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Preamble

• There are many uses for scale measures: Adhering to the

convention of reporting both location and scale in the pre-

sentation of statistical results. Tuning an MCMC chain. Etc.

• Variance and covariance are Euclidean concepts. A curved,

singular manifold is not typically a Euclidean space. We ex-

plore some suggestions on how to adapt a Euclidean concept

to a non-Euclidean space.



Motivating Problem:
Bayes Subject to Moment Conditions

The parameters (ρ, θ) ∈ R
da of the likelihood

f(y |x, ρ) =
n
∏

t=1

f(yt |xt−1, ρ) (1)

are to be estimated subject to the moment conditions

0 = q(ρ, θ) =
1

n

n
∑

t=1

∫

m(y, xt−1, ρ, θ)f(y |xt−1, ρ) dy m ∈ R
m (2)

the support conditions

h(ρ, θ) > 0, h ∈ R
l (3)

and the prior

π(ρ, θ). (4)



Nonparametric Bayes

• Bayesian estimation can be regarded as nonparametric when

f(yt |xt−1, ρ)

is a sieve.

• A sieve is a density with a variable number K of parameters

ρ = (ρ1, ρ2, . . . , ρK)

that is dense for some norm, e.g. Sobolev norm, as K → ∞.

– Code uses the SNP sieve (Gallant and Tauchen, 1989,

ECTA).



Clash of Notation

To adhere to the notational conventions of both the econometric

and numerical analysis literature:

• Italic represents data: xt, yt, x, y

• Sans serif represents parameters: x, y

– i.e., x = (ρ, θ) and y = (ρ, θ)



Overidentification

• The support of the posterior is the manifold

M=
{

x ∈ R
da : qi(x) = 0, i = 1,..,m, hj(x) > 0, j = 1,.., l

}

(5)

• The problem is interesting when θ is overidentified, i.e., when

the dimension m of q is larger than the dimension of θ because

then M is singular with respect to Lebesgue measure on Rda.

– Specialized algorithms are required: Gallant (2022, JoE)

– Otherwise the problem is boring.
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Figure 1. A Curved, Singular Manifold



Geodesics – 1

• On a manifold M ⊂ R
da of dimension d < da, distance is

computed along geodesics.

• One computes distance by traversing a geodesic from a start-

ing point s to an end point p and accumulating (infinitesimal

increments of) a Hausdorff weight function δM(s, p) defined

on M (Morgan, 2016).

• For a point cloud on M one can compute approximate

geodesics from a da-dimensional set Mǫ that is the union

of ǫ-balls centered at the points using Euclidean distance

δ(s, p) provided ǫ is large enough that Mǫ is a connected set

(Memoli and Sapiro, 2001).



Geodesics – 2

• Because the contours of the density that the chain targets

are not spheres, our ǫ-balls for determining Gǫ are rectangles

with sides k equal to ∆max{|xk,i − xk,i−1| : xi ∈ D} where

D = {xi}
N
i=1 denotes the MCMC chain and xk,i denotes the

kth element of xi.

• If Mǫ is a connected set, then the MCMC draws may be

viewed as nodes pj of a graph Gǫ connected by edges ej,j′

that have Euclidean length δ(pj, pj′) and that stay within Mǫ.

• From a start s, Dijkstra’s algorithm finds the shortest path

that traverses edges to every node pj (Dijkstra, 1959).

– This is the same algorithm that Google maps uses for

routing.



Choose Delta at Inflection

Distance of an edge from the manifold
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Figure 2. Lower panel: The dotdash line is the

99th percentile of all edges, dotted the 90th per-

centile, and solid the mean.



Intrinsic Mean

• There seems to be general agreement on how to define a

mean over a curved, nonlinear manifold and estimate it from

a sample.

• It is the intrinsic mean, x̄, that is the start s that minimizes
1
N

∑N
i=1 δ

2(s, pj(i)).

– The MCMC chain has duplicate draws due to rejections.

– j(i) is the mapping from the draws i to the distinct ele-

ments of the chain.

– The distinct elements are the nodes pj of the edges.

• The extrinsic mean, x̃, is the ordinary sample average.



Scale

• The notions of variance and covariance are flat space con-

cepts, i.e., Euclidean space concepts, and it is not obvious

how to extend them to a curved, nonlinear manifold.

• We shall consider four possible definitions

– Extrinsic variance-covariance centered at x̃ : VEC

– Extrinsic variance-covariance centered at x̄ : VIC

– Modified extrinsic variance-covariance: VME

– Modified Riemann variance-covariance: VMR



Extrinsic centered at x̃: VEC

• VEC = 1
N

∑N
i=1(xi − x̃)(xi − x̃)⊤

• Disregard the geometry of M and view {xi}
N
i=1 as a sample

from a probability space like any other.

• A credibility interval such as

Rτ =×da
i=1[ x̄i − τ sdev(xi), x̄i + τ sdev(xi)]

constructed from VEC need not intersect M .



