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Abstract

We consider estimation of variance and covariance from a point cloud that are draws from

a posterior distribution that lie on a curved, singular manifold. The motivating application

is Bayesian inference regarding a likelihood subject to overidentified moment equations using

MCMC (Markov Chain Monte Carlo). The MCMC draws lie on a singular manifold that

typically is curved. Variance and covariance are Euclidean concepts. A curved, singular

manifold is not typically a Euclidean space. We explore some suggestions on how to adapt

a Euclidean concept to a non-Euclidean space then build on them to propose and illustrate

appropriate methods.

Keywords and Phrases: Method of moments, Bayesian inference, Simultaneously valid

credibility intervals, Point cloud, Curved, singular manifold.
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1 Introduction

There are many uses for scale measures. Among them are tuning an MCMC chain, deter-

mining the appropriate relative lengths of the sides of multivariate credibility rectangles,

and adhering to the convention of reporting both location and scale in the presentation of

statistical results.

If the MCMC chain1 lies on a curved, singular manifold, the computation of scale becomes

problematic because distance on a manifold is reckoned according to distance along a geodesic

rather than along a strait line as in a Euclidean space. Conventional measures of scale such

as2 S2 are based on straight line notions of distance and are centered at a point that does

not necessarily lie on the manifold. This can lead to both understatement of scale and

poor location of credibility rectangles relative to scale and location based on geodesics. This

situation usually arises as follows.

A likelihood

f(y | x, ρ) =
n
∏

t=1

f(yt | xt−1, ρ), (1)

where yt is a column vector and xt−1 is a matrix of exogenous and predetermined variables

with a fixed number of rows, is available. The number of columns of xt−1 is either fixed, as

in a VAR model or a cross-sectional application, or increasing with t, as in a VAR-GARCH

model.3 The y and x are objects that contain the observed yt and xt−1. In the applica-

tions envisioned here the likelihood is usually chosen to be a sieve with variable number of

parameters thus making the Bayes estimator nonparametric, but this is not essential.

Estimation of the parameters in (1) is subject to moment conditions4

0 = q(ρ, θ) =
1

n

n
∑

t=1

∫

m(y, xt−1, ρ, θ)f(y | xt−1, ρ) dy, q ∈ R
m (2)

support conditions

h(ρ, θ) > 0, h ∈ R
l (3)

1The terms “MCMC chain”, “MCMC draws”, and “point cloud” are used interchangeably; “flat space”
and “Euclidean space” are used interchangeably.

2For multivarite ut, S
2 = 1

n

∑n

t=1
(ut − ũ)(ut − ũ)⊤, where ũ = 1

n

∑n

t=1
ut.

3This is due to the recursive structure of GARCH variance which causes a VAR-GARCH model to be
non-Markovian and to depend on the past up to the initial observation as most VAR-GARCH likelihoods
are implemented in practice.

4One can integrate with respect to the distribution of xt−1 rather than the empirical distribution of xt−1

if it is available.
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and a prior

π(ρ, θ). (4)

Letting5 x = (ρ, θ), the support of the posterior is the manifold

M =
{

x ∈ R
da : qi(x) = 0, i = 1, . . . ,m, hj(x) > 0, j = 1, . . . , l

}

(5)

The parameters ρ are induced in q(ρ, θ) by the integration but they may also appear

explicitly in m(yt, xt−1, ρ, θ). The parameters θ are those that appear only in the moment

functions m(yt, xt−1, ρ, θ). We assume overidentification, i.e., that the dimension m of q(ρ, θ)

is larger than the dimension of θ. Under this setup, the support of the posterior density is

singular with respect to Lebesgue measure (Bornn, Shephard, and Solgi, 2018).

Our interest is in draws from algorithms that deliver exact solutions. That is, the draws

{xi}Ni=1 are in M to within reasonable precision for linear algebra on a machine. To our

knowledge, there are three algorithms that can satisfy this requirement for the Bayesian

inference problem defined by (1) through (4). Gallant (2022) generates draws {xi}Ni=1 in M

for the problem as stated by using the Surface Sampling Algorithm of Zappa, Holmes-Cerfon,

and Goodman (2018). Bornn, Shephard, and Solgi require that (1) has discrete support,

which makes (2) a sum involving probability weights and their corresponding support. Their

paper contains numerous examples and an extensive review of literature related to this

problem. Shin presumes that (1) is a mixture of specific parametric distributions with

random weights drawn from a discrete distribution. The constraint (2) becomes a constraint

on the discrete distribution of the random weights. His examples are from macro economics.

If geodesics are explicitly available then the geodesic Monte Carlo method of Byrne and

Girolami (2013) is available and the methods proposed here can be drastically simplified

because the difficulty of only having a point cloud to work with is eliminated.

In what follows, requirements are as follows: The manifold M given by (5) must be

nonempty and connected. Define

Q
x
=

[

∂

∂x
q1(x), . . . ,

∂

∂x
qm(x)

]

, (6)

5In this paper, sans serif x and y are distinguished from italic x and y; the former referring to parameters
and the later to data. This is to maintain compatibility with both econometric conventions and the numerical
analysis conventions of Zappa, Holmes-Cerfon, and Goodman (2018) and Gallant (2022).
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which is the transpose of the Jacobian of q(x) and has dimension da by m. We assume that

Q
x
exists and has full rank for all x ∈ M .

The functions q(x) and h(x) that determine M might arise from considerations other than

the Bayesian inference problem defined by (1) through (4). Thus our results potentially have

broader applicability. They apply to any random point cloud onM for which duplicate points

either do not occur or can be easily identified. And to any M for which q(x), which need

not be of the form of (2), and Q
x
can be computed. Conversely, if one has a convenient

parametric representation of M such as M = {x ∈ R
da : x = g(u), u ∈ R

d, d < da} and a

convenient representation of geodesics on M such as γ(t), then one might prefer the methods

set forth in Pennec (2006).

Code, including a User’s Guide, implementing methods introduced here for the SNP sieve

f(yt | xt−1, ρ) proposed by Gallant and Nychka (1987) as adapted to time series applications

by Gallant and Tauchen (1989) is at http://www.aronaldg.org/webfiles/npb.

Parts of this paper borrow from Gallant (2022) so as to make this paper self contained.

2 Geodesics

On a manifold M ⊂ R
da of dimension d < da, distance is computed along geodesics. One

computes distance by traversing a geodesic from a starting point s to an end point p and

accumulating (infinitesimal increments of) a Hausdorff weight function δM(s, p) defined on

M (Morgan, 2016).

As shown by Memoli and Sapiro (2001, Subsection 1.1), one can compute an approximate

geodesic by putting an ǫ-offset on the manifold M to obtain a da-dimensional subset Mǫ of

R
da and applying the Fast Marching Algorithm of Sethian (1996). For a point cloud on

M one can construct such an Mǫ as the union of ǫ-balls centered at the points provided ǫ

is large enough that Mǫ is a connected set. Unfortunately, the Fast Marching Algorithm

requires that Mǫ be placed on equally spaced grid by interpolation. The demands of a grid

on computer memory limit the applicability of the Fast Marching Algorithm to problems

where da is less than about five. Regardless of dimension, the method described next is far

more convenient for a point cloud.

Rather than an interpolated, equally spaced grid, one can let the point cloud determine
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an unequally spaced grid and use Dijkstra’s algorithm (Dijkstra, 1959) to compute geodesics.

If Mǫ is a connected set, then the MCMC draws may be viewed as nodes pj of a graph Gǫ

connected by edges ej,j′ that have Euclidean length δ(pj, pj′) and that stay within Mǫ. In

view of the fact that our point cloud is an MCMC chain and the contours of the density that

the chain targets are not spheres, our ǫ-balls for determining Gǫ are rectangles with sides k

equal to ∆max{|xk,i − xk,i−1| : xi ∈ D} where D = {xi}Ni=1 denotes the MCMC chain and

xk,i denotes the kth element of xi. From a start s, Dijkstra’s algorithm finds the shortest

path that traverses edges to every node pj. Computations are as follows.

The MCMC chain D = {xi}Ni=1 will contain duplicates due to rejections. They are easily

detected because they must occur in succession. Nodes are the distinct points {pj}N∗

j=1 and

j(i) is the mapping from draw index i to node index j. Dijkstra’s algorithm gives the distance

δ(s, pj) along edges from s to every node pj and the path (jp1 , j
p
2 , ..., j

p
k) that connects them,

where jp1 refers to starting node s and jpk to ending node pj

One proceeds by choosing a ∆ and constructing the graph Gǫ. If Gǫ is not connected,

Dijkstra’s algorithm will return ∞ for the distance from s to an isolated node. One can

find the smallest admissible ∆ by finding a ∆ with isolated nodes then increasing ∆ until

Dijkstra’s algorithm does not find isolated nodes. One can check that edges lie within Mǫ

by seeing if the midpoint of every edge is in Mǫ to within a reasonable tolerance.

3 Estimating Scale

The notions of mean, variance, and covariance are flat space concepts, i.e., Euclidean space

concepts, and it is not obvious how to extend them to a curved, nonlinear manifold.

There seems to be general agreement on how to define a mean over a curved, nonlinear

manifold and estimate it from a sample (Wikipedia, 2021). The estimate of the intrinsic

mean, x̄, is the start s that minimizes 1
N

∑N
i=1 δ

2(s, pj(i)). This is an example of a Frechet

mean on a metric space (Pennec, 1999, Sec. 2.2). The term 1
N

∑N
i=1 δ

2(s, pj(i)) is an example

of a Frechet variance. It is a sort of total variation. Because it does not provide variances

and correlations coordinate by coordinate it is not adequate for the applications we envisage

here.

Computing the intrinsic mean is an order N2 computation and is quite time consuming.
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One way to reduce run times is to reduce the length of the chain by retaining, say, every tenth

element of the chain. Chains are often highly serially correlated in which case reducing the

length of the chain in this fashion does not lose much information. For large ∆ the number

of edges in the graph Gǫ approaches 1
2
N(N − 1). One may have to reduce the length of

the chain anyway to keep file sizes within reason and the run times of Dijkstra’s algorithm

within reason.

