Online Appendix for Variance-Covariance from a Metropolis Chain on a Curved, Singular Manifold^{*}

A. Ronald Gallant^{\dagger}

First draft: April 10, 2021 This draft: August 22, 2022

Code: www.aronaldg.org/webfiles/npb Paper: www.aronaldg.org/papers/sdev.pdf Slides: www.aronaldg.org/papers/npbsdev.pdf Appendix: www.aronaldg.org/papers/sdev_appendix.pdf

Forthcoming, Journal of Econometrics

^{*}Address correspondence to A. Ronald Gallant, P.O. Box 659, Chapel Hill NC 27514, USA, phone 919-428-1130; email aronldg@gmail.com.

[†]Emeritus Professor of Economics, University of North Carolina; Emeritus Professor of Economics, Penn State University.

Abstract

We consider estimation of variance and covariance from a point cloud that are draws from a posterior distribution that lie on a curved, singular manifold. The motivating application is Bayesian inference regarding a likelihood subject to overidentified moment equations using MCMC (Markov Chain Monte Carlo). The MCMC draws lie on a singular manifold that typically is curved. Variance and covariance are Euclidean concepts. A curved, singular manifold is not typically a Euclidean space. We explore some suggestions on how to adapt a Euclidean concept to a non-Euclidean space then build on them to propose and illustrate appropriate methods.

Keywords and Phrases: Method of moments, Bayesian inference, Simultaneously valid credibility intervals, Point cloud, Curved, singular manifold.

JEL Classification: C11, C14, C15, C32, C36, C58

 $[\]bigodot$ 2021, 2022 A. Ronald Gallant

Tables and Figures

Figure 1. Illustration of Scale Measures Panels (a), (b), and (c) show a hypothetical surface with hypothetical sample points shown as solid dots, \bullet , and the intrinsic mean, \bar{x} , shown as an open circle, \circ . Panel (d) shows the plane tangent to the hypothetical surface at the intrinsic mean with the solid dots and open circle projected onto that plane.

In Panel (a) are vectors formed by connecting the extrinsic mean, $\tilde{\mathbf{x}}$, to the sample points, \bullet . The scale measure V_{EC} is the average of the outer product of these vectors. This is the standard measure of scale, S^2 , for any sample.

In Panel (b) are vectors formed by connecting the intrinsic mean, $\bar{\mathbf{x}}$, to the sample points, The scale measure V_{IC} is the average of the outer product of these vectors.

In Panel (c) are vectors formed by extending the vectors of Panel (b) by the length of their geodesics, coordinate by coordinate, to connect to the points shown as circled pluses, \oplus . Because the multiples of coordinates can differ, the circled plus vectors need not pass through the sample points. The scale measure V_{ME} is the average of the outer product of the circled plus vectors.

In Panel (d) are vectors on the tangent plane $T_{\bar{x}}M$ that are formed by extending the vectors connecting the intrinsic mean, \circ . to the projected sample points, \bullet to the points shown as circled pluses, \oplus , by the length of the geodesics connecting \circ to \bullet on the manifold M. The circled plus vectors will pass through the projected sample points. The scale measure V_{MR} is the average of the outer product of the circled plus vectors.

Figure 2. 95% Credibility Region, Demand and Supply Example. The demand and supply example is described in Subsection 4.1. The coordinates var_x and var_y are the seventh and eighth chart coordinates, that is, they are the coefficients of the seventh and eighth columns of $T_{\bar{x}}$; var_z is the last element of $x = (\rho, \theta)$. It is the price elasticity of demand. All other chart coordinates are held fixed at the values of the intrinsic mean. The surface was obtained by fitting a multivariate polynomial of degree four with draws $\{x_i\}$ as the dependent variable and the corresponding points $\{z_i\}$ on the chart as the independent variable. In this instance, var_x is roughly interpretable as ρ_{10} , which is $P_{1,1}$, and var_y is roughly interpretable as ρ_{11} , which is $P_{2,2}$. $P_{1,1}$ and $P_{2,2}$ are the parameters that determine the stochastic volatility of log price and log quantity, respectively.

Figure 3. Distance of Edge Midpoints from Manifold, Demand and Supply Example. For the graph \mathcal{G}_{ϵ} with offset Δ as shown on the horizontal axis, the distance of the center of each edge from the manifold M is computed. The dotdash line is the 99th percentile, the dotted line is the 90th percentile, and the solid line is the mean.

Figure 4. Distance of Edge Midpoints from Manifold, Stochastic Discount Function Example For the graph \mathcal{G}_{ϵ} with offset Δ as shown on the horizontal axis, the distance of the center of each edge from the manifold M is computed. The dotdash line is the 99th percentile, the dotted line is the 90th percentile, and the solid line is the mean.

Figure 5. Curved Manifold Example Plotted is the manifold M for the likelihood (39) subject to moment conditions (2) determined by (41) and (42). The missing dimensions, $\Sigma_{1,1}$, $\Sigma_{1,2}$, and θ , are held constant at 5, 6.12372, and 5, respectively.

Figure 6. Distance of Edge Midpoints from Manifold, Curved Manifold Example For the graph \mathcal{G}_{ϵ} with offset Δ as shown on the horizontal axis, the distance of the center of each edge from the manifold M is computed. The dotdash line is the 99th percentile, the dotted line is the 90th percentile, and the solid line is the mean.

