivariate 0.00 1.00 1.00 0.00
Bivariate 0.00 1.00 0.00 1.00 0.00 0.00
Univariate 0.28 0.48 0.24 0.44 0.42 0.14

Absolute Model Assessment

Sample Period

1930–2008 1950–2008

Series Prior hab lrr pro hab lrr pro

Trivariate κ = 0.1 0.00 0.00 0.00 0.00
κ = 1 0.00 0.00 0.33 0.00
κ = 10 1.00 1.00 0.67 1.00

Bivariate κ = 0.1 0.00 0.41 0.28 0.31 0.16 0.08
κ = 1 0.00 0.36 0.28 0.31 0.21 0.08
κ = 10 1.00 0.23 0.44 0.38 0.64 0.84

Univariate κ = 0.1 0.29 0.36 0.10 0.40 0.39 0.29
κ = 1 0.30 0.26 0.30 0.38 0.35 0.34
κ = 10 0.41 0.38 0.60 0.22 0.26 0.37

Shown are posterior probabilities for a relative comparison and an absolute
assessment of three asset pricing models fitted to three data series over two
sample periods. The trivariate series is annual consumption growth, stock re-
turns, and the price dividend ratio over the years shown. The bivariate series
is consumption growth and stock returns. The univariate series is stock returns
alone. Variables not in a series are treated as latent in model fits. For the
univariate and bivariate series. the auxiliary model is f5, which is described in
Table 1; for the trivariate series it is f0. κ is the standard deviation of a prior
that imposes the habit model (hab), the long-run risks model (lrr), and the
prospect theory model (pro), respectively, on the auxiliary model. The prior
weakens as κ increases.
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Table 4. Diagnostics for the Habit Persistence Model

1930–2008 1950–2008

Mode Mode Diag- Mode Mode Diag-
Parameter κ = 0.1 κ = 10 nostic κ = 0.1 κ = 10 nostic

b0,1 -0.08 -0.05 -1.30 -0.06 -0.05 -0.21
b0,2 0.07 0.04 0.53 0.06 0.04 0.34
B11 0.08 0.16 -1.62 0.09 0.15 -1.21
B21 -0.16 -0.09 -0.94 -0.15 -0.22 0.64
B12 0.29 0.32 -0.80 0.29 0.23 1.58
B22 0.02 0.02 -0.10 0.02 0.00 0.35
R0,11 -0.03 -0.01 -0.23 -0.03 -0.06 0.41
R0,12 0.23 0.27 -0.85 0.23 0.22 0.29
R0,22 0.21 0.21 -0.07 0.20 0.26 -0.74
P11 -0.06 0.17 -4.98 -0.05 -0.02 -0.55
P22 -0.21 -0.22 0.16 -0.21 -0.24 0.93
Q11 0.91 0.91 -0.04 0.91 0.91 0.13

Shown are the posterior modes from fitting (f1,πκ) to the bivariate consumption
growth and stock returns data over the periods and κ values shown together
with the diagnostic checks described in Subsection 2.5.

Table 5. Posterior Probability, Relative
Comparison, Stock Returns

Model f0 f1 f2 f3 f4 f5

1930–2008

Habit 0.47 0.71 0.28 0.36 0.28 0.28

LR Risks 0.49 0.25 0.57 0.34 0.45 0.48

Prospect 0.04 0.04 0.15 0.30 0.27 0.24

1950–2008

Habit 0.51 0.49 0.44 0.42 0.46 0.44

LR Risks 0.47 0.42 0.51 0.49 0.45 0.42

Prospect 0.02 0.10 0.05 0.09 0.09 0.14

The data are annual stock returns over years shown. Auxiliary
models f0 through f5 are described in Table 1.
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Figure 1. Consumption Growth, Stock Returns, and Price to Dividend

Ratio, 1925–2008 The left vertical line is at 1930 and the right at 1950. The data

collection protocol is as described in Bansal, Gallant, and Tauchen (2007) for the period

1930–2008. The data from 1925–1929, which are only used to prime recursions, are the

inflation adjusted Dow-Jones industrial average, a real U.S. consumption growth series

kindly supplied by Robert Barro, and from back-casted real price and dividend levels.
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Figure 2. Prior and Posterior Density Estimates. The dashed line is the prior.

The solid line is the posterior. Left column is for the habit model, middle for the

long-run risks model, right for the prospect theory model. Returns are geometric,

annualized, and expressed as a percent. Other details as in Table 2. Bandwidths are

small to reduce smudging of isolated, peaked modes.
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Figure 3. Prior and Posterior Forecasts. The solid line is the mean of the

posterior annualized and expressed as a percent. The dashed lines are ±1.96 posterior

standard deviations. The left column is for the habit model, middle for the long run

risks model, and left for the prospect theory model. Other details as in Table 2.

Figure 4. Relative Model Comparison. Shown is relative model comparison under a change

of variables of integration θ '→ η. The contours show the likelihood of the auxiliary model f(·| η).
The curved lines, labeled “Prior of Model i”, show the manifolds Mi = {η ∈ H : η = gi(θi), θi ∈
Θi} for Model 1, i = 1, and Model 2, i = 2. Thickness, represented by gray fill, is proportional

to the priors π1 and π2. Posterior probabilities are proportional to the integral of the likelihood

over the manifold weighted by the prior. Model 2 is preferred because the likelihood values on its

manifold are larger than the likelihood values on the manifold of Model 1.
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Figure 5. Absolute Model Assessment – Reject. The contours show the likelihood of the

auxiliary model f(·| η). The shaded areas show the prior (27) for scale parameters κ1 < κ2 < κ3.

The smallest region corresponds to κ1 and the largest to κ3. The crosses show the mode of

the posterior under κ1, κ2, κ3. The posterior probabilities for absolute model assessment are

proportional to the integrals of the likelihood over the respective shaded areas. The model is

rejected because the likelihood, hence the integral, is larger over the κ3-prior than over the κ1-

prior.
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Figure 6. Absolute Model Assessment – Accept. The contours show the likelihood of the

auxiliary model f(·| η). The shaded areas show the prior (27) for scale parameters κ1 < κ2 < κ3.

The smallest region corresponds to κ1 and the largest to κ3. The crosses show the mode of

the posterior under κ1, κ2, κ3. The posterior probabilities for absolute model assessment are

proportional to the integrals of the likelihood over the respective shaded areas. The model is

accepted because the likelihood, hence the integral, is larger over the κ1-prior than over the

κ3-prior.
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Figure 7. Conditional Volatility of the Three Models. The solid line is the

conditional volatility of the data expressed as a percent for the long-run risks model

with its parameters set to the posterior mode from fitting to the bivariate consumption

growth and stock returns data over the period 1930–2008 using auxiliary model f5. The

dashed line is the same for the habit persistence model and the dot-dash line is the

same for the prospect theory model. The shaded area shows ±1.96 posterior standard

deviations about the conditional volatility of the long-run risks model.
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