Variance-Covariance from a Metropolis Chain on a Curved, Singular Manifold

A. Ronald Gallant University of North Carolina, Chapel Hill

Paper: http://www.aronaldg.org/papers/sdev.pdf Slides: http://www.aronaldg.org/papers/sdevclr.pdf Code: http://www.aronaldg.org/webfiles/npb

Preamble

- There are many uses for scale measures: Adhering to the convention of reporting both location and scale in the presentation of statistical results. Tuning an MCMC chain. Etc.
- Variance and covariance are Euclidean concepts. A curved, singular manifold is not typically a Euclidean space. We explore some suggestions on how to adapt a Euclidean concept to a non-Euclidean space.

Motivating Problem: Bayes Subject to Moment Conditions

The parameters $(\rho, \theta) \in \mathbb{R}^{d_a}$ of the likelihood

$$f(y | x, \rho) = \prod_{t=1}^{n} f(y_t | x_{t-1}, \rho)$$
(1)

are to be estimated subject to the moment conditions

$$0 = q(\rho, \theta) = \frac{1}{n} \sum_{t=1}^{n} \int m(y, x_{t-1}, \rho, \theta) f(y \,|\, x_{t-1}, \rho) \, dy \ m \in \mathbb{R}^m \quad (2)$$

the support conditions

$$h(\rho,\theta) > 0, \quad h \in \mathbb{R}^l$$
 (3)

and the prior

$$\pi(\rho,\theta). \tag{4}$$

Nonparametric Bayes

• Bayesian estimation can be regarded as nonparametric when

$$f(y_t \,|\, x_{t-1}, \rho)$$

is a sieve.

• A sieve is a density with a variable number K of parameters

$$\rho = (\rho_1, \rho_2, \dots, \rho_K)$$

that is dense for some norm, e.g. Sobolev norm, as $K \to \infty$.

 Code uses the SNP sieve (Gallant and Tauchen, 1989, ECTA).

Clash of Notation

To adhere to the notational conventions of both the econometric and numerical analysis literature:

- Italic represents data: x_t , y_t , x, y
- Sans serif represents parameters: x, y

- i.e.,
$$\mathbf{x} = (\rho, \theta)$$
 and $\mathbf{y} = (\rho, \theta)$

Overidentification

• The support of the posterior is the manifold

$$M = \left\{ \mathbf{x} \in \mathbb{R}^{d_a} : q_i(\mathbf{x}) = 0, i = 1, ..., m, h_j(\mathbf{x}) > 0, j = 1, ..., l \right\}$$
(5)

- The problem is interesting when θ is overidentified, i.e., when the dimension m of q is larger than the dimension of θ because then M is singular with respect to Lebesgue measure on R^{d_a} .
 - Specialized algorithms are required: Gallant (2022, JoE)
 - Otherwise the problem is boring.

Figure 1. A Curved, Singular Manifold

Geodesics – 1

- On a manifold $M \subset \mathbb{R}^{d_a}$ of dimension $d < d_a$, distance is computed along geodesics.
- One computes distance by traversing a geodesic from a starting point s to an end point p and accumulating (infinitesimal increments of) a Hausdorff weight function $\delta_M(s,p)$ defined on M (Morgan, 2016).
- For a point cloud on M one can compute approximate geodesics from a d_a -dimensional set M_{ϵ} that is the union of ϵ -balls centered at the points using Euclidean distance $\delta(s, p)$ provided ϵ is large enough that M_{ϵ} is a connected set (Memoli and Sapiro, 2001).

Geodesics – 2

- Because the contours of the density that the chain targets are not spheres, our ϵ -balls for determining \mathcal{G}_{ϵ} are rectangles with sides k equal to $\Delta \max\{|\mathbf{x}_{k,i} \mathbf{x}_{k,i-1}| : \mathbf{x}_i \in \mathcal{D}\}$ where $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^N$ denotes the MCMC chain and $\mathbf{x}_{k,i}$ denotes the kth element of \mathbf{x}_i .
- If M_{ϵ} is a connected set, then the MCMC draws may be viewed as nodes p_j of a graph \mathcal{G}_{ϵ} connected by edges $e_{j,j'}$ that have Euclidean length $\delta(p_j, p_{j'})$ and that stay within M_{ϵ} .
- From a start s, Dijkstra's algorithm finds the shortest path that traverses edges to every node p_j (Dijkstra, 1959).
 - This is the same algorithm that Google maps uses for routing.

Choose Delta at Inflection

Figure 2. Lower panel: The dotdash line is the 99th percentile of all edges, dotted the 90th percentile, and solid the mean.