Another way to reduce run times is to search only among likely candidates for the mean.

One can, say, divide the chain into ten segments and unrestrictedly search for the intrinsic

mean in the first segment. Then search only among, say, the thousand nodes closest to the

mean found in the first segment in the combined first and second segments. Continue so on

until one is searching among, say, the closest one hundred in the full chain. Fortunately the

estimators of scale that we discuss below do not appear sensitive to slight errors in finding

the intrinsic mean.

A first approach to estimating variances and covariances is to ignore the fact that the

MCMC chain lies on a manifold. One computes a mean by averaging over the chain: x̃ =

1
N

∑N
i=1 xi. This is the extrinsic mean. One computes sample variances and covariances by

averaging squares and cross products of deviations from the extrinsic mean x̃ over the chain:

VEC = S2 =
1

N

N
∑

i=1

(xi − x̃)(xi − x̃)⊤. (7)

One could, instead, perform the same computation but center at the intrinsic mean x̄:

VIC =
1

N

N
∑

i=1

(xi − x̄)(xi − x̄)⊤. (8)

The diagonals of VEC are smaller than those of VIC .

One can make the following argument in support of extrinsic variance and covariance as

opposed to the approaches described below. The manifold M can be viewed as a sample

space and {xi}Ni=1 as a sample from the distribution P that the chain targets. The function

that maps the j, k elements of x ∈ M to the two dimensional reals,

fj,k(x) : x 7→ R
2 (9)

is a random variable on the probability space (M,B, P ), where B denotes the Borel subsets

of M . One can argue that the two variances and the covariance of this random variable are
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the objects of interest. If one adopts this view, then VEC is the correct computation. Using,

VIC instead of VEC makes a slight accommodation to the origin of the chain by centering at

a point x̄ that is in M .

A third approach is essentially the same as an extrinsic computation but one increases

each coordinate of a point pj by its geodesic distance in that direction. Specifically, for the

path6 (jp1 , j
p
2 , ..., j

p
k) that connects x̄ to pj, where jp1 indexes node x̄ and jpk indexes node pj,

put7

Dj = diag[sgn(pj − x̄)]
k

∑

ℓ=2

|pjp
ℓ
− pjp

ℓ−1

| Dj ∈ R
da (10)

where the signum and absolute value functions are applied elementwise to pj−x̄ and pjp
ℓ
−pjp

ℓ−1

,

respectively. The estimated variance-covariance matrix is

VME =
1

N

N
∑

i=1

Dj(i)D
⊤
j(i). (11)

We will call the third approach modified extrinsic variance-covariance.

The diagonals (variances) of VME are larger than the diagonals of VIC . The larger is ∆

the smaller are the diagonals of VME. If one sets ∆ so large that all nodes are connected,

then VME is equal to VIC to within rounding errors caused by thrusting Dijkstra’s algorithm

into the middle of the computation.

The modified extrinsic approach makes intuitive sense. Consider three dimensional space

and let the variance under consideration be that for altitude. If the altitude of the end point

pj and the intrinsic mean x̄ are both the same then the contribution of pJ to the diagonal

element of VIC corresponding to altitude is zero. If there is a ridge on the manifold between

x̄ and pj then the contribution to the modified extrinsic variance VME will be the square of

the sum of the two changes in altitude that it takes to ascend and descend the ridge. This

seems to be a reasonable representation of the geometry of the situation.

A defect of the above approaches is that the manifold M is singular with respect to

Lebesgue measure but the matrices VEC , VIC , and VME will not necessarily be singular. The

next approach respects singularity.

6This path is an output of Dijkstra’s algorithm and k is part of that output.
7This expression corrects an error in equation (15) of Gallant (2022).
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The fourth approach uses notions from Riemannian geometry; a good reference is Pennec

(2006). The idea is to represent the manifold as a flat space called a chart and then compute

variances and covariances in the usual way on the chart. The chart is a Euclidean space if

the inner product under the coordinate system chosen to represent points on the chart is

Euclidean, as we assume. For instance, if the manifold were the surface of the earth with

elevations disregarded, the chart would be a two dimensional world map and the MCMC

chain would map to points on this world map.

The flat space one uses as a chart with the Riemannian approach is the plane T
x̄
M tangent

to the manifold M at the intrinsic mean x̄. A point xi from the MCMC chain {xi}Ni=1 on M

is plotted on this chart as follows. For each geodesic γ(t) with γ(0) = x̄, the tangent vector

d
dt
γ(0) is in T

x
M . Let γi(t) be the geodesic connecting x̄ to the point xi for which distance

δi = δ(x̄, xi) along the geodesic is smallest and let v̂i be the tangent vector v̂i =
d
dt
γi(0). The

marker ẑi corresponding to xi is placed on the chart T
x̄
M at ẑi = δi

v̂i
‖v̂i‖

.

There are some technical problems with this approach, the most important of which is

that the geodesic with smallest distance δ(x̄, xi) may not be unique. These can be addressed

in ways that need not concern us because the method is not feasible when all one has available

is an MCMC chain on M . But we can borrow the ideas of using the tangent plane as a chart,

mapping xi from the chain to ẑi on the chart by means of lines emanating from x̄, and making

the distance of ẑi from x̄ along the line in the chart the same as the distance δ(x̄, xi) from x̄

on the manifold.

To modify the Riemann approach to be applicable to a chain on a manifold we need to

explicitly define a basis on T
x̄
M : Put A = [Q

x̄
| 0 ], where Q

x̄
is given by (6). A is a square

matrix of dimension da by da whose last d = da−m columns are filled with zeros. Apply the

singular value decomposition algorithm (Businger and Golub, 1969) to obtain A = USV ⊤;

U will be orthogonal and S diagonal with the first m diagonal entries positive and the

remainder zero. If S is not such, Q
x̄
does not have full rank, which violates the regularity

conditions set forth in Section 1. Partition U as
[

T⊥
x̄
|T

x̄

]

, where T⊥
x̄

has m columns and T
x̄

has d columns.

A point xi from from the MCMC chain {xi}Ni=1 on M is plotted on the chart T
x̄
M as

follows. Put vi = T
x̄
T⊤
x̄
(xi − x̄); vi is the orthogonal projection of xi − x̄ onto T

x̄
M . The
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marker zi corresponding to xi is placed on the chart T
x̄
M at zi = δi

vi
‖vi‖

. Define the modified

Riemann variance-covariance matrix as

VMR =
1

N

N
∑

i=1

ziz
⊤
i (12)

Note that VMR is da by da with rank d.

To compare the modified Riemann approach to the Riemann approach we return to the

world map analogy with radius of the earth equal to one and elevations disregarded. Both

charts would be circles of radius π. Suppose that all the MCMC draws {xi}Ni=1 were on the

two geodesics pointing north and northeast from x̄. The Riemann chart and the modified

Riemann chart would look the same with the markers {zi}Ni=1 plotted on two straight lines

emanating from x̄ that diverge. The antipodal x̄ap point cannot be plotted on either chart. In

the Riemann approach this is because both geodesics connect to x̄ap with the same distance.

In the modified Riemann approach it is because x̄ap plots atop x̄. One consequence is that

the chart is an open set that does not contain a marker for x̄ap. One has to presume that

x̄ap occurs with probability zero.

Now put a symmetric mountain (a cone) due north of x̄ with a base large enough that

the mountain intersects the northeast set of draws. The modified Riemann chart would look

the same other than no longer being a circle due to a bulge at the terminus of the north

and northeast straight lines emanating from x̄ and altered spacing of the markers when the

mountain is encountered. The Riemann chart would look different. All north points on the

far side of the mountain would have to be deleted because two different geodesics originating

at x̄ connect to them at the same distance. These points would have to be presumed to occur

with probability zero. Markers for the northeast points would fan out because the points no

longer lie on a single geodesic.

3.1 Illustration of Scale Measures

Figure 1 illustrates the computations graphically. The panels (a), (b), (c), and (d) illustrate

the computation of VEC , VIC , VME, and VMR, respectively. Details are in the figure legend.

Figure 1 about here.
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To illustrate the population quantities corresponding to VEC , VIC , VME, and VMR consider

the distribution on the half sphere

(u, v) ∼ N2(0,Σ) (13)

Σ =
1

4





1.0 0.5

0.5 1.0



 (14)

r =
√
u2 + v2 (15)

(x, y, z) =
(

u, v,
√
1− r2

)

if r < 1 else discard (16)

The results below are obtained from a simulation of (16) of size N = 200000. Due to

discards when r ≥ 1, the effective sample size was n = 198373.

The intrinsic mean, x̄ is (0, 0, 1). The extrinsic mean, x̃, is (0, 0, 0.91656).

Computation of VEC , VIC , and VMR from their definitions is straightforward. To compute

D for VME the expression is

D = [x, y, z − 1− |rα− 2 sin(α/2)|] (17)

α = arcsin(r) (18)

The term rα − 2 sin(α/2) is the length of the arc from (0, 0, 1) to (x, y, 1 − z) minus the

length of the chord from (0, 0, 1) to (x, y, z − 1). This is the extra length of traveled in the

z direction due to the curvature of the half sphere; note that z is always less than 1.

Denote the correlation matrices corresponding to VEC , VIC , VME, and VMR by CEC , CIC ,

CME, and CMR. Population values of these matrices are presented in Table 1.

For this example, the z axis is perpendicular to the tangent plane at the intrinsic mean.

Due to this, the fact that VMR is singular is obvious at sight in Table 1.

This highlights a deficiency of the modified Riemann variance-covariance matrix VMR

that is caused by trying to express standard deviations in the Euclidean coordinate system

on R
da rather than the coordinate system T

x̄
on the chart: The entire point cloud must be

close to the tangent plane, i.e., to the chart. Otherwise, scale can be understated as seen for

z in the preceding example. A partial remedy is discussed the next section.

Table 1 about here.
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3.2 Credibility Regions

Because the point cloud under consideration {xi}Ni=1 is presumed to be a (possibly correlated)

sample from a posterior distribution, it can be used to estimate the posterior probability of

a set R. The set R may either be a proper subset of M or be a subset of Rda . An estimated

posterior probability can be computed as

P (R | x, y) = 1

N

N
∑

i=1

IR(xi) (19)

One would prefer to work with regions R that are proper subsets of M . This is to some

extent possible but its practical use is severely inhibited by the difficulty of either visualizing

or describing a curved, singular manifold in R
da for da > 3.

