Variance-Covariance from a Metropolis Chain on a Curved, Singular Manifold

A. Ronald Gallant University of North Carolina, Chapel Hill

Paper: http://www.aronaldg.org/papers/sdev.pdf Slides: http://www.aronaldg.org/papers/sdevclr.pdf

Code: http://www.aronaldg.org/webfiles/npb

Preamble

- There are many uses for scale measures: Adhering to the convention of reporting both location and scale in the presentation of statistical results. Tuning an MCMC chain. Etc.
- Variance and covariance are Euclidean concepts. A curved, singular manifold is not typically a Euclidean space. We explore some suggestions on how to adapt a Euclidean concept to a non-Euclidean space.

Motivating Problem:
 Bayes Subject to Moment Conditions

The parameters $(\rho, \theta) \in \mathbb{R}^{d_{a}}$ of the likelihood

$$
\begin{equation*}
f(y \mid x, \rho)=\prod_{t=1}^{n} f\left(y_{t} \mid x_{t-1}, \rho\right) \tag{1}
\end{equation*}
$$

are to be estimated subject to the moment conditions

$$
\begin{equation*}
0=q(\rho, \theta)=\frac{1}{n} \sum_{t=1}^{n} \int m\left(y, x_{t-1}, \rho, \theta\right) f\left(y \mid x_{t-1}, \rho\right) d y m \in \mathbb{R}^{m} \tag{2}
\end{equation*}
$$

the support conditions

$$
\begin{equation*}
h(\rho, \theta)>0, \quad h \in \mathbb{R}^{l} \tag{3}
\end{equation*}
$$

and the prior

$$
\begin{equation*}
\pi(\rho, \theta) \tag{4}
\end{equation*}
$$

Nonparametric Bayes

- Bayesian estimation can be regarded as nonparametric when

$$
f\left(y_{t} \mid x_{t-1}, \rho\right)
$$

is a sieve.

- A sieve is a density with a variable number K of parameters

$$
\rho=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{K}\right)
$$

that is dense for some norm, e.g. Sobolev norm, as $K \rightarrow \infty$.

- Code uses the SNP sieve (Gallant and Tauchen, 1989, ECTA).

Clash of Notation

To adhere to the notational conventions of both the econometric and numerical analysis literature:

- Italic represents data: x_{t}, y_{t}, x, y
- Sans serif represents parameters: x, y

$$
\text { - i.e., } \mathrm{x}=(\rho, \theta) \text { and } \mathrm{y}=(\rho, \theta)
$$

Overidentification

- The support of the posterior is the manifold

$$
\begin{equation*}
M=\left\{\mathrm{x} \in \mathbb{R}^{d_{a}}: q_{i}(\mathrm{x})=0, i=1, . ., m, h_{j}(\mathrm{x})>0, j=1, . ., l\right\} \tag{5}
\end{equation*}
$$

- The problem is interesting when θ is overidentified, i.e., when the dimension m of q is larger than the dimension of θ because then M is singular with respect to Lebesgue measure on $R^{d_{a}}$.
- Specialized algorithms are required: Gallant (2022, JoE)
- Otherwise the problem is boring.

Figure 1. A Curved, Singular Manifold

Geodesics - 1

- On a manifold $M \subset \mathbb{R}^{d_{a}}$ of dimension $d<d_{a}$, distance is computed along geodesics.
- One computes distance by traversing a geodesic from a starting point s to an end point p and accumulating (infinitesimal increments of) a Hausdorff weight function $\delta_{M}(s, p)$ defined on M (Morgan, 2016).
- For a point cloud on M one can compute approximate geodesics from a d_{a}-dimensional set M_{ϵ} that is the union of ϵ-balls centered at the points using Euclidean distance $\delta(s, p)$ provided ϵ is large enough that M_{ϵ} is a connected set (Memoli and Sapiro, 2001).