Intrinsic Mean

- There seems to be general agreement on how to define a mean over a curved, nonlinear manifold and estimate it from a sample.
- It is the intrinsic mean, $\bar{\mathbf{x}}$, that is the start s that minimizes $\frac{1}{N}\sum_{i=1}^{N} \delta^2(s, p_{j(i)}).$
 - The MCMC chain has duplicate draws due to rejections.
 - -j(i) is the mapping from the draws *i* to the distinct elements of the chain.
 - The distinct elements are the nodes p_i of the edges.
- The extrinsic mean, \tilde{x} , is the ordinary sample average.

Scale

- The notions of variance and covariance are flat space concepts, i.e., Euclidean space concepts, and it is not obvious how to extend them to a curved, nonlinear manifold.
- We shall consider four possible definitions
 - Extrinsic variance-covariance centered at \tilde{x} : V_{EC}
 - Extrinsic variance-covariance centered at \bar{x} : V_{IC}
 - Modified extrinsic variance-covariance: V_{ME}
 - Modified Riemann variance-covariance: V_{MR}

Extrinsic centered at \tilde{x} : V_{EC}

•
$$V_{EC} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \tilde{\mathbf{x}}) (\mathbf{x}_i - \tilde{\mathbf{x}})^{\top}$$

- Disregard the geometry of M and view $\{x_i\}_{i=1}^N$ as a sample from a probability space like any other.
- A credibility interval such as

$$R_{\tau} = X_{i=1}^{d_a} [\bar{\mathbf{x}}_i - \tau \operatorname{sdev}(\mathbf{x}_i), \, \bar{\mathbf{x}}_i + \tau \operatorname{sdev}(\mathbf{x}_i)]$$

constructed from V_{EC} need not intersect M.

Extrinsic centered at \overline{x} : V_{IC}

•
$$V_{IC} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^{\top}$$

• A credibility interval such as

$$R_{\tau} = X_{i=1}^{d_a} [\bar{\mathbf{x}}_i - \tau \operatorname{sdev}(\mathbf{x}_i), \, \bar{\mathbf{x}}_i + \tau \operatorname{sdev}(\mathbf{x}_i)]$$

constructed from V_{IC} does intersect M.

Modified extrinsic variance-covariance: V_{ME}

- Same as an extrinsic computation but one increases each coordinate of a point p_j by its geodesic distance in that direction
- Specifically, for the path $(j_1^p, j_2^p, ..., j_k^p)$ that connects \overline{x} to p_j , where j_1^p indexes node \overline{x} and indexes j_k^p node p_j ,

$$D_j = \operatorname{diag}[\operatorname{sgn}(p_j - \overline{x})] \sum_{\ell=2}^k |p_{j_\ell^p} - p_{j_{\ell-1}^p}| \quad D_j \in \mathbb{R}^{d_a}$$

• The estimated variance-covariance matrix is

$$V_{ME} = \frac{1}{N} \sum_{i=1}^{N} D_{j(i)} D_{j(i)}^{\top}$$

• See figure on next slide

Figure 3. For V_{ME} the contribution to D_j of the end point is the sum absolute values of the increments, $\begin{pmatrix} |dx| \\ |dy| \end{pmatrix}$, whereas the contribution to $(\mathbf{x}_i - \overline{\mathbf{x}})^{\top}$ of V_{EC} is the absolute value of the sum.

Riemannian Geometry

- Represent the manifold as a flat space called a chart and then compute variances and covariances in the usual way on the chart
 - Think of a Mercator projection of the globe centered at Greenwich, England.
- The flat space is the plane $T_{\overline{x}}M$ tangent to the manifold M at the mean \overline{x} . Note $T_{\overline{x}}M \subset \mathbb{R}^d$, $d < d_a$
- Requires a differentiable, analytic expression for geodesics $\gamma(t)$ with $\gamma(0) = \overline{\mathbf{x}}$
- A point $x \in M$ is plotted on $T_{\overline{x}}M$ in the direction $(d/dt)\gamma(0)$ at the distance $\delta(x,\overline{x})$

Modified Riemann variance-covariance: V_{MR}

- The Riemannian approach is not possible if all we have is a point cloud on a manifold because we do not have an analytic expression for geodesics but we can borrow the basic ideas:
- Orthogonally project x_i onto the chart $T_{\overline{x}}M$

$$v_i = T_{\overline{\mathbf{x}}} T_{\overline{\mathbf{x}}}^{\top} (\mathbf{x}_i - \overline{\mathbf{x}})$$