Table 1. Illustration of Population Variances and Correlations

	V_{EC}			C_{EC}	
0.073658	0.058105	0.000088	1.000000	0.788701	0.002893
0.058105	0.073686	0.000041	0.788701	1.000000	0.001337
0.000088	0.000041	0.012574	0.002893	0.001337	1.000000
	V_{IC}			C_{IC}	
0.073658	0.058105	0.000083	1.000000	0.788701	0.002194
0.058105	0.073686	0.000034	0.788701	1.000000	0.000896
0.000083	0.000034	0.019536	0.002194	0.000896	1.000000
	V_{ME}			C_{ME}	
0.073658	$V_{ME} \\ 0.058105$	0.000093	1.000000	C_{ME} 0.788701	0.002262
0.073658 0.058105	V_{ME} 0.058105 0.073686	0.000093 0.000037	1.000000 0.788701	C_{ME} 0.788701 1.000000	0.002262 0.000913
0.073658 0.058105 0.000093	V_{ME} 0.058105 0.073686 0.000037	0.000093 0.000037 0.022778	1.000000 0.788701 0.002262	C_{ME} 0.788701 1.000000 0.000913	0.002262 0.000913 1.000000
0.073658 0.058105 0.000093	V_{ME} 0.058105 0.073686 0.000037 V_{MR}	0.000093 0.000037 0.022778	1.000000 0.788701 0.002262	C_{ME} 0.788701 1.000000 0.000913 C_{MR}	0.002262 0.000913 1.000000
0.073658 0.058105 0.000093 0.073658	V_{ME} 0.058105 0.073686 0.000037 V_{MR} 0.058105	0.000093 0.000037 0.022778 0.000000	1.000000 0.788701 0.002262 1.000000	C_{ME} 0.788701 1.000000 0.000913 C_{MR} 0.788701	0.002262 0.000913 1.000000 0.000000
0.073658 0.058105 0.000093 0.073658 0.058105	V_{ME} 0.058105 0.073686 0.000037 V_{MR} 0.058105 0.073686	0.000093 0.000037 0.022778 0.000000 0.000000	1.000000 0.788701 0.002262 1.000000 0.788701	C_{ME} 0.788701 1.000000 0.000913 C_{MR} 0.788701 1.000000	0.002262 0.000913 1.000000 0.000000 0.000000

Shown are the variance matrices V_{EC} , V_{IC} , V_{ME} , and V_{MR} and correlation matrices C_{EC} , C_{IC} , C_{ME} , and C_{MR} computed from a simulation of (16) of length n = 198373.

	Me	ean	Standard Deviation			
			Extr	insic	Mod	ified
Parameter	Extrinsic	Intrinsic	Extr Ctr	Intr Ctr	Extrinsic	Riemann
μ_1	0.006974	-0.000014	0.032410	0.033155	0.056276	0.000416
μ_2	-0.006384	-0.007252	0.034833	0.034843	0.078493	0.055205
μ_3	-0.001982	0.007796	0.035280	0.036610	0.081187	0.057796
$R_{1,1}$	0.995638	0.985301	0.030594	0.032293	0.072945	0.051602
$R_{1,2}$	-0.000188	-0.009587	0.019377	0.021537	0.061537	0.033760
$R_{2,2}$	1.001946	1.050761	0.031913	0.058325	0.093115	0.090660
$R_{1,3}$	-0.004291	-0.003850	0.018963	0.018969	0.054806	0.030062
$R_{2,3}$	0.001238	-0.006318	0.018397	0.019889	0.050946	0.031336
$R_{3,3}$	0.996106	0.984606	0.030197	0.032314	0.076838	0.051241
$P_{1,1}$	0.137964	0.173574	0.081201	0.088667	0.113114	0.142283
$P_{2,2}$	0.004711	-0.012474	0.109165	0.110509	0.123758	0.177366
$P_{3,3}$	-0.058212	-0.058302	0.128347	0.128347	0.138672	0.203544
a_1	11.986857	11.982728	0.010649	0.011422	0.028206	0.018471
a_2	-1.996886	-1.994403	0.006776	0.007217	0.018729	0.011906

Table 2. Demand and Supply Example, $\Delta = 0.9$

The data are a simulation of the demand and supply system (24) through (26). An MCMC chain of length 50,000 was computed using the Surface Sampling Algorithm for the likelihood (27) subject to moment conditions (2) as determined by (29) through (31) The prior for ρ is independent normal with location the unconstrained maximum likelihood estimates of (27) and scale twice the maximum likelihood standard errors. The prior for $\theta = (a_1, a_2)$ is independent normal with means (12, -2) and standard deviations (2, 2). The support conditions on R and P of (28) are that diagonals of R must be positive, the first diagonal element P must be positive, and the eigenvalues of the companion matrix of Σ must be less than one in absolute value. In addition, a_1 must be positive and a_2 negative. The chain was reduced (downsampled) with a stride of 10 leaving a chain of length 5,000 for computations. Means and standard deviations shown in the table for offset $\Delta = 0.9$, which is the smallest value of Δ for which the manifold M_{ϵ} is connected.

	Me	ean		Standard	Deviation		
			Extr	insic	Modified		
Parameter	Extrinsic	Intrinsic	Extr Ctr	Intr Ctr	Extrinsic	Riemann	
μ_1	0.006974	-0.000005	0.032410	0.033154	0.034008	0.000024	
μ_2	-0.006384	0.018046	0.034833	0.042547	0.044250	0.043604	
μ_3	-0.001982	0.013853	0.035280	0.038671	0.040339	0.039671	
$R_{1,1}$	0.995638	0.999636	0.030594	0.030854	0.032664	0.031616	
$R_{1,2}$	-0.000188	-0.001498	0.019377	0.019421	0.022899	0.019980	
$R_{2,2}$	1.001946	1.021762	0.031913	0.037566	0.038724	0.038680	
$R_{1,3}$	-0.004291	-0.030309	0.018963	0.032197	0.033586	0.033113	
$R_{2,3}$	0.001238	0.021554	0.018397	0.027409	0.029031	0.027764	
$R_{3,3}$	0.996106	0.967894	0.030197	0.041327	0.043449	0.042494	
$P_{1,1}$	0.137964	0.168808	0.081201	0.086863	0.087303	0.089219	
$P_{2,2}$	0.004711	-0.001004	0.109165	0.109314	0.109444	0.114385	
$P_{3,3}$	-0.058212	-0.052750	0.128347	0.128463	0.128560	0.133870	
a_1	11.986857	11.991603	0.010649	0.011659	0.012774	0.012461	
a_2	-1.996886	-1.998937	0.006776	0.007080	0.007853	0.007601	

Table 3. Demand and Supply Example, $\Delta = 3$

As for Table 2 except that $\Delta = 3$, which is the point just after the curves in Figure 3 begin to flatten.