There is one extrinsic region of special interest

Rτ =×da
i=1[ x̄i − τ sdev(xi), x̄i + τ sdev(xi)], (20)

where the sdev(xi) are the square roots of the diagonal elements of whichever of VEM , VIM ,

VME, or VMR one prefers. Choosing τ such that P (Rτ | x, y) = 1− α gives a set of simulta-

neously valid (1− α)× 100% credibility intervals.

Obviously one can base credibility regions on quantiles or other sorts of sets should one

prefer.

Returning to consideration of the Riemann approach, the draws {xi}Ni=1 in R
da that

are expressed in terms of elementary basis vectors are in one-to-one correspondence with

the points {zi}Ni=1 on the chart T
x̄
M that are expressed in terms of the basis vectors T

x̄
.

Therefore, a credibility region constructed on the chart, which is a flat space and therefore

amenable to standard statistical analysis, can be mapped to the manifold M in R
da . One

can do this discretely by mapping the points zi in the credibility region on the chart to the

corresponding points xi on the manifold M . Or, as an aid to visualization, one can regress

the points xi on the points zi using, say, a multivariate polynomial and thereby represent

a continuous region on the chart as a continuous region on the manifold. An example is

Figure 2 which plots a slice of a 95% credibility rectangle on the chart to a coordinate of M .

As a practical matter, for da > 3, one will probably have to restrict attention to regions of

the form (20) that can be described in tabular form.

12



Figure 2 about here.

3.3 Most Likely Point

This subsection uses ideas from a referee to whom credit is due.

A measure of location that is on the surface of the manifold is the posterior mode. It is

trivially easy to compute from an MCMC chain because the posterior is known to within the

normalization constant at the accept/reject step of Metropolis algorithms; its computation

is, therefore, essentially costless.

We followed tradition in this literature and used the intrinsic mean as the measure of

location; see Pennec (1999, 2006) and the references therein. Early experience suggested that

the posterior mode is often far enough away from the intrinsic mean that it does not make

a good start for computation of the intrinsic mean. After finding an effective start strategy,

little thought was given to the posterior mode. The referee suggests that this is evidence of

skewness. Another possibility is that, while close in Euclidian distance, the posterior mode

can be far enough away in geodesic distance to be a poor start due to the shape of the

manifold. See, e.g., Figure 2, wherein the manifold folds tightly back on itself.

The argument advanced by the referee in favor of the posterior mode is in the context of

credibility regions. The referee recommends obtaining a credibility region using

R1−α = {xi | log p(xi | x, y) > p1−α} (21)

where p(xi|x, y) is the posterior density and {xi}Ni=1 is the point cloud. We shall compare the

referee’s recommendation to

R∗
1−α = {xi | (xi − x̄)⊤V −1

IC (xi − x̄) < p∗1−α}. (22)

Both R1−α and R∗
1−α were computed with α = 0.05 for the demand and supply point

cloud of Subsection 4.1. The surface area of the credibility region R1−α may be computed

by importance sampling, viz.

A =
∑

x∈R1−α

1/ exp[const+ log p(x | x, y)] (23)
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and the same for A∗, the surface area of R∗
1−α, with the same const.8 The ratio of these

areas is A∗/A = 2.77 thus bearing out the referee’s claim that the region R1−α is preferred.

In absolute value, the largest Fisher-Pearson coefficients of skewness for the elements xi

of x in the point clouds of the examples of Sections 4.1, 4.2, and 4.3 are 0.30675, 0.79980, and

0.11948, respectively. This is evidence against skewness except that marginalization discards

surface information such as shown in Figure 2.9 If one replaces the intrinsic mean, x̄, by the

posterior mode in (22), the ratio of areas is 2.82, which is a small increase from 2.77. This

is stronger evidence against skewness.

4 Examples

The first two examples are taken from Gallant(2022). Some of the text below is edited

excerpts form that source.

4.1 A Simple Demand and Supply Example

Consider a simulation of the demand and supply system

xt = (σx + ρxxt−1)z1,t (24)

log qd,t = a1 + a2 log pt + σdz2,t (25)

log qs,t = b1 + b2 log pt + xt + σsz3,t (26)

with solution (log pt, log qt) under qt = qd,t = qs,t, where σx = 3, ρx = 0.2, a1 = 12, a2 = −2,

b1 = 3, b2 = 4, σd = σs = 0.1, zi,t standard normal, and sample size n = 500. Note that

the supply shifter xt is heteroscedastic with variance dependent on xt−1 whence the same for

price pt and quantity qt. The data are yt = (log pt, log qt, xt) for t = 1, 2, . . . , n.

The likelihood used for estimation is normal with heteroscedastic errors that depend on

past values of yt:

yt ∼ n3(yt |µ,Σt−1) (27)

Σt−1 = RR′ + P (yt−1 − µ)(yt−1 − µ)′P ′, (28)

8The const can be chosen to enhance numerical stability because it cancels in the ratio A∗/A.
9See the discussion of Equation (9).
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where R is upper triangular, and P is diagonal. Thus,

ρ = (µ1, µ2, µ3, R1,1, R1,2, R2,2, R1,3, R2,3, R3,3, P1,1, P2,2, P3,3) ∈ R
12.

A set of moment conditions for estimation of the demand equation (25) are

md,1(yt, yt−1, ρ, θ) = log qt − a1 − a2 log pt (29)

md,2(yt, yt−1, ρ, θ) = xtmd,1(yt, yt−1, ρ, θ) (30)

md,3(yt, yt−1, ρ, θ) = xt−1md,1(yt, yt−1, ρ, θ) (31)

θ = (a1, a2)

ρ not used

The prior for ρ is independent normal with location the unconstrained maximum like-

lihood estimates of (27) and scale twice the maximum likelihood standard deviation. The

prior for θ = (a1, a2) is independent normal with means (12,−2) and standard deviations

(2, 2). The support conditions on R and P of (28) are that diagonals of R must be positive,

the first diagonal element P must be positive, and the eigenvalues of the companion matrix

of Σt−1 must be less than one in absolute value. In addition, a1 must be positive and a2

negative.

The Surface Sampling Algorithm, with moment conditions, prior, and support conditions

as immediately above and with tuning parameters as in Gallant (2022) provides a chain of

50,000 draws after transients have died out. The chain was reduced (downsampled) with a

stride of 10 leaving a chain of length 5,000 for analysis.

Figure 3 about here.

Table 2 about here.

Table 3 about here.

Table 4 about here.
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Table 5 about here.

Table 6 about here.

Table 7 about here.

At the midpoint c of each edge in the graph Gǫ, ‖q(c)‖ was evaluated, where q is given by

(2). Figure 3 plots the mean, 99th, and 90th quantiles of these ‖q(c)‖ against the value of ∆

that determined Gǫ. The manifold Mǫ appears to be moderately flat because the reduction

from 50,000 to 5,000 draws, which increases the length of edges, leaves the centers of all edges

reasonably close to M . As we shall see later in Subsection 4.3, a strongly curved manifold

does not permit such a reduction.

The endpoints of Figure 3 are ∆ = 0.9, which is the smallest value for which Mǫ is

a connected set and ∆ = 11, which is the smallest value for which each point in {xi}Ni=1

is connected by an edge to all other points in {xi}Ni=1. Standard deviations for the two

endpoints, ∆ = 0.9 and ∆ = 11, are presented in Tables 2 and 4, respectively, for all

methods of computing standard deviations described in Section 3. Table 3 is the same for

∆ = 3, which is the point just after the curves in Figure 3 begin to flatten.

There are too many covariances among x = (ρ, θ) to permit tabular display. But in an

application, what is usually of interest are the covariances, expressed as a correlation, among

the parameters θ introduced via the moment functions. These are displayed in Table 5.

Regressions among standard deviations are shown in Table 6 for ∆ = 0.9, ∆ = 3.0, and

∆ = 11. As seen from Table 6, for large ∆ the estimators behave similarly, mostly making

small adjustments to one another via the intercept term. For small ∆ what stands out is

the behavior of standard deviations from the modified Riemann estimator VMR: standard

deviations become larger relative to the other estimators. One can also see this behavior in

Table 2.

Regressions among covariances are shown in Table 7. The story is much the same as for

Table 6 except for scaling: Taking square roots to get standard deviations attenuates slopes.
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If one regressed variances instead of standard deviations, the scaling would be similar. Stan-

dard deviations are of most interest in applications, hence the choice of standard deviations

for Table 6 rather than variances.

For ∆ = 3.0 and standard errors from VME, the value of τ for which P (Rτ | x, y) = 0.95

is τ = 2.64; Rτ is defined by (20).

4.2 Extraction of the Stochastic Discount Factor

Consider the specification and extraction of the ex post stochastic discount factor.

Let Rt =
Pt+Dt

Pt−1

denote the gross return to a security whose price is Pt at time t and that

pays a dividend Dt at time t. Let rt = log(Pt +Dt)− log(Pt−1) denote its geometric return.

For any security, the stochastic discount factor satisfies

1 =

∫

SDFt(y)Rt(y) f(y | xt−1, ρ) dy (32)

provided that the SDFt and Rt are functions of y. The density f(yt | xt−1, ρ) is that given

by (1) and xt−1 is the time t− 1 information set of the conditional expectation (32).

Observed y1,t is daily, inflation adjusted, geometric returns on the S&P500 stock index

(including distributions) and y2,t the same for the NASDAQ stock index for January 1, 2010,

to December 31, 2018, which are n = 2264 bi-variate observations. The data are avail-

able at www.aronaldg.org/webfiles/data as stocks s.dat for data and stocks s.doc

for documentation.

Consider a log quadratic specification of sdf = log(SDF); viz.,

sdfq(yt) = a0 + a1ft + a2f
2
t , (33)

where ft =
1
2
(y1,t/100 + y2,t/100). The posterior probability in favor of a quadratic rather

than linear specification is 0.81 (Gallant, 2022, Subsection 3.2).