Geodesics - 2

- Because the contours of the density that the chain targets are not spheres, our ϵ-balls for determining \mathcal{G}_{ϵ} are rectangles with sides k equal to $\Delta \max \left\{\left|\mathrm{x}_{k, i}-\mathrm{x}_{k, i-1}\right|: \mathrm{x}_{i} \in \mathcal{D}\right\}$ where $\mathcal{D}=\left\{\mathrm{x}_{i}\right\}_{i=1}^{N}$ denotes the MCMC chain and $\mathrm{x}_{k, i}$ denotes the k th element of x_{i}.
- If M_{ϵ} is a connected set, then the MCMC draws may be viewed as nodes p_{j} of a graph \mathcal{G}_{ϵ} connected by edges $e_{j, j^{\prime}}$ that have Euclidean length $\delta\left(p_{j}, p_{j^{\prime}}\right)$ and that stay within M_{ϵ}.
- From a start s, Dijkstra's algorithm finds the shortest path that traverses edges to every node p_{j} (Dijkstra, 1959).
- This is the same algorithm that Google maps uses for routing.

Choose Delta at Inflection

Figure 2. Lower panel: The dotdash line is the 99th percentile of all edges, dotted the 90th percentile, and solid the mean.

Intrinsic Mean

- There seems to be general agreement on how to define a mean over a curved, nonlinear manifold and estimate it from a sample.
- It is the intrinsic mean, $\overline{\mathrm{x}}$, that is the start s that minimizes $\frac{1}{N} \sum_{i=1}^{N} \delta^{2}\left(s, p_{j(i)}\right)$.
- The MCMC chain has duplicate draws due to rejections.
$-j(i)$ is the mapping from the draws i to the distinct elements of the chain.
- The distinct elements are the nodes p_{j} of the edges.
- The extrinsic mean, \tilde{x}, is the ordinary sample average.

Scale

- The notions of variance and covariance are flat space concepts, i.e., Euclidean space concepts, and it is not obvious how to extend them to a curved, nonlinear manifold.
- We shall consider four possible definitions
- Extrinsic variance-covariance centered at $\tilde{x}: V_{E C}$
- Extrinsic variance-covariance centered at $\bar{x}: V_{I C}$
- Modified extrinsic variance-covariance: $V_{M E}$
- Modified Riemann variance-covariance: $V_{M R}$

Extrinsic centered at $\tilde{x}: V_{E C}$

- $V_{E C}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathrm{x}_{i}-\tilde{\mathrm{x}}\right)\left(\mathrm{x}_{i}-\tilde{\mathrm{x}}\right)^{\top}$
- Disregard the geometry of M and view $\left\{\mathrm{x}_{i}\right\}_{i=1}^{N}$ as a sample from a probability space like any other.
- A credibility interval such as

$$
R_{\tau}=\times_{i=1}^{d_{a}}\left[\overline{\mathrm{x}}_{i}-\tau \operatorname{sdev}\left(\mathrm{x}_{i}\right), \overline{\mathrm{x}}_{i}+\tau \operatorname{sdev}\left(\mathrm{x}_{i}\right)\right]
$$

constructed from $V_{E C}$ need not intersect M.

Extrinsic centered at $\overline{\mathrm{x}}: V_{I C}$

- $V_{I C}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathrm{x}_{i}-\overline{\mathrm{x}}\right)\left(\mathrm{x}_{i}-\overline{\mathrm{x}}\right)^{\top}$
- A credibility interval such as

$$
R_{\tau}=X_{i=1}^{d_{a}}\left[\bar{x}_{i}-\tau \operatorname{sdev}\left(\mathrm{x}_{i}\right), \overline{\mathrm{x}}_{i}+\tau \operatorname{sdev}\left(\mathrm{x}_{i}\right)\right]
$$

constructed from $V_{I C}$ does intersect M.