	Me	ean		Standard	Deviation	Deviation	
			Extr	insic	Mod	ified	
Parameter	Extrinsic	Intrinsic	Extr Ctr	Intr Ctr	Extrinsic	Riemann	
μ_1	0.006974	-0.000005	0.032410	0.033154	0.033150	0.000024	
μ_2	-0.006384	0.018046	0.034833	0.042547	0.042543	0.043143	
μ_3	-0.001982	0.013853	0.035280	0.038671	0.038668	0.039171	
$R_{1,1}$	0.995638	0.999636	0.030594	0.030854	0.030851	0.031218	
$R_{1,2}$	-0.000188	-0.001498	0.019377	0.019421	0.019419	0.019721	
$R_{2,2}$	1.001946	1.021762	0.031913	0.037566	0.037563	0.038075	
$R_{1,3}$	-0.004291	-0.030309	0.018963	0.032197	0.032194	0.032654	
$R_{2,3}$	0.001238	0.021554	0.018397	0.027409	0.027407	0.027407	
$R_{3,3}$	0.996106	0.967894	0.030197	0.041327	0.041323	0.041930	
$P_{1,1}$	0.137964	0.168808	0.081201	0.086863	0.086854	0.088216	
$P_{2,2}$	0.004711	-0.001004	0.109165	0.109314	0.109303	0.110615	
$P_{3,3}$	-0.058212	-0.052750	0.128347	0.128463	0.128451	0.129637	
a_1	11.986857	11.991603	0.010649	0.011659	0.011658	0.012298	
a_2	-1.996886	-1.998937	0.006776	0.007080	0.007079	0.007500	

Table 4. Demand and Supply Example, $\Delta=11$

As for Table 2 except that $\Delta = 11$, which is the smallest value such that each node in M_{ϵ} is connected to all other nodes.

	Extri	Extrinsic		ified
Correlation	Extr Ctr	Intr Ctr	Extrinsic	Riemann
	Demand	and Suppl	ly Example,	$\Delta = 0.9$
$\rho(a_1, a_2)$	-0.953464	-0.959086	-0.850522	-0.970201
	Demand	and Supp	ly Example,	$\Delta = 11$
$\rho(a_1, a_2)$	-0.953464	-0.951455	-0.951455	-0.959869
	Stochastic	Discount H	Factor Exam	ple, $\Delta = 2$
$\rho(a_1, a_2)$	-0.538199	-0.624957	-0.619447	-0.515152
$\rho(a_1, a_3)$	-0.933849	-0.924537	-0.889809	-0.238756
$\rho(a_2, a_3)$	0.238997	0.341350	0.470240	0.442594
	Stochastic I	Discount F	actor Examp	ple, $\Delta = 31$
$\rho(a_1, a_2)$	-0.538199	-0.522063	-0.522063	-0.384290
$\rho(a_1, a_3)$	-0.933849	-0.931478	-0.931478	-0.991255
$\rho(a_2, a_3)$	0.238997	0.214916	0.214916	0.262880

Table 5. Moment Function Parameter Correlations

Shown are the correlations for the parameters θ that appear in the moment functions (2) computed from V_{EC} , V_{IC} , V_{ME} , V_{MR} that were themselves computed from the MCMC chains described in Tables 2, 4, 8 and 10 for the four blocks of the table, respectively, as indicated by the headings for each block. For instance, the first entry $\rho(a_1, a_2) = -0.953464$ refers to a correlation computed from V_{EC} for the demand and supply MCMC chain described in Table 2.

Table 6. Regressions Among
Standard Deviations,
Demand and Supply Example

Varia	able			
Independent	Dependent	Intercept	Slope	R^2
	Δ	= 0.9		
V_{EC} sdev	V_{IC} sdev	0.003445	0.996188	0.966189
V_{EC} sdev	V_{ME} sdev	0.039708	0.837890	0.829003
V_{EC} sdev	V_{MR} sdev	0.000226	1.619744	0.914482
V_{IC} sdev	V_{ME} sdev	0.036227	0.853974	0.884487
V_{IC} sdev	V_{MR} sdev	-0.005547	1.629730	0.950897
V_{ME} sdev	V_{MR} sdev	-0.060075	1.713394	0.866591
	Δ	= 3.0		
V_{EC} sdev	V_{IC} sdev	0.005572	0.966685	0.985068
V_{EC} sdev	V_{ME} sdev	0.007508	0.951912	0.984039
V_{EC} sdev	V_{MR} sdev	0.002167	1.027389	0.922289
V_{IC} sdev	V_{ME} sdev	0.002007	0.985043	0.999616
V_{IC} sdev	V_{MR} sdev	-0.004049	1.069157	0.947510
V_{ME} sdev	V_{MR} sdev	-0.006268	1.086251	0.949377
	Δ	= 11.0		
V_{EC} sdev	V_{IC} sdev	0.005572	0.966685	0.985068
V_{EC} sdev	V_{ME} sdev	0.005572	0.966685	0.985068
V_{EC} sdev	V_{MR} sdev	0.002657	0.993814	0.919170
V_{IC} sdev	V_{ME} sdev	0.000000	1.000000	1.000000
V_{IC} sdev	V_{MR} sdev	-0.003395	1.035088	0.945897
V_{ME} sdev	V_{MR} sdev	-0.003395	1.035088	0.945897

Shown in the first block are linear regressions of standard deviations from V_{EC} , V_{IC} , V_{ME} , and V_{MR} computed from the MCMC chain described in the legend for Table 2 with independent and dependent variables as indicated in the first two columns of the table. The second and third blocks are the same but for $\Delta = 3.0$ and $\Delta = 11.0$

