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Abstract

Nonparametric Bayesian estimation subject to overidentified moment equations is a chal-

lenge because the support of the posterior is a manifold of lower dimension than the number

of model parameters. The manifold therefore has Lebesgue measure zero thus inhibiting the

use of the most commonly used Bayesian estimation method: MCMC (Markov Chain Monte

Carlo). This study proposes an effective MCMC algorithm and algorithms for estimating

scale and the normalizing constant. The algorithms are illustrated with two illustrative

applications.
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1 Introduction

An appealing approach to statistical analysis is to set forth a sieve likelihood

f(y | x, ρ) =
n
∏

t=1

f(yt | xt−1, ρ), (1)

where yt is a column vector and xt−1 is a matrix of exogenous and predetermined variables

with a fixed number of rows and a number of columns that are either fixed, such as in a

VAR or a cross-sectional application, or that are increasing with t, such as in a VAR-GARCH

model. The y and x represent objects that contain the observed yt and xt−1. The parameters

of the sieve are elements of the vector ρ whose dimension is determined by the order of the

sieve. An example is the SNP-ARCH sieve derived from the Hermite polynomials (Gallant

and Tauchen, 2017), which is the one used here in our illustrative applications.

The parameters in (1) are to be estimated by Bayesian methods subject to moment

conditions1

0 = q(ρ, θ) =
1

n

n
∑

t=1

∫

m(y, xt−1, ρ, θ)f(y | xt−1, ρ) dy, q ∈ R
m (2)

support conditions

h(ρ, θ) > 0, h ∈ R
l (3)

and a prior

π(ρ, θ). (4)

Letting2 x = (ρ, θ), the support of the posterior is the manifold

M =
{

x ∈ R
da : qi(x) = 0, i = 1, . . . ,m, hj(x) > 0, j = 1, . . . , l

}

(5)

The sieve parameters ρ are induced in q(ρ, θ) by the integration but they may also appear

explicitly in m(yt, xt−1, ρ, θ). The parameters θ are those that appear only in the moment

functions m(yt, xt−1, ρ, θ). We assume overidentification, i.e., that the dimension m of q(ρ, θ)

1One can integrate with respect to the distribution of xt−1 rather than the empirical distribution of xt−1

as in (2) if it is available.
2In this paper, sans serif x and y are distinguished from italic x and y; the former referring to parameters

and the later to data. This is to maintain compatibility with both econometric conventions and numerical
analysis conventions.
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is larger than the dimension of θ. The just identified case, where the dimensions are equal, is

not an interesting mathematical challenge.3 The overidentified case estimated by Bayesian

methods is interesting because the support of the posterior density is singular with respect

to Lebesgue measure (Born, Shephard, and Solgi, 2018). A solution to the computational

problem requires notions from geometric measure theory.

The economic relevance of what is proposed here is primarily methodological. GMM

(Generalized Method of Moments) is the leading frequentist approach to inference for par-

tially specified models. For those instances where the use of prior information is desired, it

is of value to have a viable Bayesian counterpart. The obvious approach is to emulate GMM

directly and estimate θ and those elements of ρ upon which m(yt, xt−1, ρ, θ) depends using

the MCMC-GMM method proposed by Chernozhukov and Hong (2003). MCMC-GMM can

be formally justified in the Bayesian context (Gallant, 2016). But it has some unappeal-

ing features: A Jacobian term is missing if one follows the Chernozhukov and Hong (2003)

recipe; its derivation takes application specific, human, analytical effort to obtain (Gallant,

2020). A continuously updated weighting matrix is required, which use detracts from the

numerical stability of the Chernozhukov and Hong (2003) MCMC algorithm. A requisite

distributional assumption, while implied by asymptotics under weak regularity conditions

(Gallant, 2020), nonetheless takes effort to verify in finite samples and does fail dramatically

in some examples (Gallant, 2020). Of the compromises entailed by use of MCMC-GMM as a

Bayesian estimator, the most serious is the degradation caused by the continuously updated

weighting matrix of which the use thereof is a logical necessity in the Bayesian context. In

addition, one is needlessly disregarding the information in the data regarding f(y | x, ρ).
There is a literature that addresses estimation of (1) subject to (2) that is summarized

in Born, Shephard, and Solgi (2018) and in Schennach (2005). Of this literature, there are

four papers that are directly relevant here: Born, Shephard, and Solgi (2018), Shin (2015),

Schennach (2005), and Gallant, Hong, Leung, and Li (2019).

The first two papers, Born, Shephard, and Solgi (2018) and Shin (2015) solve the com-

putational problem exactly using MCMC methods, but under restrictions on the likelihood

3The algorithm of Subsection 2.1 works for just identified models but is inefficient for that purpose due
to unnecessary linear algebra and nonlinear equation solving; see Subsection 2.5.
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(1). Born, Shephard, and Solgi require that (1) has discrete support, which makes (2) a sum

involving probability weights and their corresponding support. Their innovation is to derive

a Jacobian term from geometric measure theoretic considerations that enables an MCMC

sampler. Their paper contains numerous examples. Shin presumes that (1) is a mixture of

specific parametric distributions with random weights drawn from a discrete distribution.