Modified extrinsic variance-covariance: $V_{M E}$

- Same as an extrinsic computation but one increases each coordinate of a point p_{j} by its geodesic distance in that direction
- Specifically, for the path $\left(j_{1}^{p}, j_{2}^{p}, \ldots, j_{k}^{p}\right)$ that connects \bar{x} to p_{j}, where j_{1}^{p} indexes node $\overline{\mathrm{x}}$ and indexes j_{k}^{p} node p_{j},

$$
D_{j}=\operatorname{diag}\left[\operatorname{sgn}\left(p_{j}-\overline{\mathrm{x}}\right)\right] \sum_{\ell=2}^{k}\left|p_{j_{\ell}^{p}}-p_{j_{\ell-1}^{p}}\right| \quad D_{j} \in \mathbb{R}^{d_{a}}
$$

- The estimated variance-covariance matrix is

$$
V_{M E}=\frac{1}{N} \sum_{i=1}^{N} D_{j(i)} D_{j(i)}^{\top}
$$

- See figure on next slide

Figure 3. For $V_{M E}$ the contribution to D_{j} of the end point is the sum absolute values of the increments, $\binom{|d x|}{|d y|}$, whereas the contribution to $\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{\top}$ of $V_{E C}$ is the absolute value of the sum.

Riemannian Geometry

- Represent the manifold as a flat space called a chart and then compute variances and covariances in the usual way on the chart
- Think of a Mercator projection of the globe centered at Greenwich, England.
- The flat space is the plane $T_{\overline{\mathrm{x}}} M$ tangent to the manifold M at the mean $\overline{\mathrm{x}}$. Note $T_{\overline{\mathrm{x}}} M \subset \mathbb{R}^{d}, d<d_{a}$
- Requires a differentiable, analytic expression for geodesics $\gamma(t)$ with $\gamma(0)=\bar{x}$
- A point $x \in M$ is plotted on $T_{\overline{\mathrm{x}}} M$ in the direction $(d / d t) \gamma(0)$ at the distance $\delta(x, \overline{\mathrm{x}})$

Modified Riemann variance-covariance: $V_{M R}$

- The Riemannian approach is not possible if all we have is a point cloud on a manifold because we do not have an analytic expression for geodesics but we can borrow the basic ideas:
- Orthogonally project x_{i} onto the chart $T_{\overline{\mathrm{x}}} M$

$$
v_{i}=T_{\overline{\mathrm{x}}} T_{\overline{\mathrm{x}}}^{\top}\left(\mathrm{x}_{i}-\overline{\mathrm{x}}\right)
$$

- Plot the marker for x_{i} at $z_{i}=\delta_{i} \frac{v_{i}}{\left\|v_{i}\right\|}$
- Modified Riemann variance is

$$
V_{M R}=\frac{1}{N} \sum_{i=1}^{N} z_{i} z_{i}^{\top}
$$

- Note that $V_{M R}$ is $d_{a} \times d_{a}$ and singular of rank d

Examples

- In the paper (www.aronaldg.org/papers/sdev.pdf)
- A Simple Demand and Supply Example (simulation)
- Extraction of the Stochastic Discount Factor (data)
- A Curved Manifold Example (simulation).
- We'll look at the curved manifold example

Curved Manifold Example - 1

Likelinood:

$$
\begin{aligned}
y_{t} & \sim n_{2}\left(y_{t} \mid \mu, \Sigma\right) \\
\Sigma & =R R^{\prime} \\
\rho & =\left(\mu_{1}, \mu_{2}, R_{1,1}, R_{1,2}, R_{2,2}\right) \in \mathbb{R}^{5}
\end{aligned}
$$

Moment conditions:

$$
\begin{aligned}
m_{c, 1}\left(y_{t}, y_{t-1}, \rho, \theta\right) & =y_{1, t}^{2}+y_{2, t}^{2}-4 \theta \\
m_{c, 2}\left(y_{t}, y_{t-1}, \rho, \theta\right) & =\left(y_{1, t}-y_{1, t-1}\right)^{2}-2 \theta \\
\theta \in \mathbb{R}^{1} & \\
\rho & \text { not used }
\end{aligned}
$$

Curved Manifold Example - 2

- Data, $n=500$, simulated with $\mu_{1}=0, \mu_{2}=0, \Sigma_{1,1}=5$, $\Sigma_{1,2}=\Sigma_{2,1}=6.12372, \Sigma_{2,2}=15$, and $\theta=5$.
- Prior for ρ is independent normal with location the unconstrained maximum likelihood estimates and standard deviation 5.0.
- Prior for θ is normal with mean 5.0 and standard deviation 5.0.
- The support conditions are that diagonals of R must be positive and θ must be positive.