For the likelihood (1) we use a bivariate SNP-ARCH model. This model has an SNP

innovation density with VAR location and diagonal ARCH scale. It is parameterized as

follows:

y ∼ [P(z)]2n2(y |µ,Σ)
∫

[P(s)]2n2(s | 0, I) ds
(34)
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where P(z) is evaluated at z = Σ−1/2(y−µ), n2(y|µ,Σ) is the bivariate normal density, and

P(z) = a01z2 + a02z
2
2 + a03z

3
2 + a04z

4
2 + a05z1 + a06z

2
1 + a07z

3
1 + a08z

4
1 .

The location and scale are

µ = b0 + Byt−1

Σ = R0R
′
0 + P (yt−1 − b0 −Byt−2)(yt−1 − b0 −Byt−2)

′P ′

where R0 is upper triangular and P is diagonal. The parameters of P(z), the elements of

b0 and B, and the non-zero elements of R0 and P are the elements of ρ; see Table 8 for the

ordering of parameters within ρ. The information set is xt−1 = (yt−1, yt−2).

The moment conditions defining (2) that we use in estimation are:

m1(yt, xt−1, ρ, θ) = 1.0− exp[sdfq(yt) + r1,t] (35)

m2(yt, xt−1, ρ, θ) = 1.0− exp[sdfq(yt) + r2,t] (36)

m3(yt, xt−1, ρ, θ) = y1,t−1m1(yt, xt−1, ρ, θ) (37)

m4(yt, xt−1, ρ, θ) = y2,t−1m2(yt, xt−1, ρ, θ) (38)

rt = yt/100

θ = (a0, a1, a2)

ρ not used

The prior for ρ is independent normal with location and scale the SNP-ARCH uncon-

strained maximum likelihood estimated parameters and standard errors. Admittedly this is

a data dependent, independence prior, but it is so loose that we think this consideration can

be dismissed. The prior for θ = (a0, a1, a2) is independent normal with means (0,−1, 0) and

standard deviations (1, 1, 1). This prior loosely implies a variant of CAPM (capital asset

pricing model).

The support conditions apply to R0 and P of the scale function and B of the location

function. They are that the diagonals of R0 be positive and that the first diagonal element

of the diagonal matrix P be positive. In addition, the eigenvalues of the companion matrices

for the location function and the scale function are required to be less than one in absolute

value.
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The Surface Sampling Algorithm, with moment conditions, prior, and support conditions

as immediately above and with tuning parameters as in Gallant (2022) provides a chain of

50,000 draws after transients have died out. The chain was reduced with a stride of 10

leaving a chain of length 5,000 for analysis.

Figure 4 about here.

Table 8 about here.

Table 9 about here.

Table 10 about here.

Table 11 about here.

Table 12 about here.

The manifold Mǫ appears to be almost Euclidean as seen in Figure 4: The midpoints of

all edges are in Mǫ to within a tolerance of 2× 105 for any ∆. The construction of Figure 4

the same as described above for Figure 3. Here, ∆ = 1 is the smallest value for which Mǫ

is a connected set and ∆ = 31 the smallest value for which each node is connected to every

other node by an edge. Results for ∆ = 1 are rather erratic; thus ∆ = 2 is the smallest value

for which results are presented.

Standard deviations for ∆ = 2 and ∆ = 31 are presented in Tables 8 and 10 respectively

for all methods of computing standard deviations described in Section 3. Table 9 is the

same for ∆ = 10, which is the point just after the curves in Figure 4 begin to flatten. The

covariances expressed as correlation for the parameters θ that enter the model exclusively

through the moment conditions are shown in Table 5.

Regressions among standard deviations are shown in Table 11 for ∆ = 2, ∆ = 10,

and ∆ = 31. As seen from Table 11, for large ∆ the estimators behave similarly, mostly
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making small adjustments to one another via the intercept term. For small ∆ results differ

dramatically. Consider the behavior of VMR relative to either VEC or VIC , results being

essentially the same for either of the latter. Standard errors computed from VMR are ap-

proximately doubled.

Regressions among covariances are shown in Table 12. The story is much the same as

for Table 11 except for scaling for the reasons discussed above.

For ∆ = 10.0 and standard errors from VME, the value of τ for which P (Rτ | x, y) = 0.95

is τ = 2.85; Rτ is defined by (20).

The examples in Subsections 4.1 and 4.2, while representative of actual applications, are

deficient in that M is too flat, i.e., too like an Euclidean space. We need an example with

more curvature to gain further insight as to how the four measures of scale behave. This we

consider in the next example.

4.3 A Curved Manifold Example

The curved manifold example has a bivariate normal, iid likelihood

yt ∼ n2(yt |µ,Σ) (39)

Σ = RR′, (40)

where R is upper triangular. Thus,

ρ = (µ1, µ2, R1,1, R1,2, R2,2) ∈ R
5.

The moment conditions are

mc,1(yt, yt−1, ρ, θ) = y21,t + y22,t − 4θ (41)

mc,2(yt, yt−1, ρ, θ) = (y1,t − y1,t−1)
2 − 2θ (42)

θ ∈ R
1

ρ not used

Note that the moment functions depend on a lag even though the data are iid. The data,

n = 500, are simulated with µ1 = 0, µ2 = 0, Σ1,1 = 5, Σ1,2 = Σ2,1 = 6.12372, Σ2,2 = 15,

and θ = 5. The prior for ρ is independent normal with location the unconstrained maximum
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likelihood estimates of (39) and standard deviation 5.0. The prior for θ is normal with mean

5.0 and standard deviation 5.0. The support conditions are that diagonals of R must be

positive and θ must be positive.

Taking expectations, the conditions on ρ and θ are

Σ1,1 + Σ2,2 + µ2
1 + µ2

2 = 4θ (43)

Σ1,1 = θ (44)

(45)

Figure 5 displays this surface.

Figure 5 about here.

Figure 6 about here.

The Surface Sampling Algorithm, with moment conditions, prior, and support conditions

as immediately above provided a chain of 50,000 draws after transients have died out. The

chain was reduced with a stride of 10 leaving a chain of length 5,000.

For the reduced (downsampled) chain of length 5000, the smallest value of ∆ such that

Mǫ is a connected set is ∆ = 0.63. The norms of q given by (2) evaluated at the centers of

the edges of the graph Gǫ had mean, 99th percentile, etc. on the order of 1× 10−2; the edges

of Gǫ are not comfortably within M .

For the full chain of length 50,000, the smallest value of ∆ such that Mǫ is a connected

set is ∆ = 0.57. ∆ = 15 the smallest value for which each point in {xi}Ni=1 is connected

by an edge to all other points in {xi}Ni=1. The norms of q evaluated at the centers of the

edges of the graph Gǫ had mean, 99th percentile, etc. of the order of 1× 10−3, see Figure 6:

the edges are marginally within M . In the complete chain of length 50,000 the separation

between successive points is determined by the proposal density of the Surface Sampling

Algorithm, which, for these draws, is N6(0, 2
−6I). Thus, the graph Gǫ at ∆ = 0.57 consists

mostly of edges between successive points of the complete chain (that has had repetitions

due to rejections removed). One can reduce the average distance of edge midpoints from q

by decreasing the variance of the proposal density.
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In this instance the dimension of x = (ρ, θ) is small enough that all scale estimates can be

displayed. Standard deviations and correlations for the two endpoints of Figure 6, ∆ = 0.57

and ∆ = 15, are presented in Tables 13 and 15, respectively, for all methods of computing

standard deviations described in Section 3. Table 14 is the same for ∆ = 3.0, which is the

point just after the curves in Figure 4 begin to flatten.

Table 13 about here.

Table 14 about here.

Table 15 about here.

Table 16 about here.

Table 17 about here.

Table 16 presents the results of simple regressions among the standard deviations from

VEC , VIC , VME, and VMR for ∆ = 0.57, ∆ = 3, and ∆ = 15. As was the case for the

previous examples, for large ∆ the estimators behave similarly. The intercept terms for each

are negligible relative to standard deviations from the others and slopes are near one. For

small ∆ it is standard deviations from VME that behave differently from the others rather

than standard deviations from VMR as was the case in Table 11.

Regressions among covariances are shown in Table 17. The story is much the same as

for Table 16 except for scaling for the reasons discussed above.

For ∆ = 10.0 and standard errors from VME, the value of τ for which P (Rτ | x, y) = 0.95

is τ = 1.69; Rτ is defined by (20).
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5 Interpretation

The reference system for the MCMC chain is extrinsic; that is the parameters x = (ρ, θ)

are expressed in a da dimensional Euclidean coordinate system rather than a d dimensional

coordinate system defined either on the manifold M or on a chart of M . Therefore, if there

is an interest in credibility intervals, rectangles, or regions, then, presumably, these would

be expressed relative to the extrinsic coordinate system.

Geometrically, what one does to construct a credibility interval, rectangle, or region is to

shift the origin of the coordinate system to either the extrinsic mean x̃ or the intrinsic mean

x̄ then consider a geometrical shape centered at this mean. Therefore it is possible that a

region constructed using the extrinsic mean, in particular the rectangle

R̃τ =×da
i=1[ x̃i − τ sdev(xi), x̃i + τ sdev(xi)],

will not contain any points on the manifold. This would seem to be a compelling argument

in favor of using VIC , VME, or VMR. We will adopt that view here thus ruling out the use of

VEC .

Computation of the intrinsic mean requires a choice of ∆. Fortunately, the intrinsic mean

is apparently not sensitive to the choice of ∆. In our examples, the intrinsic mean does not

change at all for ∆ to the right of the point where the midpoint curve flattens, cf. Figure 3,

4, or 6. For the curved manifold example of Subsection 4.3, it is the same regardless of ∆.

For the others, changes in the intrinsic mean are not dramatic for ∆ to the left of the point

where the midpoint curve flattens

The main attraction of VIC is that it is straightforward to compute and does not require

application of Dijkstra’s algorithm10 nor computation of the tangent space coordinate system

T
x̄
. The regressions in Tables 6, 11, and 11 imply that it is reasonable relative to the other

estimators for ∆ to the right of the point where the midpoint curve flattens. For ∆ to the left

of the point where the midpoint curve flattens a choice involves the following considerations.