Variable						
Independent	Dependent	Intercept	Slope	R^2		
	Δ	h = 0.9				
V_{EC} sdev	V_{IC} sdev	-0.000021	1.018985	0.584151		
V_{EC} sdev	V_{ME} sdev	-0.000075	1.640258	0.324489		
V_{EC} sdev	V_{MR} sdev	-0.000081	2.483038	0.542015		
V_{IC} sdev	V_{ME} sdev	-0.000044	1.975227	0.836412		
V_{IC} sdev	V_{MR} sdev	-0.000031	2.457824	0.943967		
V_{ME} sdev	V_{MR} sdev	0.000018	1.068931	0.832854		
	Δ	= 3.0				
V_{EC} sdev	V_{IC} sdev	-0.000005	0.954483	0.509323		
V_{EC} sdev	V_{ME} sdev	-0.000007	0.977459	0.498042		
V_{EC} sdev	V_{MR} sdev	-0.000007	0.993356	0.497677		
V_{IC} sdev	V_{ME} sdev	-0.000002	1.032686	0.994369		
V_{IC} sdev	V_{MR} sdev	-0.000002	1.041013	0.977671		
V_{ME} sdev	V_{MR} sdev	-0.000000	1.003528	0.974380		
	Δ	= 11.0				
V_{EC} sdev	V_{IC} sdev	-0.000005	0.954483	0.509323		
V_{EC} sdev	V_{ME} sdev	-0.000005	0.954483	0.509323		
V_{EC} sdev	V_{MR} sdev	-0.000006	0.942636	0.484505		
V_{IC} sdev	V_{ME} sdev	0.000000	1.000000	1.000000		
V_{IC} sdev	V_{MR} sdev	-0.000001	1.001591	0.978439		
V_{ME} sdev	V_{MR} sdev	-0.000001	1.001591	0.978439		

Table 7. Regressions Among Covariances Demand and Supply Example

Shown in the first block are linear regressions of covariances from V_{EC} , V_{IC} , V_{ME} , and V_{MR} computed from the MCMC chain described in the legend for Table 2 with independent and dependent variables as indicated in the first two columns of the table. The second and third blocks are the same but for $\Delta = 3.0$ and $\Delta = 11.0$

	Me	Mean Standard		Deviation		
			Extr	insic	Mod	ified
Parameter	Extrinsic	Intrinsic	Extr Ctr	Intr Ctr	Extrinsic	Riemann
a_{01}	0.125950	0.130222	0.035219	0.035477	0.057211	0.085094
a_{02}	-0.008434	-0.016024	0.027108	0.028150	0.074924	0.053488
a_{03}	0.017429	0.013113	0.015427	0.016020	0.054562	0.031979
a_{04}	0.082601	0.075387	0.010530	0.012764	0.055936	0.024716
a_{05}	-0.061553	-0.074851	0.019684	0.023756	0.047917	0.043069
a_{06}	-0.036925	-0.024713	0.017924	0.021690	0.063208	0.043061
a_{07}	-0.028193	-0.010717	0.012460	0.021465	0.055240	0.040529
a_{08}	0.152953	0.164645	0.011347	0.016294	0.057191	0.033546
$b_{0,1}$	0.149272	0.159229	0.034798	0.036195	0.076915	0.072240
$b_{0,2}$	-0.246597	-0.268276	0.066741	0.070175	0.096793	0.154732
$B_{1,1}$	-0.046729	-0.034771	0.014092	0.018483	0.046557	0.027807
$B_{2,1}$	-0.058537	-0.036099	0.018411	0.029026	0.063679	0.006958
$B_{1,2}$	-0.007491	0.010769	0.019087	0.026416	0.075955	0.055285
$B_{2,2}$	-0.023266	-0.047909	0.023289	0.033908	0.082084	0.010080
$R_{0,1,1}$	0.836213	0.830120	0.026761	0.027446	0.074612	0.056217
$R_{0,1,2}$	-0.040340	-0.044094	0.010666	0.011308	0.049220	0.021801
$R_{0,2,2}$	0.993556	1.001678	0.042345	0.043117	0.108780	0.083124
$P_{1,1}$	0.551396	0.588314	0.052075	0.063836	0.102282	0.134788
$P_{2,2}$	0.099384	0.097378	0.053043	0.053081	0.106752	0.100766
a_1	-0.000000	-0.000008	0.000015	0.000016	0.000020	0.005618
a_2	-0.997967	-0.980331	0.010756	0.020659	0.043361	0.040626
a_3	-0.020725	0.013500	0.127623	0.132134	0.149616	0.272943

Table 8. Stochastic Discount Function Example, $\Delta = 2$

An MCMC chain of length 50,000 was computed using the Surface Sampling Algorithm for the SNP-ARCH likelihood (34) estimated from daily, inflation adjusted returns on the S&P500 and NASDAQ indices (including distributions) from January 1, 2010, to December 31, 2018 under moment conditions (2) as determined by (35) through (38). The prior for ρ is independent normal with location and scale the SNP-ARCH unconstrained maximum likelihood estimated parameters and standard errors. The prior for $\theta = (a_0, a_1, a_2)$ is independent normal with means (0, -1, 0) and standard deviations (1, 1, 1). The support conditions are normalizing sign restrictions on variance parameters and that the eigenvalues of the companion matrices for location and scale are less than one in absolute value. The chain was reduced with a stride of 10 leaving a chain of length 5,000 for computations. Means and standard deviations shown in the table for offset $\Delta = 2$, which is 1.0 larger than the smallest value of Δ for which the manifold M_{ϵ} is connected.