Figure 4. Curved, Singular Manifold. The missing dimensions, $\Sigma_{1,1}, \Sigma_{1,2}$, and θ, are held constant at 5 , 6.12372, and 5, respectively.

Curved Manifold: Distance vs. Delta

Figure 5. Lower panel: The dotdash line is the 99th percentile of all edges, dotted the 90th percentile, and solid the mean.

Table 1. Curved Manifold Example, $\Delta=0.57$

Parameter	Mean		Standard Deviation or Correlation			
	Extrinsic	Intrinsic	Extrinsic		Modified	
			Extr Ctr	Intr Ctr	Extrinsic	Riemann
μ_{1}	0.003030	0.001782	0.044938	0.044956	0.256304	0.045930
μ_{2}	0.010777	0.008102	0.046710	0.046787	0.282870	0.047894
$R_{1,1}$	0.997487	0.992473	0.030209	0.030622	0.199155	0.031385
$R_{1,2}$	-0.011216	-0.008383	0.021103	0.021293	0.133476	0.021763
$R_{2,2}$	1.029374	1.030792	0.010518	0.010614	0.066102	0.010639
θ	5.379109	5.377738	0.155378	0.155384	0.975752	0.159227
$\rho\left(\mu_{1}, \mu_{2}\right)$			-0.078107	-0.076362	-0.043754	-0.075747
$\rho\left(\mu_{1}, R_{1,1}\right)$			-0.038925	-0.033837	-0.031125	-0.030951
$\rho\left(\mu_{1}, R_{1,2}\right)$			-0.014263	-0.017826	-0.008660	-0.010185
$\rho\left(\mu_{1}, R_{2,2}\right)$			-0.049502	-0.052750	-0.032077	-0.050698
$\rho\left(\mu_{1}, \theta\right)$			-0.034030	-0.033771	-0.025612	-0.031390
$\rho\left(\mu_{2}, R_{1,1}\right)$			-0.000003	0.009360	-0.028539	0.010071
$\rho\left(\mu_{2}, R_{1,2}\right)$			0.061739	0.053481	-0.018607	0.054120
$\rho\left(\mu_{2}, R_{2,2}\right)$			-0.230838	-0.236033	-0.068083	-0.223426
$\rho\left(\mu_{2}, \theta\right)$			0.003121	0.003620	-0.025818	0.003372
$\rho\left(R_{1,1}, R_{1,2}\right)$			-0.149040	-0.167514	0.333217	-0.161162
$\rho\left(R_{1,1}, R_{2,2}\right)$			0.439249	0.407558	0.463633	0.440073
$\rho\left(R_{1,1}, \theta\right)$			0.467925	0.463035	0.475693	0.462643
$\rho\left(R_{1,2}, R_{2,2}\right)$			0.762028	0.766259	0.793649	0.771083
$\rho\left(R_{1,2}, \theta\right)$			0.801051	0.792721	0.819296	0.798896
$\rho\left(R_{2,2}, \theta\right)$			0.960119	0.950296	0.936706	0.973192