The logic of the estimator VME seems compelling with respect to standard deviations. A

standard deviation pertains to one axis of a Euclidean coordinate system. What matters is

how far to the left or right of the chosen measure of location an MCMC draw xi lies along that

10Other than to compute the intrinsic mean.
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axis. Instead of VME increasing that distance according to the entire length of the geodesic

δ(xi, x̄), as does VMR, it only increases it by how far the geodesic moves along the relevant

axis. This seems compelling because it makes little sense to increase length along an axis

by the entire length of a geodesic when the movement in the geodesic is mostly orthogonal

to that axis. Unfortunately, the interpretation of a correlation or covariance computed from

VME is less straightforward due to the unequal scaling of coordinates.

The Riemann approach is somewhat standard in the present context (Pennec, 2006).

However, its target application is the characterization of the probability measure P in the

probability space (M,B, P ) when one has an analytic, differentiable expression for geodesics,

can easily find the geodesics passing through any given point x ∈ M , and for which there is

a convenient one-to-one mapping between the chart T
x̄
M and M . Under these conditions,

one can either define or deduce from data a distribution on the Euclidean space T
x̄
M using

standard statistical methods and then easily transfer it to M . We are concerned here with

the case that the distribution on the manifold M is known, at least as far as to be able to

generate MCMC chains for x on the manifold, and what is required is some reasonable notion

of the scale of the fluctuations of x in the chain. Our adaption of the Riemann geometry

concepts to this context is reasonable. In fact, the chart developed here appears to have more

structural appeal for this purpose than the conventional Riemann chart, were it applicable.

The modified Riemann estimator has one distinctive feature not shared by the others: VMR

is singular with rank d as is the manifold M . Except in rare instances, such as the manifold

M is a flat space and the MCMC algorithm places points on M with high precision, the other

estimators will not share this feature. However, due to the singularity and the nonlinearity

of M one is quite likely underestimating the variation along some of the extrinsic axes, cf.

the last panel of Table 1.

The estimators VME and VMR can behave erratically when computed for ∆ to the left

of the point where the midpoint curve (e.g., Figure 3) flattens. The argument that justifies

replacing M by Mǫ (Memoli and Sapiro, 2001) for the purpose of computing geodesics is an

asymptotic argument as ∆ tends to zero. So it would seem that the largest ∆ one would

prefer is slightly to the right of the point where the midpoint curve flattens when using VME

or VMR.
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The view here is that VME makes the most intuitive sense for tabular reporting of esti-

mation results and for constructing credibility intervals or rectangles such as (20) and that

VIC is better for general use because its covariances and correlations are easier to interpret.

6 Conclusion

This paper studies approaches to estimating a variance matrix from an MCMC chain on

a curved, nonlinear manifold and their use together with the chain for the construction of

credibility intervals, rectangles, and regions. Four notions are examined: extrinsic centered

at the extrinsic mean, denoted VEC , extrinsic centered at the intrinsic mean, denoted VIC ,

the estimator VME, which is VIC modified by adjusting distance from the intrinsic mean

upward to reflect geodesic distance, and the estimator VMR, which is Riemannian variance

and covariance modified to reflect the practicalities of having only an MCMC chain and

tangent plane rather than a complete analytic description of the manifold. Conceptually

one would prefer one of the latter two, VME or VMR. They are computed by placing ǫ-balls

around the MCMC chain to get a connected set Mǫ. Because posterior regions are not balls,

used instead of ǫ-balls are rectangles which are determined from the MCMC chain that are

indexed by ∆ instead of ǫ. Geodesics are computed from a graph connecting all pairs within

Mǫ that are no farther apart than ∆. The value of ∆ is determined by examining a plot of

quantiles of the distance to the manifold of the centers of lines between connected pairs in

the graph, cf. Figure 3, 4, or 6. The advice of this paper is to choose ∆ just to the right of

the point where the curve flattens, use VME for reporting standard deviations of estimation

results and for computing credibility intervals and rectangles such as (20). Further advice is

to use VIC for credibility regions that make use of covariance or any other computation that

uses covariance or correlation.
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(a) Extrinsic, Extrinsic Center (b) Extrinsic, Intrinsic Center

(c) Modified Extrinsic (d) Modified Riemann

Figure 1. Illustration of Scale Measures Panels (a), (b), and (c) show a hypothetical surface with

hypothetical sample points shown as solid dots, •, and the intrinsic mean, x̄, shown as an open circle, ◦.
Panel (d) shows the plane tangent to the hypothetical surface at the intrinsic mean with the solid dots and

open circle projected onto that plane.

In Panel (a) are vectors formed by connecting the extrinsic mean, x̃, to the sample points, •. The scale

measure VEC is the average of the outer product of these vectors. This is the standard measure of scale, S2,

for any sample.

In Panel (b) are vectors formed by connecting the intrinsic mean, x̄, to the sample points, The scale measure

VIC is the average of the outer product of these vectors.

In Panel (c) are vectors formed by extending the vectors of Panel (b) by the length of their geodesics,

coordinate by coordinate, to connect to the points shown as circled pluses, ⊕. Because the multiples of

coordinates can differ, the circled plus vectors need not pass through the sample points. The scale measure

VME is the average of the outer product of the circled plus vectors.

In Panel (d) are vectors on the tangent plane Tx̄M that are formed by extending the vectors connecting

the intrinsic mean, ◦. to the projected sample points, • to the points shown as circled pluses, ⊕, by the

length of the geodesics connecting ◦ to • on the manifold M . The circled plus vectors will pass through

the projected sample points. The scale measure VMR is the average of the outer product of the circled plus

vectors.
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Figure 2. 95% Credibility Region, Demand and Supply Example. The demand and supply

example is described in Subsection 4.1. The coordinates var x and var y are the seventh and eighth

chart coordinates, that is, they are the coefficients of the seventh and eighth columns of Tx̄; var z is the

last element of x = (ρ, θ). It is the price elasticity of demand. All other chart coordinates are held fixed

at the values of the intrinsic mean. The surface was obtained by fitting a multivariate polynomial of

degree four with draws {xi} as the dependent variable and the corresponding points {zi} on the chart

as the independent variable. In this instance, var x is roughly interpretable as ρ10, which is P1,1, and

var y is roughly interpretable as ρ11, which is P2,2. P1,1 and P2,2 are the parameters that determine

the stochastic volatility of log price and log quantity, respectively.
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Figure 3. Distance of Edge Midpoints from Manifold, Demand and Supply Example. For

the graph Gǫ with offset ∆ as shown on the horizontal axis, the distance of the center of each edge

from the manifold M is computed. The dotdash line is the 99th percentile, the dotted line is the 90th

percentile, and the solid line is the mean.
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Figure 4. Distance of Edge Midpoints from Manifold, Stochastic Discount Function Ex-

ample For the graph Gǫ with offset ∆ as shown on the horizontal axis, the distance of the center of

each edge from the manifold M is computed. The dotdash line is the 99th percentile, the dotted line

is the 90th percentile, and the solid line is the mean.

31



mu_1

m
u_

2
S

igm
a_22

Figure 5. Curved Manifold Example Plotted is the manifold M for the likelihood (39) subject to

moment conditions (2) determined by (41) and (42). The missing dimensions, Σ1,1, Σ1,2, and θ, are

held constant at 5, 6.12372, and 5, respectively.
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Figure 6. Distance of Edge Midpoints from Manifold, Curved Manifold Example For the

graph Gǫ with offset ∆ as shown on the horizontal axis, the distance of the center of each edge from the

manifold M is computed. The dotdash line is the 99th percentile, the dotted line is the 90th percentile,

and the solid line is the mean.
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Table 1. Illustration of Population Variances and Correlations

VEC CEC

0.073658 0.058105 0.000088 1.000000 0.788701 0.002893

0.058105 0.073686 0.000041 0.788701 1.000000 0.001337

0.000088 0.000041 0.012574 0.002893 0.001337 1.000000

VIC CIC

0.073658 0.058105 0.000083 1.000000 0.788701 0.002194

0.058105 0.073686 0.000034 0.788701 1.000000 0.000896

0.000083 0.000034 0.019536 0.002194 0.000896 1.000000

VME CME

0.073658 0.058105 0.000093 1.000000 0.788701 0.002262

0.058105 0.073686 0.000037 0.788701 1.000000 0.000913

0.000093 0.000037 0.022778 0.002262 0.000913 1.000000

VMR CMR

0.073658 0.058105 0.000000 1.000000 0.788701 0.000000

0.058105 0.073686 0.000000 0.788701 1.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Shown are the variance matrices VEC , VIC , VME , and VMR and correlation matrices CEC , CIC , CME ,
and CMR computed from a simulation of (16) of length n = 198373.
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Table 2. Demand and Supply Example, ∆ = 0.9

Mean Standard Deviation

Extrinsic Modified

Parameter Extrinsic Intrinsic Extr Ctr Intr Ctr Extrinsic Riemann

µ1 0.006974 -0.000014 0.032410 0.033155 0.056276 0.000416

µ2 -0.006384 -0.007252 0.034833 0.034843 0.078493 0.055205

µ3 -0.001982 0.007796 0.035280 0.036610 0.081187 0.057796

R1,1 0.995638 0.985301 0.030594 0.032293 0.072945 0.051602

R1,2 -0.000188 -0.009587 0.019377 0.021537 0.061537 0.033760

R2,2 1.001946 1.050761 0.031913 0.058325 0.093115 0.090660

R1,3 -0.004291 -0.003850 0.018963 0.018969 0.054806 0.030062

R2,3 0.001238 -0.006318 0.018397 0.019889 0.050946 0.031336

R3,3 0.996106 0.984606 0.030197 0.032314 0.076838 0.051241

P1,1 0.137964 0.173574 0.081201 0.088667 0.113114 0.142283

P2,2 0.004711 -0.012474 0.109165 0.110509 0.123758 0.177366

P3,3 -0.058212 -0.058302 0.128347 0.128347 0.138672 0.203544

a1 11.986857 11.982728 0.010649 0.011422 0.028206 0.018471

a2 -1.996886 -1.994403 0.006776 0.007217 0.018729 0.011906

The data are a simulation of the demand and supply system (24) through (26). An MCMC chain
of length 50,000 was computed using the Surface Sampling Algorithm for the likelihood (27) subject
to moment conditions (2) as determined by (29) through (31) The prior for ρ is independent normal
with location the unconstrained maximum likelihood estimates of (27) and scale twice the maximum
likelihood standard errors. The prior for θ = (a1, a2) is independent normal with means (12,−2) and
standard deviations (2, 2). The support conditions on R and P of (28) are that diagonals of R must be
positive, the first diagonal element P must be positive, and the eigenvalues of the companion matrix
of Σ must be less than one in absolute value. In addition, a1 must be positive and a2 negative. The
chain was reduced (downsampled) with a stride of 10 leaving a chain of length 5,000 for computations.
Means and standard deviations shown in the table for offset ∆ = 0.9, which is the smallest value of ∆
for which the manifold Mǫ is connected.
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Table 3. Demand and Supply Example, ∆ = 3