	Mean		Standard Deviation			
			Extr	insic	Modified	
Parameter	Extrinsic	Intrinsic	Extr Ctr	Intr Ctr	Extrinsic	Riemann
a_{01}	0.125950	0.118768	0.035219	0.035944	0.036786	0.036965
a_{02}	-0.008434	0.011021	0.027108	0.033367	0.034084	0.035347
a_{03}	0.017429	0.005592	0.015427	0.019446	0.020418	0.019750
a_{04}	0.082601	0.082544	0.010530	0.010530	0.011922	0.011040
a_{05}	-0.061553	-0.076661	0.019684	0.024814	0.026188	0.023665
a_{06}	-0.036925	-0.034718	0.017924	0.018060	0.019498	0.018794
a_{07}	-0.028193	-0.014846	0.012460	0.018261	0.019301	0.018503
a_{08}	0.152953	0.150794	0.011347	0.011551	0.012393	0.011898
$b_{0,1}$	0.149272	0.148000	0.034798	0.034821	0.037570	0.036086
$b_{0,2}$	-0.246597	-0.250884	0.066741	0.066879	0.067242	0.067979
$B_{1,1}$	-0.046729	-0.050522	0.014092	0.014594	0.015469	0.013500
$B_{2,1}$	-0.058537	-0.059758	0.018411	0.018451	0.019506	0.002549
$B_{1,2}$	-0.007491	-0.020881	0.019087	0.023316	0.024502	0.023297
$B_{2,2}$	-0.023266	-0.041644	0.023289	0.029668	0.032058	0.004874
$R_{0,1,1}$	0.836213	0.827857	0.026761	0.028036	0.030673	0.029207
$R_{0,1,2}$	-0.040340	-0.028008	0.010666	0.016305	0.016786	0.019185
$R_{0,2,2}$	0.993556	0.960481	0.042345	0.053734	0.054459	0.054449
$P_{1,1}$	0.551396	0.539821	0.052075	0.053346	0.054371	0.055694
$P_{2,2}$	0.099384	0.101043	0.053043	0.053069	0.055329	0.054195
a_1	-0.000000	-0.000002	0.000015	0.000015	0.000015	0.003165
a_2	-0.997967	-0.998806	0.010756	0.010789	0.011167	0.011660
a_3	-0.020725	0.008479	0.127623	0.130923	0.130910	0.139620

Table 9. Stochastic Discount Function Example, $\Delta = 10$

As for Table 8 except that $\Delta = 10$, which is the point just after the curves in Figure 4 begin to flatten.

	Me	ean	Standard Deviation			
			Extr	insic	Mod	ified
Parameter	Extrinsic	Intrinsic	Extr Ctr	Intr Ctr	Extrinsic	Riemann
a_{01}	0.125950	0.118768	0.035219	0.035944	0.035940	0.036115
a_{02}	-0.008434	0.011021	0.027108	0.033367	0.033364	0.033468
a_{03}	0.017429	0.005592	0.015427	0.019446	0.019444	0.019369
a_{04}	0.082601	0.082544	0.010530	0.010530	0.010529	0.010539
a_{05}	-0.061553	-0.076661	0.019684	0.024814	0.024812	0.025392
a_{06}	-0.036925	-0.034718	0.017924	0.018060	0.018058	0.018097
a_{07}	-0.028193	-0.014846	0.012460	0.018261	0.018259	0.018050
a_{08}	0.152953	0.150794	0.011347	0.011551	0.011550	0.011555
$b_{0,1}$	0.149272	0.148000	0.034798	0.034821	0.034818	0.034725
$b_{0,2}$	-0.246597	-0.250884	0.066741	0.066879	0.066872	0.066737
$B_{1,1}$	-0.046729	-0.050522	0.014092	0.014594	0.014592	0.014727
$B_{2,1}$	-0.058537	-0.059758	0.018411	0.018451	0.018449	0.018453
$B_{1,2}$	-0.007491	-0.020881	0.019087	0.023316	0.023314	0.023764
$B_{2,2}$	-0.023266	-0.041644	0.023289	0.029668	0.029665	0.029748
$R_{0,1,1}$	0.836213	0.827857	0.026761	0.028036	0.028033	0.028009
$R_{0,1,2}$	-0.040340	-0.028008	0.010666	0.016305	0.016304	0.016159
$R_{0,2,2}$	0.993556	0.960481	0.042345	0.053734	0.053728	0.053690
$P_{1,1}$	0.551396	0.539821	0.052075	0.053346	0.053341	0.053352
$P_{2,2}$	0.099384	0.101043	0.053043	0.053069	0.053064	0.053072
a_1	-0.000000	-0.000002	0.000015	0.000015	0.000015	0.000013
a_2	-0.997967	-0.998806	0.010756	0.010789	0.010788	0.008667
a_3	-0.020725	0.008479	0.127623	0.130923	0.130910	0.130925

Table 10. Stochastic Discount Function Example, $\Delta = 31$

As for Table 8 except that $\Delta = 31$, which is the smallest value such that each node in M_{ϵ} is connected to all other nodes.

Table 11. Regressions Among
Standard Deviations,Stochastic Discount Function Example

Varia	able			
Independent	Dependent	Intercept	Slope	R^2
	Δ	A = 2.0		
V_{EC} sdev	V_{IC} sdev	0.004282	0.996627	0.979527
V_{EC} sdev	V_{ME} sdev	0.041461	0.971254	0.769701
V_{EC} sdev	V_{MR} sdev	0.000142	2.148869	0.941703
V_{IC} sdev	V_{ME} sdev	0.037353	0.972626	0.782703
V_{IC} sdev	V_{MR} sdev	-0.007529	2.109841	0.920539
V_{ME} sdev	V_{MR} sdev	-0.050916	1.632486	0.666095
	Δ	= 10.0		
V_{EC} sdev	V_{IC} sdev	0.002420	1.005033	0.987339
V_{EC} sdev	V_{ME} sdev	0.003663	1.001094	0.986990
V_{EC} sdev	V_{MR} sdev	-0.000386	1.077904	0.949659
V_{IC} sdev	V_{ME} sdev	0.001260	0.995870	0.999223
V_{IC} sdev	V_{MR} sdev	-0.002833	1.067869	0.953538
V_{ME} sdev	V_{MR} sdev	-0.004076	1.069052	0.948511
	Δ	= 31.0		
V_{EC} sdev	V_{IC} sdev	0.002420	1.005033	0.987339
V_{EC} sdev	V_{ME} sdev	0.002420	1.005033	0.987339
V_{EC} sdev	V_{MR} sdev	0.002308	1.006940	0.986297
V_{IC} sdev	V_{ME} sdev	-0.000000	1.000000	1.000000
V_{IC} sdev	V_{MR} sdev	-0.000129	1.002270	0.999689
V_{ME} sdev	V_{MR} sdev	-0.000129	1.002270	0.999689