Table 2. Curved Manifold Example, $\Delta=3.0$

Parameter	Mean		Standard Deviation or Correlation			
	Extrinsic	Intrinsic	Extrinsic		Modified	
			Extr Ctr	Intr Ctr	Extrinsic	Riemann
μ_{1}	0.003030	0.001782	0.044938	0.044956	0.064382	0.044967
μ_{2}	0.010777	0.008102	0.046710	0.046787	0.069694	0.046818
$R_{1,1}$	0.997487	0.992473	0.030209	0.030622	0.049044	0.030692
$R_{1,2}$	-0.011216	-0.008383	0.021103	0.021293	0.034104	0.021243
$R_{2,2}$	1.029374	1.030792	0.010518	0.010614	0.015268	0.010386
θ	5.379109	5.377738	0.155378	0.155384	0.228527	0.155419
$\rho\left(\mu_{1}, \mu_{2}\right)$			-0.078107	-0.076362	-0.039940	-0.076271
$\rho\left(\mu_{1}, R_{1,1}\right)$			-0.038925	-0.033837	-0.013112	-0.031901
$\rho\left(\mu_{1}, R_{1,2}\right)$			-0.014263	-0.017826	0.006544	-0.012268
$\rho\left(\mu_{1}, R_{2,2}\right)$			-0.049502	-0.052750	-0.003076	-0.053070
$\rho\left(\mu_{1}, \theta\right)$			-0.034030	-0.033771	-0.004220	-0.033868
$\rho\left(\mu_{2}, R_{1,1}\right)$			-0.000003	0.009360	0.000939	0.009883
$\rho\left(\mu_{2}, R_{1,2}\right)$			0.061739	0.053481	0.020551	0.054497
$\rho\left(\mu_{2}, R_{2,2}\right)$			-0.230838	-0.236033	-0.046810	-0.223549
$\rho\left(\mu_{2}, \theta\right)$			0.003121	0.003620	0.013745	0.003537
$\rho\left(R_{1,1}, R_{1,2}\right)$			-0.149040	-0.167514	0.163611	-0.162194
$\rho\left(R_{1,1}, R_{2,2}\right)$			0.439249	0.407558	0.320706	0.440313
$\rho\left(R_{1,1}, \theta\right)$			0.467925	0.463035	0.329882	0.462884
$\rho\left(R_{1,2}, R_{2,2}\right)$			0.762028	0.766259	0.653799	0.770204
$\rho\left(R_{1,2}, \theta\right)$			0.801051	0.792721	0.698690	0.798101
$\rho\left(R_{2,2}, \theta\right)$			0.960119	0.950296	0.886439	0.973122

Table 3. Curved Manifold Example, $\Delta=15.0$

Parameter	Mean		Standard Deviation or Correlation			
	Extrinsic	Intrinsic	Extrinsic		Modified	
			Extr Ctr	Intr Ctr	Extrinsic	Riemann
μ_{1}	0.003030	0.001782	0.044938	0.044956	0.045979	0.044963
μ_{2}	0.010777	0.008102	0.046710	0.046787	0.049665	0.046814
$R_{1,1}$	0.997487	0.992473	0.030209	0.030622	0.036357	0.030688
$R_{1,2}$	-0.011216	-0.008383	0.021103	0.021293	0.024844	0.021239
$R_{2,2}$	1.029374	1.030792	0.010518	0.010614	0.010586	0.010383
θ	5.379109	5.377738	0.155378	0.155384	0.158211	0.155382
$\rho\left(\mu_{1}, \mu_{2}\right)$			-0.078107	-0.076362	-0.017182	-0.076274
$\rho\left(\mu_{1}, R_{1,1}\right)$			-0.038925	-0.033837	-0.003856	-0.031906
$\rho\left(\mu_{1}, R_{1,2}\right)$			-0.014263	-0.017826	-0.022850	-0.012280
$\rho\left(\mu_{1}, R_{2,2}\right)$			-0.049502	-0.052750	-0.035418	-0.053089
$\rho\left(\mu_{1}, \theta\right)$			-0.034030	-0.033771	-0.033630	-0.033885
$\rho\left(\mu_{2}, R_{1,1}\right)$			-0.000003	0.009360	0.011497	0.009885
$\rho\left(\mu_{2}, R_{1,2}\right)$			0.061739	0.053481	0.028671	0.054493
$\rho\left(\mu_{2}, R_{2,2}\right)$			-0.230838	-0.236033	-0.083846	-0.223585
$\rho\left(\mu_{2}, \theta\right)$			0.003121	0.003620	0.016311	0.003531
$\rho\left(R_{1,1}, R_{1,2}\right)$			-0.149040	-0.167514	-0.047995	-0.162304
$\rho\left(R_{1,1}, R_{2,2}\right)$			0.439249	0.407558	0.186387	0.440271
$\rho\left(R_{1,1}, \theta\right)$			0.467925	0.463035	0.209996	0.462847
$\rho\left(R_{1,2}, R_{2,2}\right)$			0.762028	0.766259	0.448719	0.770156
$\rho\left(R_{1,2}, \theta\right)$			0.801051	0.792721	0.519493	0.798059
$\rho\left(R_{2,2}, \theta\right)$			0.960119	0.950296	0.797676	0.973115