Mean Standard Deviation

Extrinsic Modified

Parameter Extrinsic Intrinsic Extr Ctr Intr Ctr Extrinsic Riemann

µ1 0.006974 -0.000005 0.032410 0.033154 0.034008 0.000024

µ2 -0.006384 0.018046 0.034833 0.042547 0.044250 0.043604

µ3 -0.001982 0.013853 0.035280 0.038671 0.040339 0.039671

R1,1 0.995638 0.999636 0.030594 0.030854 0.032664 0.031616

R1,2 -0.000188 -0.001498 0.019377 0.019421 0.022899 0.019980

R2,2 1.001946 1.021762 0.031913 0.037566 0.038724 0.038680

R1,3 -0.004291 -0.030309 0.018963 0.032197 0.033586 0.033113

R2,3 0.001238 0.021554 0.018397 0.027409 0.029031 0.027764

R3,3 0.996106 0.967894 0.030197 0.041327 0.043449 0.042494

P1,1 0.137964 0.168808 0.081201 0.086863 0.087303 0.089219

P2,2 0.004711 -0.001004 0.109165 0.109314 0.109444 0.114385

P3,3 -0.058212 -0.052750 0.128347 0.128463 0.128560 0.133870

a1 11.986857 11.991603 0.010649 0.011659 0.012774 0.012461

a2 -1.996886 -1.998937 0.006776 0.007080 0.007853 0.007601

As for Table 2 except that ∆ = 3, which is the point just after the curves in Figure 3 begin to flatten.
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Table 4. Demand and Supply Example, ∆ = 11

Mean Standard Deviation

Extrinsic Modified

Parameter Extrinsic Intrinsic Extr Ctr Intr Ctr Extrinsic Riemann

µ1 0.006974 -0.000005 0.032410 0.033154 0.033150 0.000024

µ2 -0.006384 0.018046 0.034833 0.042547 0.042543 0.043143

µ3 -0.001982 0.013853 0.035280 0.038671 0.038668 0.039171

R1,1 0.995638 0.999636 0.030594 0.030854 0.030851 0.031218

R1,2 -0.000188 -0.001498 0.019377 0.019421 0.019419 0.019721

R2,2 1.001946 1.021762 0.031913 0.037566 0.037563 0.038075

R1,3 -0.004291 -0.030309 0.018963 0.032197 0.032194 0.032654

R2,3 0.001238 0.021554 0.018397 0.027409 0.027407 0.027407

R3,3 0.996106 0.967894 0.030197 0.041327 0.041323 0.041930

P1,1 0.137964 0.168808 0.081201 0.086863 0.086854 0.088216

P2,2 0.004711 -0.001004 0.109165 0.109314 0.109303 0.110615

P3,3 -0.058212 -0.052750 0.128347 0.128463 0.128451 0.129637

a1 11.986857 11.991603 0.010649 0.011659 0.011658 0.012298

a2 -1.996886 -1.998937 0.006776 0.007080 0.007079 0.007500

As for Table 2 except that ∆ = 11, which is the smallest value such that each node in Mǫ is connected
to all other nodes.
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Table 5. Moment Function Parameter Correlations

Extrinsic Modified

Correlation Extr Ctr Intr Ctr Extrinsic Riemann

Demand and Supply Example, ∆ = 0.9

ρ(a1, a2) -0.953464 -0.959086 -0.850522 -0.970201

Demand and Supply Example, ∆ = 11

ρ(a1, a2) -0.953464 -0.951455 -0.951455 -0.959869

Stochastic Discount Factor Example, ∆ = 2

ρ(a1, a2) -0.538199 -0.624957 -0.619447 -0.515152

ρ(a1, a3) -0.933849 -0.924537 -0.889809 -0.238756

ρ(a2, a3) 0.238997 0.341350 0.470240 0.442594

Stochastic Discount Factor Example, ∆ = 31

ρ(a1, a2) -0.538199 -0.522063 -0.522063 -0.384290

ρ(a1, a3) -0.933849 -0.931478 -0.931478 -0.991255

ρ(a2, a3) 0.238997 0.214916 0.214916 0.262880

Shown are the correlations for the parameters θ that appear in the
moment functions (2) computed from VEC , VIC , VME , VMR that were
themselves computed from the MCMC chains described in Tables 2, 4,
8 and 10 for the four blocks of the table, respectively, as indicated by
the headings for each block. For instance, the first entry ρ(a1, a2) =
−0.953464 refers to a correlation computed from VEC for the demand
and supply MCMC chain described in Table 2.
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Table 6. Regressions Among

Standard Deviations,

Demand and Supply Example

Variable

Independent Dependent Intercept Slope R2

∆ = 0.9

VEC sdev VIC sdev 0.003445 0.996188 0.966189

VEC sdev VME sdev 0.039708 0.837890 0.829003

VEC sdev VMR sdev 0.000226 1.619744 0.914482

VIC sdev VME sdev 0.036227 0.853974 0.884487

VIC sdev VMR sdev -0.005547 1.629730 0.950897

VME sdev VMR sdev -0.060075 1.713394 0.866591

∆ = 3.0

VEC sdev VIC sdev 0.005572 0.966685 0.985068

VEC sdev VME sdev 0.007508 0.951912 0.984039

VEC sdev VMR sdev 0.002167 1.027389 0.922289

VIC sdev VME sdev 0.002007 0.985043 0.999616

VIC sdev VMR sdev -0.004049 1.069157 0.947510

VME sdev VMR sdev -0.006268 1.086251 0.949377

∆ = 11.0

VEC sdev VIC sdev 0.005572 0.966685 0.985068

VEC sdev VME sdev 0.005572 0.966685 0.985068

VEC sdev VMR sdev 0.002657 0.993814 0.919170

VIC sdev VME sdev 0.000000 1.000000 1.000000

VIC sdev VMR sdev -0.003395 1.035088 0.945897

VME sdev VMR sdev -0.003395 1.035088 0.945897

Shown in the first block are linear regressions of standard devia-
tions from VEC , VIC , VME , and VMR computed from the MCMC
chain described in the legend for Table 2 with independent and
dependent variables as indicated in the first two columns of the
table. The second and third blocks are the same but for ∆ = 3.0
and ∆ = 11.0
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Table 7. Regressions Among Covariances

Demand and Supply Example

Variable

Independent Dependent Intercept Slope R2

∆ = 0.9

VEC sdev VIC sdev -0.000021 1.018985 0.584151

VEC sdev VME sdev -0.000075 1.640258 0.324489

VEC sdev VMR sdev -0.000081 2.483038 0.542015

VIC sdev VME sdev -0.000044 1.975227 0.836412

VIC sdev VMR sdev -0.000031 2.457824 0.943967

VME sdev VMR sdev 0.000018 1.068931 0.832854

∆ = 3.0

VEC sdev VIC sdev -0.000005 0.954483 0.509323

VEC sdev VME sdev -0.000007 0.977459 0.498042

VEC sdev VMR sdev -0.000007 0.993356 0.497677

VIC sdev VME sdev -0.000002 1.032686 0.994369

VIC sdev VMR sdev -0.000002 1.041013 0.977671

VME sdev VMR sdev -0.000000 1.003528 0.974380

∆ = 11.0

VEC sdev VIC sdev -0.000005 0.954483 0.509323

VEC sdev VME sdev -0.000005 0.954483 0.509323

VEC sdev VMR sdev -0.000006 0.942636 0.484505

VIC sdev VME sdev 0.000000 1.000000 1.000000

VIC sdev VMR sdev -0.000001 1.001591 0.978439

VME sdev VMR sdev -0.000001 1.001591 0.978439

Shown in the first block are linear regressions of covariances from
VEC , VIC , VME , and VMR computed from the MCMC chain de-
scribed in the legend for Table 2 with independent and depen-
dent variables as indicated in the first two columns of the table.
The second and third blocks are the same but for ∆ = 3.0 and
∆ = 11.0
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Table 8. Stochastic Discount Function Example, ∆ = 2