Shown in the first block are linear regressions of standard deviations from V_{EC} , V_{IC} , V_{ME} , and V_{MR} computed from the MCMC chain described in the legend for Table 8 with independent and dependent variables as indicated in the first two columns of the table. The second and third blocks are the same but for $\Delta = 10.0$ and $\Delta = 31.0$

Variable							
Independent	Dependent	Intercept	Slope	R^2			
$\Delta = 2.0$							
V_{EC} sdev	V_{IC} sdev	0.000017	1.103377	0.698067			
V_{EC} sdev	V_{ME} sdev	0.000071	2.383066	0.242961			
V_{EC} sdev	V_{MR} sdev	0.000110	3.960890	0.457034			
V_{IC} sdev	V_{ME} sdev	0.000035	3.060979	0.699095			
V_{IC} sdev	V_{MR} sdev	0.000049	3.714154	0.700864			
V_{ME} sdev	V_{MR} sdev	0.000020	0.850015	0.491984			
	Δ	= 10.0					
V_{EC} sdev	V_{IC} sdev	-0.000002	1.013226	0.830676			
V_{EC} sdev	V_{ME} sdev	-0.000004	1.066309	0.819366			
V_{EC} sdev	V_{MR} sdev	-0.000010	1.050009	0.842409			
V_{IC} sdev	V_{ME} sdev	-0.000002	1.055850	0.992882			
V_{IC} sdev	V_{MR} sdev	-0.000009	0.981551	0.909796			
V_{ME} sdev	V_{MR} sdev	-0.000007	0.917860	0.893262			
$\Delta = 31.0$							
V_{EC} sdev	V_{IC} sdev	-0.000002	1.013226	0.830676			
V_{EC} sdev	V_{ME} sdev	-0.000002	1.013226	0.830676			
V_{EC} sdev	V_{MR} sdev	-0.000002	1.014812	0.831122			
V_{IC} sdev	V_{ME} sdev	0.000000	1.000000	1.000000			
V_{IC} sdev	V_{MR} sdev	-0.000000	1.001103	0.999615			
V_{ME} sdev	V_{MR} sdev	-0.000000	1.001103	0.999615			

Table 12. Regressions Among Covariances,Stochastic Discount Function Example

Shown in the first block are linear regressions of covariances from V_{EC} , V_{IC} , V_{ME} , and V_{MR} computed from the MCMC chain described in the legend for Table 8 with independent and dependent variables as indicated in the first two columns of the table. The second and third blocks are the same but for $\Delta = 10.0$ and $\Delta = 31.0$

	Me	ean	Standard Deviation		on or Correlation	
			Extr	rinsic	Mod	lified
Parameter	Extrinsic	Intrinsic	Extr Ctr	Intr Ctr	Extrinsic	Riemann
μ_1	0.003030	0.001782	0.044938	0.044956	0.256304	0.045930
μ_2	0.010777	0.008102	0.046710	0.046787	0.282870	0.047894
$R_{1,1}$	0.997487	0.992473	0.030209	0.030622	0.199155	0.031385
$R_{1,2}$	-0.011216	-0.008383	0.021103	0.021293	0.133476	0.021763
$R_{2,2}$	1.029374	1.030792	0.010518	0.010614	0.066102	0.010639
θ	5.379109	5.377738	0.155378	0.155384	0.975752	0.159227
$ ho(\mu_1,\mu_2)$			-0.078107	-0.076362	-0.043754	-0.075747
$ ho(\mu_1, R_{1,1})$			-0.038925	-0.033837	-0.031125	-0.030951
$\rho(\mu_1, R_{1,2})$			-0.014263	-0.017826	-0.008660	-0.010185
$\rho(\mu_1, R_{2,2})$			-0.049502	-0.052750	-0.032077	-0.050698
$ ho(\mu_1, heta)$			-0.034030	-0.033771	-0.025612	-0.031390
$ ho(\mu_2, R_{1,1})$			-0.000003	0.009360	-0.028539	0.010071
$ ho(\mu_2, R_{1,2})$			0.061739	0.053481	-0.018607	0.054120
$\rho(\mu_2, R_{2,2})$			-0.230838	-0.236033	-0.068083	-0.223426
$ ho(\mu_2, heta)$			0.003121	0.003620	-0.025818	0.003372
$ \rho(R_{1,1}, R_{1,2}) $			-0.149040	-0.167514	0.333217	-0.161162
$ \rho(R_{1,1}, R_{2,2}) $			0.439249	0.407558	0.463633	0.440073
$\rho(R_{1,1},\theta)$			0.467925	0.463035	0.475693	0.462643
$ \rho(R_{1,2}, R_{2,2}) $			0.762028	0.766259	0.793649	0.771083
$\rho(R_{1,2},\theta)$			0.801051	0.792721	0.819296	0.798896
$ \rho(R_{2,2}, \theta) $			0.960119	0.950296	0.936706	0.973192

Table 13. Curved Manifold Example, $\Delta = 0.57$

The data are a simulation of the curved manifold example. An MCMC chain of length 50,000 was computed using the Surface Sampling Algorithm for the normal likelihood (39) subject to moment conditions (2) as determined by (41) and (42) The prior for ρ is independent normal with location the unconstrained maximum likelihood estimates of (39) and scale 5.0. The prior for θ is normal with mean 5.0 and standard deviations 5.0. The support conditions on R are that diagonals must be positive and θ must be positive.. The chain was reduced by eliminating repetitions due to rejections to a length of 37,269 for computations. Means and standard deviations shown in the table for offset $\Delta = 0.57$, which is the smallest value of Δ for which the manifold M_{ϵ} is connected.