Extrinsic centered at x̄: VIC

• VIC = 1
N

∑N
i=1(xi − x̄)(xi − x̄)⊤

• A credibility interval such as

Rτ =×da
i=1[ x̄i − τ sdev(xi), x̄i + τ sdev(xi)]

constructed from VIC does intersect M .



Modified extrinsic variance-covariance: VME

• Same as an extrinsic computation but one increases each

coordinate of a point pj by its geodesic distance in that di-

rection

• Specifically, for the path (j
p
1, j

p
2, ..., j

p
k) that connects x̄ to pj,

where j
p
1 indexes node x̄ and indexes j

p
k node pj,

Dj = diag[sgn(pj − x̄)]
k
∑

ℓ=2

|pjpℓ
− pjpℓ−1

| Dj ∈ R
da

• The estimated variance-covariance matrix is

VME =
1

N

N
∑

i=1

Dj(i)D
⊤
j(i)

• See figure on next slide
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Figure 3. For VME the contribution to Dj of the end point is the sum

absolute values of the increments,

(

|dx|
|dy|

)

, whereas the contribution to

(xi − x̄)(xi − x̄)⊤ of VEC is the absolute value of the sum.



Riemannian Geometry

• Represent the manifold as a flat space called a chart and

then compute variances and covariances in the usual way on

the chart

– Think of a Mercator projection of the globe centered at

Greenwich, England.

• The flat space is the plane Tx̄M tangent to the manifold M

at the mean x̄. Note Tx̄M ⊂ R
d, d < da

• Requires a differentiable, analytic expression for geodesics

γ(t) with γ(0) = x̄

• A point x ∈ M is plotted on Tx̄M in the direction (d/dt)γ(0)

at the distance δ(x, x̄)



Modified Riemann variance-covariance: VMR

• The Riemannian approach is not possible if all we have is a

point cloud on a manifold because we do not have an analytic

expression for geodesics but we can borrow the basic ideas:

• Orthogonally project xi onto the chart Tx̄M

vi = Tx̄T
⊤
x̄ (xi − x̄)

• Plot the marker for xi at zi = δi
vi

‖vi‖

• Modified Riemann variance is

VMR =
1

N

N
∑

i=1

ziz
⊤
i

– Note that VMR is da×da and singular of rank d



Examples

• In the paper (www.aronaldg.org/papers/sdev.pdf)

– A Simple Demand and Supply Example (simulation)

– Extraction of the Stochastic Discount Factor (data)

– A Curved Manifold Example (simulation).

• We’ll look at the curved manifold example



Curved Manifold Example – 1

Likelihood:

yt ∼ n2(yt |µ,Σ)

Σ = RR′

ρ = (µ1, µ2, R1,1, R1,2, R2,2) ∈ R
5

Moment conditions:

mc,1(yt, yt−1, ρ, θ) = y21,t + y22,t − 4θ

mc,2(yt, yt−1, ρ, θ) = (y1,t − y1,t−1)
2 − 2θ

θ ∈ R
1

ρ not used



Curved Manifold Example – 2

• Data, n = 500, simulated with µ1 = 0, µ2 = 0, Σ1,1 = 5,

Σ1,2 = Σ2,1 = 6.12372, Σ2,2 = 15, and θ = 5.

• Prior for ρ is independent normal with location the uncon-

strained maximum likelihood estimates and standard devia-

tion 5.0.

• Prior for θ is normal with mean 5.0 and standard deviation

5.0.

• The support conditions are that diagonals of R must be pos-

itive and θ must be positive.
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Figure 4. Curved, Singular Manifold. The missing

dimensions, Σ1,1, Σ1,2, and θ, are held constant at 5,

6.12372, and 5, respectively.



Curved Manifold: Distance vs. Delta

Distance of an edge from the manifold
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Figure 5. Lower panel: The dotdash line is the

99th percentile of all edges, dotted the 90th per-

centile, and solid the mean.