Mean Standard Deviation

Extrinsic Modified

Parameter Extrinsic Intrinsic Extr Ctr Intr Ctr Extrinsic Riemann

a01 0.125950 0.130222 0.035219 0.035477 0.057211 0.085094

a02 -0.008434 -0.016024 0.027108 0.028150 0.074924 0.053488

a03 0.017429 0.013113 0.015427 0.016020 0.054562 0.031979

a04 0.082601 0.075387 0.010530 0.012764 0.055936 0.024716

a05 -0.061553 -0.074851 0.019684 0.023756 0.047917 0.043069

a06 -0.036925 -0.024713 0.017924 0.021690 0.063208 0.043061

a07 -0.028193 -0.010717 0.012460 0.021465 0.055240 0.040529

a08 0.152953 0.164645 0.011347 0.016294 0.057191 0.033546

b0,1 0.149272 0.159229 0.034798 0.036195 0.076915 0.072240

b0,2 -0.246597 -0.268276 0.066741 0.070175 0.096793 0.154732

B1,1 -0.046729 -0.034771 0.014092 0.018483 0.046557 0.027807

B2,1 -0.058537 -0.036099 0.018411 0.029026 0.063679 0.006958

B1,2 -0.007491 0.010769 0.019087 0.026416 0.075955 0.055285

B2,2 -0.023266 -0.047909 0.023289 0.033908 0.082084 0.010080

R0,1,1 0.836213 0.830120 0.026761 0.027446 0.074612 0.056217

R0,1,2 -0.040340 -0.044094 0.010666 0.011308 0.049220 0.021801

R0,2,2 0.993556 1.001678 0.042345 0.043117 0.108780 0.083124

P1,1 0.551396 0.588314 0.052075 0.063836 0.102282 0.134788

P2,2 0.099384 0.097378 0.053043 0.053081 0.106752 0.100766

a1 -0.000000 -0.000008 0.000015 0.000016 0.000020 0.005618

a2 -0.997967 -0.980331 0.010756 0.020659 0.043361 0.040626

a3 -0.020725 0.013500 0.127623 0.132134 0.149616 0.272943

An MCMC chain of length 50,000 was computed using the Surface Sampling Algorithm for the SNP-
ARCH likelihood (34) estimated from daily, inflation adjusted returns on the S&P500 and NASDAQ
indices (including distributions) from January 1, 2010, to December 31, 2018 under moment conditions
(2) as determined by (35) through (38). The prior for ρ is independent normal with location and
scale the SNP-ARCH unconstrained maximum likelihood estimated parameters and standard errors.
The prior for θ = (a0, a1, a2) is independent normal with means (0,−1, 0) and standard deviations
(1, 1, 1). The support conditions are normalizing sign restrictions on variance parameters and that the
eigenvalues of the companion matrices for location and scale are less than one in absolute value. The
chain was reduced with a stride of 10 leaving a chain of length 5,000 for computations. Means and
standard deviations shown in the table for offset ∆ = 2, which is 1.0 larger than the smallest value of
∆ for which the manifold Mǫ is connected.
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Table 9. Stochastic Discount Function Example, ∆ = 10

Mean Standard Deviation

Extrinsic Modified

Parameter Extrinsic Intrinsic Extr Ctr Intr Ctr Extrinsic Riemann

a01 0.125950 0.118768 0.035219 0.035944 0.036786 0.036965

a02 -0.008434 0.011021 0.027108 0.033367 0.034084 0.035347

a03 0.017429 0.005592 0.015427 0.019446 0.020418 0.019750

a04 0.082601 0.082544 0.010530 0.010530 0.011922 0.011040

a05 -0.061553 -0.076661 0.019684 0.024814 0.026188 0.023665

a06 -0.036925 -0.034718 0.017924 0.018060 0.019498 0.018794

a07 -0.028193 -0.014846 0.012460 0.018261 0.019301 0.018503

a08 0.152953 0.150794 0.011347 0.011551 0.012393 0.011898

b0,1 0.149272 0.148000 0.034798 0.034821 0.037570 0.036086

b0,2 -0.246597 -0.250884 0.066741 0.066879 0.067242 0.067979

B1,1 -0.046729 -0.050522 0.014092 0.014594 0.015469 0.013500

B2,1 -0.058537 -0.059758 0.018411 0.018451 0.019506 0.002549

B1,2 -0.007491 -0.020881 0.019087 0.023316 0.024502 0.023297

B2,2 -0.023266 -0.041644 0.023289 0.029668 0.032058 0.004874

R0,1,1 0.836213 0.827857 0.026761 0.028036 0.030673 0.029207

R0,1,2 -0.040340 -0.028008 0.010666 0.016305 0.016786 0.019185

R0,2,2 0.993556 0.960481 0.042345 0.053734 0.054459 0.054449

P1,1 0.551396 0.539821 0.052075 0.053346 0.054371 0.055694

P2,2 0.099384 0.101043 0.053043 0.053069 0.055329 0.054195

a1 -0.000000 -0.000002 0.000015 0.000015 0.000015 0.003165

a2 -0.997967 -0.998806 0.010756 0.010789 0.011167 0.011660

a3 -0.020725 0.008479 0.127623 0.130923 0.130910 0.139620

As for Table 8 except that ∆ = 10, which is the point just after the curves in Figure 4 begin to flatten.
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Table 10. Stochastic Discount Function Example, ∆ = 31

Mean Standard Deviation

Extrinsic Modified

Parameter Extrinsic Intrinsic Extr Ctr Intr Ctr Extrinsic Riemann

a01 0.125950 0.118768 0.035219 0.035944 0.035940 0.036115

a02 -0.008434 0.011021 0.027108 0.033367 0.033364 0.033468

a03 0.017429 0.005592 0.015427 0.019446 0.019444 0.019369

a04 0.082601 0.082544 0.010530 0.010530 0.010529 0.010539

a05 -0.061553 -0.076661 0.019684 0.024814 0.024812 0.025392

a06 -0.036925 -0.034718 0.017924 0.018060 0.018058 0.018097

a07 -0.028193 -0.014846 0.012460 0.018261 0.018259 0.018050

a08 0.152953 0.150794 0.011347 0.011551 0.011550 0.011555

b0,1 0.149272 0.148000 0.034798 0.034821 0.034818 0.034725

b0,2 -0.246597 -0.250884 0.066741 0.066879 0.066872 0.066737

B1,1 -0.046729 -0.050522 0.014092 0.014594 0.014592 0.014727

B2,1 -0.058537 -0.059758 0.018411 0.018451 0.018449 0.018453

B1,2 -0.007491 -0.020881 0.019087 0.023316 0.023314 0.023764

B2,2 -0.023266 -0.041644 0.023289 0.029668 0.029665 0.029748

R0,1,1 0.836213 0.827857 0.026761 0.028036 0.028033 0.028009

R0,1,2 -0.040340 -0.028008 0.010666 0.016305 0.016304 0.016159

R0,2,2 0.993556 0.960481 0.042345 0.053734 0.053728 0.053690

P1,1 0.551396 0.539821 0.052075 0.053346 0.053341 0.053352

P2,2 0.099384 0.101043 0.053043 0.053069 0.053064 0.053072

a1 -0.000000 -0.000002 0.000015 0.000015 0.000015 0.000013

a2 -0.997967 -0.998806 0.010756 0.010789 0.010788 0.008667

a3 -0.020725 0.008479 0.127623 0.130923 0.130910 0.130925

As for Table 8 except that ∆ = 31, which is the smallest value such that each node in Mǫ is connected
to all other nodes.
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Table 11. Regressions Among

Standard Deviations,

Stochastic Discount Function Example

Variable

Independent Dependent Intercept Slope R2

∆ = 2.0

VEC sdev VIC sdev 0.004282 0.996627 0.979527

VEC sdev VME sdev 0.041461 0.971254 0.769701

VEC sdev VMR sdev 0.000142 2.148869 0.941703

VIC sdev VME sdev 0.037353 0.972626 0.782703

VIC sdev VMR sdev -0.007529 2.109841 0.920539

VME sdev VMR sdev -0.050916 1.632486 0.666095

∆ = 10.0

VEC sdev VIC sdev 0.002420 1.005033 0.987339

VEC sdev VME sdev 0.003663 1.001094 0.986990

VEC sdev VMR sdev -0.000386 1.077904 0.949659

VIC sdev VME sdev 0.001260 0.995870 0.999223

VIC sdev VMR sdev -0.002833 1.067869 0.953538

VME sdev VMR sdev -0.004076 1.069052 0.948511

∆ = 31.0

VEC sdev VIC sdev 0.002420 1.005033 0.987339

VEC sdev VME sdev 0.002420 1.005033 0.987339

VEC sdev VMR sdev 0.002308 1.006940 0.986297

VIC sdev VME sdev -0.000000 1.000000 1.000000

VIC sdev VMR sdev -0.000129 1.002270 0.999689

VME sdev VMR sdev -0.000129 1.002270 0.999689

Shown in the first block are linear regressions of standard devia-
tions from VEC , VIC , VME , and VMR computed from the MCMC
chain described in the legend for Table 8 with independent and
dependent variables as indicated in the first two columns of the
table. The second and third blocks are the same but for ∆ = 10.0
and ∆ = 31.0
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Table 12. Regressions Among Covariances,

Stochastic Discount Function Example

Variable

Independent Dependent Intercept Slope R2

∆ = 2.0

VEC sdev VIC sdev 0.000017 1.103377 0.698067

VEC sdev VME sdev 0.000071 2.383066 0.242961

VEC sdev VMR sdev 0.000110 3.960890 0.457034

VIC sdev VME sdev 0.000035 3.060979 0.699095

VIC sdev VMR sdev 0.000049 3.714154 0.700864

VME sdev VMR sdev 0.000020 0.850015 0.491984

∆ = 10.0

VEC sdev VIC sdev -0.000002 1.013226 0.830676

VEC sdev VME sdev -0.000004 1.066309 0.819366

VEC sdev VMR sdev -0.000010 1.050009 0.842409

VIC sdev VME sdev -0.000002 1.055850 0.992882

VIC sdev VMR sdev -0.000009 0.981551 0.909796

VME sdev VMR sdev -0.000007 0.917860 0.893262

∆ = 31.0

VEC sdev VIC sdev -0.000002 1.013226 0.830676

VEC sdev VME sdev -0.000002 1.013226 0.830676

VEC sdev VMR sdev -0.000002 1.014812 0.831122

VIC sdev VME sdev 0.000000 1.000000 1.000000

VIC sdev VMR sdev -0.000000 1.001103 0.999615

VME sdev VMR sdev -0.000000 1.001103 0.999615

Shown in the first block are linear regressions of covariances from
VEC , VIC , VME , and VMR computed from the MCMC chain de-
scribed in the legend for Table 8 with independent and depen-
dent variables as indicated in the first two columns of the table.
The second and third blocks are the same but for ∆ = 10.0 and
∆ = 31.0
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Table 13. Curved Manifold Example, ∆ = 0.57