	Mean Standard Deviat		on or Correlation			
			Extrinsic		Modified	
Parameter	Extrinsic	Intrinsic	Extr Ctr	Intr Ctr	Extrinsic	Riemann
μ_1	0.003030	0.001782	0.044938	0.044956	0.064382	0.044967
μ_2	0.010777	0.008102	0.046710	0.046787	0.069694	0.046818
$R_{1,1}$	0.997487	0.992473	0.030209	0.030622	0.049044	0.030692
$R_{1,2}$	-0.011216	-0.008383	0.021103	0.021293	0.034104	0.021243
$R_{2,2}$	1.029374	1.030792	0.010518	0.010614	0.015268	0.010386
θ	5.379109	5.377738	0.155378	0.155384	0.228527	0.155419
$ ho(\mu_1,\mu_2)$			-0.078107	-0.076362	-0.039940	-0.076271
$\rho(\mu_1, R_{1,1})$			-0.038925	-0.033837	-0.013112	-0.031901
$\rho(\mu_1, R_{1,2})$			-0.014263	-0.017826	0.006544	-0.012268
$\rho(\mu_1, R_{2,2})$			-0.049502	-0.052750	-0.003076	-0.053070
$ ho(\mu_1, heta)$			-0.034030	-0.033771	-0.004220	-0.033868
$\rho(\mu_2, R_{1,1})$			-0.000003	0.009360	0.000939	0.009883
$\rho(\mu_2, R_{1,2})$			0.061739	0.053481	0.020551	0.054497
$\rho(\mu_2, R_{2,2})$			-0.230838	-0.236033	-0.046810	-0.223549
$ ho(\mu_2, heta)$			0.003121	0.003620	0.013745	0.003537
$ \rho(R_{1,1}, R_{1,2}) $			-0.149040	-0.167514	0.163611	-0.162194
$ \rho(R_{1,1}, R_{2,2}) $			0.439249	0.407558	0.320706	0.440313
$ \rho(R_{1,1},\theta) $			0.467925	0.463035	0.329882	0.462884
$ \rho(R_{1,2}, R_{2,2}) $			0.762028	0.766259	0.653799	0.770204
$ \rho(R_{1,2},\theta) $			0.801051	0.792721	0.698690	0.798101
$ \rho(R_{2,2},\theta) $			0.960119	0.950296	0.886439	0.973122

Table 14. Curved Manifold Example, $\Delta = 3.0$

As for Table 13 except that $\Delta = 3.0$, which is the point just after the curves in Figure 4 begin to flatten.

	Me	ean	Standard Deviation or Correlation		elation	
			Extrinsic		Modified	
Parameter	Extrinsic	Intrinsic	Extr Ctr	Intr Ctr	Extrinsic	Riemann
μ_1	0.003030	0.001782	0.044938	0.044956	0.045979	0.044963
μ_2	0.010777	0.008102	0.046710	0.046787	0.049665	0.046814
$R_{1,1}$	0.997487	0.992473	0.030209	0.030622	0.036357	0.030688
$R_{1,2}$	-0.011216	-0.008383	0.021103	0.021293	0.024844	0.021239
$R_{2,2}$	1.029374	1.030792	0.010518	0.010614	0.010586	0.010383
θ	5.379109	5.377738	0.155378	0.155384	0.158211	0.155382
$ ho(\mu_1,\mu_2)$			-0.078107	-0.076362	-0.017182	-0.076274
$\rho(\mu_1, R_{1,1})$			-0.038925	-0.033837	-0.003856	-0.031906
$\rho(\mu_1, R_{1,2})$			-0.014263	-0.017826	-0.022850	-0.012280
$\rho(\mu_1, R_{2,2})$			-0.049502	-0.052750	-0.035418	-0.053089
$ ho(\mu_1, heta)$			-0.034030	-0.033771	-0.033630	-0.033885
$\rho(\mu_2, R_{1,1})$			-0.000003	0.009360	0.011497	0.009885
$\rho(\mu_2, R_{1,2})$			0.061739	0.053481	0.028671	0.054493
$ ho(\mu_2, R_{2,2})$			-0.230838	-0.236033	-0.083846	-0.223585
$ ho(\mu_2, heta)$			0.003121	0.003620	0.016311	0.003531
$ \rho(R_{1,1}, R_{1,2}) $			-0.149040	-0.167514	-0.047995	-0.162304
$ \rho(R_{1,1}, R_{2,2}) $			0.439249	0.407558	0.186387	0.440271
$ \rho(R_{1,1},\theta) $			0.467925	0.463035	0.209996	0.462847
$ \rho(R_{1,2}, R_{2,2}) $			0.762028	0.766259	0.448719	0.770156
$ \rho(R_{1,2},\theta) $			0.801051	0.792721	0.519493	0.798059
$ \rho(R_{2,2},\theta) $			0.960119	0.950296	0.797676	0.973115

Table 15. Curved Manifold Example, $\Delta = 15.0$

As for Table 13 except that $\Delta = 15.0$, which is the smallest value of Δ such that each node in M_{ϵ} is connected to all other nodes.

Cui veu Mannolu Example							
Varia	able						
Independent	Dependent	Intercept	Slope	R^2			
	Δ	= 0.57					
V_{EC} sdev	V_{IC} sdev	0.000201	0.998685	0.999993			
V_{EC} sdev	V_{ME} sdev	-0.004274	6.279022	0.998619			
V_{EC} sdev	V_{MR} sdev	0.000080	1.024291	0.999985			
V_{IC} sdev	V_{ME} sdev	-0.005557	6.287697	0.998756			
V_{IC} sdev	V_{MR} sdev	-0.000126	1.025643	0.999998			
V_{ME} sdev	V_{MR} sdev	0.000844	0.162919	0.998793			
$\Delta = 3.0$							
V_{EC} sdev	V_{IC} sdev	0.000201	0.998685	0.999993			
V_{EC} sdev	V_{ME} sdev	0.001779	1.458109	0.999163			
V_{EC} sdev	V_{MR} sdev	0.000132	0.999614	0.999985			
V_{IC} sdev	V_{ME} sdev	0.001482	1.460118	0.999292			
V_{IC} sdev	V_{MR} sdev	-0.000069	1.000932	0.999997			
V_{ME} sdev	V_{MR} sdev	-0.001049	0.685046	0.999337			
$\Delta = 15.0$							
V_{EC} sdev	V_{IC} sdev	0.000201	0.998685	0.999993			
V_{EC} sdev	V_{ME} sdev	0.002700	1.001903	0.998382			
V_{EC} sdev	V_{MR} sdev	0.000135	0.999362	0.999985			
V_{IC} sdev	V_{ME} sdev	0.002494	1.003311	0.998565			
V_{IC} sdev	V_{MR} sdev	-0.000066	1.000680	0.999996			
V_{ME} sdev	V_{MR} sdev	-0.002478	0.995999	0.998667			