Table 1. Curved Manifold Example, ∆ = 0.57

Mean Standard Deviation or Correlation

Extrinsic Modified

Parameter Extrinsic Intrinsic Extr Ctr Intr Ctr Extrinsic Riemann

µ1 0.003030 0.001782 0.044938 0.044956 0.256304 0.045930

µ2 0.010777 0.008102 0.046710 0.046787 0.282870 0.047894

R1,1 0.997487 0.992473 0.030209 0.030622 0.199155 0.031385

R1,2 -0.011216 -0.008383 0.021103 0.021293 0.133476 0.021763

R2,2 1.029374 1.030792 0.010518 0.010614 0.066102 0.010639

θ 5.379109 5.377738 0.155378 0.155384 0.975752 0.159227

ρ(µ1, µ2) -0.078107 -0.076362 -0.043754 -0.075747

ρ(µ1, R1,1) -0.038925 -0.033837 -0.031125 -0.030951

ρ(µ1, R1,2) -0.014263 -0.017826 -0.008660 -0.010185

ρ(µ1, R2,2) -0.049502 -0.052750 -0.032077 -0.050698

ρ(µ1, θ) -0.034030 -0.033771 -0.025612 -0.031390

ρ(µ2, R1,1) -0.000003 0.009360 -0.028539 0.010071

ρ(µ2, R1,2) 0.061739 0.053481 -0.018607 0.054120

ρ(µ2, R2,2) -0.230838 -0.236033 -0.068083 -0.223426

ρ(µ2, θ) 0.003121 0.003620 -0.025818 0.003372

ρ(R1,1, R1,2) -0.149040 -0.167514 0.333217 -0.161162

ρ(R1,1, R2,2) 0.439249 0.407558 0.463633 0.440073

ρ(R1,1, θ) 0.467925 0.463035 0.475693 0.462643

ρ(R1,2, R2,2) 0.762028 0.766259 0.793649 0.771083

ρ(R1,2, θ) 0.801051 0.792721 0.819296 0.798896

ρ(R2,2, θ) 0.960119 0.950296 0.936706 0.973192



Table 2. Curved Manifold Example, ∆ = 3.0

Mean Standard Deviation or Correlation

Extrinsic Modified

Parameter Extrinsic Intrinsic Extr Ctr Intr Ctr Extrinsic Riemann

µ1 0.003030 0.001782 0.044938 0.044956 0.064382 0.044967

µ2 0.010777 0.008102 0.046710 0.046787 0.069694 0.046818

R1,1 0.997487 0.992473 0.030209 0.030622 0.049044 0.030692

R1,2 -0.011216 -0.008383 0.021103 0.021293 0.034104 0.021243

R2,2 1.029374 1.030792 0.010518 0.010614 0.015268 0.010386

θ 5.379109 5.377738 0.155378 0.155384 0.228527 0.155419

ρ(µ1, µ2) -0.078107 -0.076362 -0.039940 -0.076271

ρ(µ1, R1,1) -0.038925 -0.033837 -0.013112 -0.031901

ρ(µ1, R1,2) -0.014263 -0.017826 0.006544 -0.012268

ρ(µ1, R2,2) -0.049502 -0.052750 -0.003076 -0.053070

ρ(µ1, θ) -0.034030 -0.033771 -0.004220 -0.033868

ρ(µ2, R1,1) -0.000003 0.009360 0.000939 0.009883

ρ(µ2, R1,2) 0.061739 0.053481 0.020551 0.054497

ρ(µ2, R2,2) -0.230838 -0.236033 -0.046810 -0.223549

ρ(µ2, θ) 0.003121 0.003620 0.013745 0.003537

ρ(R1,1, R1,2) -0.149040 -0.167514 0.163611 -0.162194

ρ(R1,1, R2,2) 0.439249 0.407558 0.320706 0.440313

ρ(R1,1, θ) 0.467925 0.463035 0.329882 0.462884

ρ(R1,2, R2,2) 0.762028 0.766259 0.653799 0.770204

ρ(R1,2, θ) 0.801051 0.792721 0.698690 0.798101

ρ(R2,2, θ) 0.960119 0.950296 0.886439 0.973122



Table 3. Curved Manifold Example, ∆ = 15.0

Mean Standard Deviation or Correlation

Extrinsic Modified

Parameter Extrinsic Intrinsic Extr Ctr Intr Ctr Extrinsic Riemann

µ1 0.003030 0.001782 0.044938 0.044956 0.045979 0.044963

µ2 0.010777 0.008102 0.046710 0.046787 0.049665 0.046814

R1,1 0.997487 0.992473 0.030209 0.030622 0.036357 0.030688

R1,2 -0.011216 -0.008383 0.021103 0.021293 0.024844 0.021239

R2,2 1.029374 1.030792 0.010518 0.010614 0.010586 0.010383

θ 5.379109 5.377738 0.155378 0.155384 0.158211 0.155382

ρ(µ1, µ2) -0.078107 -0.076362 -0.017182 -0.076274

ρ(µ1, R1,1) -0.038925 -0.033837 -0.003856 -0.031906

ρ(µ1, R1,2) -0.014263 -0.017826 -0.022850 -0.012280

ρ(µ1, R2,2) -0.049502 -0.052750 -0.035418 -0.053089

ρ(µ1, θ) -0.034030 -0.033771 -0.033630 -0.033885

ρ(µ2, R1,1) -0.000003 0.009360 0.011497 0.009885

ρ(µ2, R1,2) 0.061739 0.053481 0.028671 0.054493

ρ(µ2, R2,2) -0.230838 -0.236033 -0.083846 -0.223585

ρ(µ2, θ) 0.003121 0.003620 0.016311 0.003531

ρ(R1,1, R1,2) -0.149040 -0.167514 -0.047995 -0.162304

ρ(R1,1, R2,2) 0.439249 0.407558 0.186387 0.440271

ρ(R1,1, θ) 0.467925 0.463035 0.209996 0.462847

ρ(R1,2, R2,2) 0.762028 0.766259 0.448719 0.770156

ρ(R1,2, θ) 0.801051 0.792721 0.519493 0.798059

ρ(R2,2, θ) 0.960119 0.950296 0.797676 0.973115