Mean Standard Deviation or Correlation

Extrinsic Modified

Parameter Extrinsic Intrinsic Extr Ctr Intr Ctr Extrinsic Riemann

µ1 0.003030 0.001782 0.044938 0.044956 0.256304 0.045930

µ2 0.010777 0.008102 0.046710 0.046787 0.282870 0.047894

R1,1 0.997487 0.992473 0.030209 0.030622 0.199155 0.031385

R1,2 -0.011216 -0.008383 0.021103 0.021293 0.133476 0.021763

R2,2 1.029374 1.030792 0.010518 0.010614 0.066102 0.010639

θ 5.379109 5.377738 0.155378 0.155384 0.975752 0.159227

ρ(µ1, µ2) -0.078107 -0.076362 -0.043754 -0.075747

ρ(µ1, R1,1) -0.038925 -0.033837 -0.031125 -0.030951

ρ(µ1, R1,2) -0.014263 -0.017826 -0.008660 -0.010185

ρ(µ1, R2,2) -0.049502 -0.052750 -0.032077 -0.050698

ρ(µ1, θ) -0.034030 -0.033771 -0.025612 -0.031390

ρ(µ2, R1,1) -0.000003 0.009360 -0.028539 0.010071

ρ(µ2, R1,2) 0.061739 0.053481 -0.018607 0.054120

ρ(µ2, R2,2) -0.230838 -0.236033 -0.068083 -0.223426

ρ(µ2, θ) 0.003121 0.003620 -0.025818 0.003372

ρ(R1,1, R1,2) -0.149040 -0.167514 0.333217 -0.161162

ρ(R1,1, R2,2) 0.439249 0.407558 0.463633 0.440073

ρ(R1,1, θ) 0.467925 0.463035 0.475693 0.462643

ρ(R1,2, R2,2) 0.762028 0.766259 0.793649 0.771083

ρ(R1,2, θ) 0.801051 0.792721 0.819296 0.798896

ρ(R2,2, θ) 0.960119 0.950296 0.936706 0.973192

The data are a simulation of the curved manifold example. An MCMC chain of length 50,000 was
computed using the Surface Sampling Algorithm for the normal likelihood (39) subject to moment
conditions (2) as determined by (41) and (42) The prior for ρ is independent normal with location the
unconstrained maximum likelihood estimates of (39) and scale 5.0. The prior for θ is normal with mean
5.0 and standard deviations 5.0. The support conditions on R are that diagonals must be positive and
θ must be positive.. The chain was reduced by eliminating repetitions due to rejections to a length of
37,269 for computations. Means and standard deviations shown in the table for offset ∆ = 0.57, which
is the smallest value of ∆ for which the manifold Mǫ is connected.
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Table 14. Curved Manifold Example, ∆ = 3.0

Mean Standard Deviation or Correlation

Extrinsic Modified

Parameter Extrinsic Intrinsic Extr Ctr Intr Ctr Extrinsic Riemann

µ1 0.003030 0.001782 0.044938 0.044956 0.064382 0.044967

µ2 0.010777 0.008102 0.046710 0.046787 0.069694 0.046818

R1,1 0.997487 0.992473 0.030209 0.030622 0.049044 0.030692

R1,2 -0.011216 -0.008383 0.021103 0.021293 0.034104 0.021243

R2,2 1.029374 1.030792 0.010518 0.010614 0.015268 0.010386

θ 5.379109 5.377738 0.155378 0.155384 0.228527 0.155419

ρ(µ1, µ2) -0.078107 -0.076362 -0.039940 -0.076271

ρ(µ1, R1,1) -0.038925 -0.033837 -0.013112 -0.031901

ρ(µ1, R1,2) -0.014263 -0.017826 0.006544 -0.012268

ρ(µ1, R2,2) -0.049502 -0.052750 -0.003076 -0.053070

ρ(µ1, θ) -0.034030 -0.033771 -0.004220 -0.033868

ρ(µ2, R1,1) -0.000003 0.009360 0.000939 0.009883

ρ(µ2, R1,2) 0.061739 0.053481 0.020551 0.054497

ρ(µ2, R2,2) -0.230838 -0.236033 -0.046810 -0.223549

ρ(µ2, θ) 0.003121 0.003620 0.013745 0.003537

ρ(R1,1, R1,2) -0.149040 -0.167514 0.163611 -0.162194

ρ(R1,1, R2,2) 0.439249 0.407558 0.320706 0.440313

ρ(R1,1, θ) 0.467925 0.463035 0.329882 0.462884

ρ(R1,2, R2,2) 0.762028 0.766259 0.653799 0.770204

ρ(R1,2, θ) 0.801051 0.792721 0.698690 0.798101

ρ(R2,2, θ) 0.960119 0.950296 0.886439 0.973122

As for Table 13 except that ∆ = 3.0, which is the point just after the curves in Figure 4 begin to
flatten.
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Table 15. Curved Manifold Example, ∆ = 15.0

Mean Standard Deviation or Correlation

Extrinsic Modified

Parameter Extrinsic Intrinsic Extr Ctr Intr Ctr Extrinsic Riemann

µ1 0.003030 0.001782 0.044938 0.044956 0.045979 0.044963

µ2 0.010777 0.008102 0.046710 0.046787 0.049665 0.046814

R1,1 0.997487 0.992473 0.030209 0.030622 0.036357 0.030688

R1,2 -0.011216 -0.008383 0.021103 0.021293 0.024844 0.021239

R2,2 1.029374 1.030792 0.010518 0.010614 0.010586 0.010383

θ 5.379109 5.377738 0.155378 0.155384 0.158211 0.155382

ρ(µ1, µ2) -0.078107 -0.076362 -0.017182 -0.076274

ρ(µ1, R1,1) -0.038925 -0.033837 -0.003856 -0.031906

ρ(µ1, R1,2) -0.014263 -0.017826 -0.022850 -0.012280

ρ(µ1, R2,2) -0.049502 -0.052750 -0.035418 -0.053089

ρ(µ1, θ) -0.034030 -0.033771 -0.033630 -0.033885

ρ(µ2, R1,1) -0.000003 0.009360 0.011497 0.009885

ρ(µ2, R1,2) 0.061739 0.053481 0.028671 0.054493

ρ(µ2, R2,2) -0.230838 -0.236033 -0.083846 -0.223585

ρ(µ2, θ) 0.003121 0.003620 0.016311 0.003531

ρ(R1,1, R1,2) -0.149040 -0.167514 -0.047995 -0.162304

ρ(R1,1, R2,2) 0.439249 0.407558 0.186387 0.440271

ρ(R1,1, θ) 0.467925 0.463035 0.209996 0.462847

ρ(R1,2, R2,2) 0.762028 0.766259 0.448719 0.770156

ρ(R1,2, θ) 0.801051 0.792721 0.519493 0.798059

ρ(R2,2, θ) 0.960119 0.950296 0.797676 0.973115

As for Table 13 except that ∆ = 15.0, which is the smallest value of ∆ such that each node in Mǫ is
connected to all other nodes.
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Table 16. Regressions Among

Standard Deviations,

Curved Manifold Example

Variable

Independent Dependent Intercept Slope R2

∆ = 0.57

VEC sdev VIC sdev 0.000201 0.998685 0.999993

VEC sdev VME sdev -0.004274 6.279022 0.998619

VEC sdev VMR sdev 0.000080 1.024291 0.999985

VIC sdev VME sdev -0.005557 6.287697 0.998756

VIC sdev VMR sdev -0.000126 1.025643 0.999998

VME sdev VMR sdev 0.000844 0.162919 0.998793

∆ = 3.0

VEC sdev VIC sdev 0.000201 0.998685 0.999993

VEC sdev VME sdev 0.001779 1.458109 0.999163

VEC sdev VMR sdev 0.000132 0.999614 0.999985

VIC sdev VME sdev 0.001482 1.460118 0.999292

VIC sdev VMR sdev -0.000069 1.000932 0.999997

VME sdev VMR sdev -0.001049 0.685046 0.999337

∆ = 15.0

VEC sdev VIC sdev 0.000201 0.998685 0.999993

VEC sdev VME sdev 0.002700 1.001903 0.998382

VEC sdev VMR sdev 0.000135 0.999362 0.999985

VIC sdev VME sdev 0.002494 1.003311 0.998565

VIC sdev VMR sdev -0.000066 1.000680 0.999996

VME sdev VMR sdev -0.002478 0.995999 0.998667

Shown in the first block are linear regressions of standard devia-
tions from VEC , VIC , VME , and VMR computed from the MCMC
chain described in the legend for Table 13 with independent and
dependent variables as indicated in the first two columns of the
table. The second and third blocks are the same but for ∆ = 3.0
and ∆ = 15.0
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Table 17. Regressions Among Covariances,

Curved Manifold Example

Variable

Independent Dependent Intercept Slope R2

∆ = 0.57

VEC sdev VIC sdev -0.000000 1.000302 0.999944

VEC sdev VME sdev 0.000985 40.107354 0.985408

VEC sdev VMR sdev 0.000004 1.050841 0.999935

VIC sdev VME sdev 0.001009 40.078723 0.984650

VIC sdev VMR sdev 0.000004 1.050508 0.999961

VME sdev VMR sdev -0.000015 0.025815 0.985080

∆ = 3.0

VEC sdev VIC sdev -0.000000 1.000302 0.999944

VEC sdev VME sdev 0.000114 1.861595 0.982616

VEC sdev VMR sdev 0.000002 1.002748 0.999959

VIC sdev VME sdev 0.000115 1.860169 0.981758

VIC sdev VMR sdev 0.000002 1.002431 0.999986

VME sdev VMR sdev -0.000052 0.529139 0.982031

∆ = 15.0

VEC sdev VIC sdev -0.000000 1.000302 0.999944

VEC sdev VME sdev 0.000016 0.705615 0.962668

VEC sdev VMR sdev 0.000002 1.002291 0.999958

VIC sdev VME sdev 0.000017 0.705142 0.962014

VIC sdev VMR sdev 0.000002 1.001975 0.999986

VME sdev VMR sdev -0.000005 1.367140 0.962229

Shown in the first block are linear regressions of covariances from
VEC , VIC , VME , and VMR computed from the MCMC chain de-
scribed in the legend for Table 13 with independent and depen-
dent variables as indicated in the first two columns of the table.
The second and third blocks are the same but for ∆ = 3.0 and
∆ = 15.0
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