Table 16. Regressions Among Standard Deviations, Curved Manifold Example

Shown in the first block are linear regressions of standard deviations from V_{EC} , V_{IC} , V_{ME} , and V_{MR} computed from the MCMC chain described in the legend for Table 13 with independent and dependent variables as indicated in the first two columns of the table. The second and third blocks are the same but for $\Delta = 3.0$ and $\Delta = 15.0$

Variable							
Independent	Dependent	Intercept	Slope	R^2			
$\Delta = 0.57$							
V_{EC} sdev	V_{IC} sdev	-0.000000	1.000302	0.999944			
V_{EC} sdev	V_{ME} sdev	0.000985	40.107354	0.985408			
V_{EC} sdev	V_{MR} sdev	0.000004	1.050841	0.999935			
V_{IC} sdev	V_{ME} sdev	0.001009	40.078723	0.984650			
V_{IC} sdev	V_{MR} sdev	0.000004	1.050508	0.999961			
V_{ME} sdev	V_{MR} sdev	-0.000015	0.025815	0.985080			
	Δ	$\Delta = 3.0$					
V_{EC} sdev	V_{IC} sdev	-0.000000	1.000302	0.999944			
V_{EC} sdev	V_{ME} sdev	0.000114	1.861595	0.982616			
V_{EC} sdev	V_{MR} sdev	0.000002	1.002748	0.999959			
V_{IC} sdev	V_{ME} sdev	0.000115	1.860169	0.981758			
V_{IC} sdev	V_{MR} sdev	0.000002	1.002431	0.999986			
V_{ME} sdev	V_{MR} sdev	-0.000052	0.529139	0.982031			
$\Delta = 15.0$							
V_{EC} sdev	V_{IC} sdev	-0.000000	1.000302	0.999944			
V_{EC} sdev	V_{ME} sdev	0.000016	0.705615	0.962668			
V_{EC} sdev	V_{MR} sdev	0.000002	1.002291	0.999958			
V_{IC} sdev	V_{ME} sdev	0.000017	0.705142	0.962014			
V_{IC} sdev	V_{MR} sdev	0.000002	1.001975	0.999986			
V_{ME} sdev	V_{MR} sdev	-0.000005	1.367140	0.962229			

Table 17. Regressions Among Covariances, Curved Manifold Example

Shown in the first block are linear regressions of covariances from V_{EC} , V_{IC} , V_{ME} , and V_{MR} computed from the MCMC chain described in the legend for Table 13 with independent and dependent variables as indicated in the first two columns of the table. The second and third blocks are the same but for $\Delta = 3.0$ and $\Delta = 15.0$

1 References

- Bornn, Luke, Neil Shephard, and Reza Solgi (2018), "Moment Conditions and Bayesian Nonparametrics," Journal of the Royal Statistical Society, Series B 81(1), 5–43.
- Businger, Peter A., and Gene H. Golub (1969), "Singular Value Decomposition of a Complex Matrix," Communications of the ACM 12, 564–565.
- Byrne, S., and M. Girolami (2013), "Geodesic Monte Carlo on Embedded Manifolds," Scandinavian Journal of Statistics 40, 825–845.
- Dijkstra, E. W. (1959), "A Note on Two Problems in Connexion with Graphs," Numerische Mathematik 1 269–271
- Gallant, A. Ronald (2022), "Nonparametric Bayes Subject to Overidentified Moment Conditions," Journal of Econometrics 228, 27–38.
- Gallant, A. Ronald, and Douglas W. Nychka (1987), "Semi-Nonparametric Maximum Likelihood Estimation," *Econometrica* 55, 363–390.
- Gallant, A. Ronald, and George Tauchen (1989), "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," *Econometrica* 57, 1091–1120.
- Memoli, Facundo, and Guillermo Sapiro (2001), "Fast Computation of Weighted Distance Functions and Geodesics on Implicit Hyper-surfaces," Journal of Computational Physics 173, 730–764.
- Morgan, Frank (2016), Geometric Measure Theory, A Beginner's Guide, 5th Edition, San Diego CA, Academic Press.
- Pennec, Xavier (1999), "Probabilities and Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements. In A.E. Cetin, L. Akarun, A. Ertuzun, M.N. Gurcan, and Y. Yardimci, editors, *Proceedings of Nonlinear Signal and Image Processing* 1, 194–198, June 20-23, Antalya, Turkey, 1999. IEEE-EURASIP.

- Pennec, Xavier (2006), "Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements," Journal of Mathematical Imaging and Vision 25, 127-154.
- Sethian, J. A. (1996), "A Fast Marching Level Set Method for Monotonically Advancing Fronts," Proceedings of the National Academy of Sciences 93, 1591–1595. https://doi.org/10.1073/pnas.93.4.1591
- Shin, Minchuyl (2015), "Bayesian GMM," Working paper, Department of Economics, University of Illinois. http://www.econ.uiuc.edu/~mincshin/BGMM_ver05
- Wikipedia (2021), "Frechet Mean," Last modified June 3, 2021. https://en.wikipedia.org/wiki/Frechet_mean.
- Zappa, Emilio, Miranda Holmes-Cerfon, and Jonathan Goodman (2018), "Monte Carlo on Manifolds: Sampling Densities and Integrating Functions," *Communications on Pure* and Applied Mathematics 71, 2609–2647.