- Plot the marker for \mathbf{x}_i at $z_i = \delta_i \frac{v_i}{\|v_i\|}$
- Modified Riemann variance is

$$V_{MR} = \frac{1}{N} \sum_{i=1}^{N} z_i z_i^{\top}$$

– Note that V_{MR} is $d_a \times d_a$ and singular of rank d

Examples

- In the paper (www.aronaldg.org/papers/sdev.pdf)
 - A Simple Demand and Supply Example (simulation)
 - Extraction of the Stochastic Discount Factor (data)
 - A Curved Manifold Example (simulation).
- We'll look at the curved manifold example

Curved Manifold Example – 1

Likelihood:

$$y_t \sim n_2(y_t | \mu, \Sigma)$$

$$\Sigma = RR'$$

$$\rho = (\mu_1, \mu_2, R_{1,1}, R_{1,2}, R_{2,2}) \in \mathbb{R}^5$$

Moment conditions:

$$\begin{array}{rcl} m_{c,1}(y_t, y_{t-1}, \rho, \theta) &=& y_{1,t}^2 + y_{2,t}^2 - 4\theta \\ m_{c,2}(y_t, y_{t-1}, \rho, \theta) &=& (y_{1,t} - y_{1,t-1})^2 - 2\theta \\ & \theta \in \mathbb{R}^1 \\ & \rho & \text{not used} \end{array}$$

Curved Manifold Example – 2

- Data, n = 500, simulated with $\mu_1 = 0$, $\mu_2 = 0$, $\Sigma_{1,1} = 5$, $\Sigma_{1,2} = \Sigma_{2,1} = 6.12372$, $\Sigma_{2,2} = 15$, and $\theta = 5$.
- Prior for ρ is independent normal with location the unconstrained maximum likelihood estimates and standard deviation 5.0.
- Prior for θ is normal with mean 5.0 and standard deviation 5.0.
- The support conditions are that diagonals of R must be positive and θ must be positive.

Figure 4. Curved, Singular Manifold. The missing dimensions, $\Sigma_{1,1}$, $\Sigma_{1,2}$, and θ , are held constant at 5, 6.12372, and 5, respectively.

Curved Manifold: Distance vs. Delta

Figure 5. Lower panel: The dotdash line is the 99th percentile of all edges, dotted the 90th percentile, and solid the mean.

	Me	ean	Stan	dard Deviati	on or Correlation	
			Extrinsic		Modified	
Parameter	Extrinsic	Intrinsic	Extr Ctr	Intr Ctr	Extrinsic	Riemann
μ_1	0.003030	0.001782	0.044938	0.044956	0.256304	0.045930
μ_2	0.010777	0.008102	0.046710	0.046787	0.282870	0.047894
$R_{1,1}$	0.997487	0.992473	0.030209	0.030622	0.199155	0.031385
$R_{1,2}$	-0.011216	-0.008383	0.021103	0.021293	0.133476	0.021763
$R_{2,2}$	1.029374	1.030792	0.010518	0.010614	0.066102	0.010639
θ	5.379109	5.377738	0.155378	0.155384	0.975752	0.159227
$ ho(\mu_1,\mu_2)$			-0.078107	-0.076362	-0.043754	-0.075747
$\rho(\mu_1, R_{1,1})$			-0.038925	-0.033837	-0.031125	-0.030951
$\rho(\mu_1, R_{1,2})$			-0.014263	-0.017826	-0.008660	-0.010185
$\rho(\mu_1, R_{2,2})$			-0.049502	-0.052750	-0.032077	-0.050698
$ ho(\mu_1, heta)$			-0.034030	-0.033771	-0.025612	-0.031390
$\rho(\mu_2, R_{1,1})$			-0.000003	0.009360	-0.028539	0.010071
$\rho(\mu_2, R_{1,2})$			0.061739	0.053481	-0.018607	0.054120
$\rho(\mu_2, R_{2,2})$			-0.230838	-0.236033	-0.068083	-0.223426
$ ho(\mu_2, heta)$			0.003121	0.003620	-0.025818	0.003372
$\rho(R_{1,1}, R_{1,2})$			-0.149040	-0.167514	0.333217	-0.161162
$\rho(R_{1,1}, R_{2,2})$			0.439249	0.407558	0.463633	0.440073
$ \rho(R_{1,1},\theta) $			0.467925	0.463035	0.475693	0.462643
$\rho(R_{1,2}, R_{2,2})$			0.762028	0.766259	0.793649	0.771083
$\rho(R_{1,2},\theta)$			0.801051	0.792721	0.819296	0.798896
$\rho(R_{2,2},\theta)$			0.960119	0.950296	0.936706	0.973192

Table 1. Curved Manifold Example, $\Delta = 0.57$

	Me	an	Standard Deviation or Corre			ation
			Extrinsic		Modified	
Parameter	Extrinsic	Intrinsic	Extr Ctr	Intr Ctr	Extrinsic	Riemann
μ_1	0.003030	0.001782	0.044938	0.044956	0.064382	0.044967
μ_2	0.010777	0.008102	0.046710	0.046787	0.069694	0.046818
$R_{1,1}$	0.997487	0.992473	0.030209	0.030622	0.049044	0.030692
$R_{1,2}$	-0.011216	-0.008383	0.021103	0.021293	0.034104	0.021243
$R_{2,2}$	1.029374	1.030792	0.010518	0.010614	0.015268	0.010386
heta	5.379109	5.377738	0.155378	0.155384	0.228527	0.155419
$ ho(\mu_1,\mu_2)$			-0.078107	-0.076362	-0.039940	-0.076271
$ ho(\mu_1,R_{1,1})$			-0.038925	-0.033837	-0.013112	-0.031901
$\rho(\mu_1, R_{1,2})$			-0.014263	-0.017826	0.006544	-0.012268
$ ho(\mu_1, R_{2,2})$			-0.049502	-0.052750	-0.003076	-0.053070
$ ho(\mu_1, heta)$			-0.034030	-0.033771	-0.004220	-0.033868
$ ho(\mu_2,R_{1,1})$			-0.000003	0.009360	0.000939	0.009883
$\rho(\mu_2, R_{1,2})$			0.061739	0.053481	0.020551	0.054497
$\rho(\mu_2, R_{2,2})$			-0.230838	-0.236033	-0.046810	-0.223549
$ ho(\mu_2, heta)$			0.003121	0.003620	0.013745	0.003537
$\rho(R_{1,1}, R_{1,2})$			-0.149040	-0.167514	0.163611	-0.162194
$\rho(R_{1,1}, R_{2,2})$			0.439249	0.407558	0.320706	0.440313
$ ho(R_{1,1}, heta)$			0.467925	0.463035	0.329882	0.462884
$\rho(R_{1,2}, R_{2,2})$			0.762028	0.766259	0.653799	0.770204
$\rho(R_{1,2},\theta)$			0.801051	0.792721	0.698690	0.798101
$\rho(R_{2,2},\theta)$			0.960119	0.950296	0.886439	0.973122

Table 2. Curved Manifold Example, $\Delta = 3.0$

	Me	ean	Stan	dard Deviati	on or Correlation	
			Extrinsic		Modified	
Parameter	Extrinsic	Intrinsic	Extr Ctr	Intr Ctr	Extrinsic	Riemann
μ_1	0.003030	0.001782	0.044938	0.044956	0.045979	0.044963
μ_2	0.010777	0.008102	0.046710	0.046787	0.049665	0.046814
$R_{1,1}$	0.997487	0.992473	0.030209	0.030622	0.036357	0.030688
$R_{1,2}$	-0.011216	-0.008383	0.021103	0.021293	0.024844	0.021239
$R_{2,2}$	1.029374	1.030792	0.010518	0.010614	0.010586	0.010383
heta	5.379109	5.377738	0.155378	0.155384	0.158211	0.155382
$ ho(\mu_1,\mu_2)$			-0.078107	-0.076362	-0.017182	-0.076274
$ ho(\mu_1,R_{1,1})$			-0.038925	-0.033837	-0.003856	-0.031906
$ ho(\mu_1, R_{1,2})$			-0.014263	-0.017826	-0.022850	-0.012280
$ ho(\mu_1, R_{2,2})$			-0.049502	-0.052750	-0.035418	-0.053089
$ ho(\mu_1, heta)$			-0.034030	-0.033771	-0.033630	-0.033885
$ ho(\mu_2,R_{1,1})$			-0.000003	0.009360	0.011497	0.009885
$ ho(\mu_2, R_{1,2})$			0.061739	0.053481	0.028671	0.054493
$ ho(\mu_2, R_{2,2})$			-0.230838	-0.236033	-0.083846	-0.223585
$ ho(\mu_2, heta)$			0.003121	0.003620	0.016311	0.003531
$\rho(R_{1,1}, R_{1,2})$			-0.149040	-0.167514	-0.047995	-0.162304
$\rho(R_{1,1}, R_{2,2})$			0.439249	0.407558	0.186387	0.440271
$ ho(R_{1,1}, heta)$			0.467925	0.463035	0.209996	0.462847
$\rho(R_{1,2}, R_{2,2})$			0.762028	0.766259	0.448719	0.770156
$\rho(R_{1,2},\theta)$			0.801051	0.792721	0.519493	0.798059
$\rho(R_{2,2},\theta)$			0.960119	0.950296	0.797676	0.973115

Table 3. Curved Manifold Example, $\Delta = 15.0$