The constraint (2) becomes a constraint on the discrete distribution of the random weights.

His examples are from macro economics.

The second two papers, Schennach (2005) and Gallant, Hong, Leung, and Li (2019)

propose approximate MCMC methods based on asymptotics that cannot impose (2) exactly

in finite samples and therefore cannot exactly restrict posterior draws to the manifoldM . The

method of Gallant, Hong, Leung, and Li (2019) is simple and easily implemented although

the mathematics to verify the asymptotics are involved. It is based on a prior πλ(x) that

increasingly penalizes deviations of x from M as λ increases. One uses MCMC and increases

λ until the MCMC chain just fails to mix, as must happen for large enough λ according to

the results of Born, Shephard, and Solgi (2018). To have a name, we shall call it the λ-prior

method. It is of value in the present context because the method proposed here requires a

starting value of x for its MCMC chain whose distance from M is within a small tolerance.

The λ-prior method provides this starting value.4

To compute estimates, we rely on an amazingly innovative MCMC algorithm due to

Zappa, Holmes-Cerfon, and Goodman (2018). Their innovation is to use a nonlinear equation

solver twice during the course of computations to impose a detailed balance condition on

draws restricted to the manifold M .

To compute standard deviations we rely on a Fast Marching Algorithm (Memoli and

Sapiro, 2001) when x has dimension of five or less and on Dijkstra’s Algorithm (Dijkstra,

1959) for higher dimensions. For the normalizing constant we rely on an algorithm due to

Zappa, Holmes-Cerfon, and Goodman (2018).

Code, including a User’s Guide, is at http://www.aronaldg.org/webfiles/npb. We

proceed to a description of the proposed methodology.

4Suggestions for choosing λ to use the λ-prior method as an estimator are in Subsection 3.2.
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2 The Algorithms

2.1 The MCMC Surface Sampling Algorithm

Traditional econometric notation regards the italic letters yt and xt−1 as observed data

representing dependent variables and explanatory variables, respectively. Similarly for y

and x that here represent containers of such data. The Surface Sampling Algorithm uses

these letters to represent MCMC draws and proposals that, from our perspective, are draws

and proposals of (ρ, θ). We resolve this clash of notation by using sans serif letters in

describing the Surface Sampling Algorithm with these correspondences: x and y represent

values for (ρ, θ). Xk and Yk represent either (ρ, θ) regarded as random variables or as their

ex post values as elements of an MCMC chain, as determined by context.

The first issue that needs to be addressed is the computation of the integral

∫

m(y, xt−1, ρ, θ)f(y | xt−1, ρ) dy (6)

that appears in (2). We use Gaussian quadrature (Golub and Welsch, 1969) to integrate

(6). In particular, we use Gauss-Hermite quadrature because that rule is best suited to the

SNP-ARCH sieve that we use in the illustrative examples of Section 3. A sieve with different

tail behavior would entail a different quadrature rule as discussed in Subsection 2.5.

For a univariate function g(u) our quadrature rule of order I has the form

∫

g(u)e−
1

2
u2

du
.
=

I
∑

i=1

w̃i g(ũi). (7)

The standard Gauss-Hermite formula is
∫

g(u)e−u2

du
.
=

∑I
i=1 ŵi g(ûi). The transformation

to get from the standard rule (Golub and Welsch, 1969) to ours is w̃i =
√
2ŵi and ũi =

√
2ûi.

To get a multivariate rule for z = (z1, . . . , zJ) of dimension J , let λk denote a vector

of dimension J whose elements λj,k are a permutation of the numbers {1, 2, . . . , I} and let

{λk}Kk=1 denote the set of all distinct such λk. The multivariate abcissae and weights are

zk = (ũλ1,k
, . . . , ũλJ,k

) and wk =
∏J

j=1 w̃λj,k
. We shall also need ek =

∏J
j=1 exp

(

−1
2
(ũλj,k

)2
)

.

The SNP code normalizes its data prior to use and presumably the moment conditions

are coded to expect data in its natural units. With this convention assumed, let ȳ and
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S = RR⊤ be the sample mean and variance of the data. The integral is computed as

∫

m(y, xt−1, ρ, θ)f(y | xt−1, ρ) dy
.
=

K
∑

k=1

wk

ek
m(ȳ +Rzk, xt−1, ρ, θ)f(zk | xt−1, ρ) (8)

This integration strategy avoids dependence of the abcissae and weights on ρ, which

would make derivation of analytical derivatives of the right hand side of (8) a nightmare and

would increase the cost of coding and evaluating numerical derivatives.5 It is predicated on

an a assumption that the range of the abcissae {zk}Kk=1 of rule (8) approximate the range of

the observed data after the observed data have been rescaled to have sample mean zero and

sample variance the identity. We check this requirement by making sure that the quantiles

from 0.05 to 0.95 of each element of the rescaled data are within the range of the abcissae

{ũi}Ii=1 of rule (7). We increase the order I of rule (7) to expand the range of the abcissae

if necessary.

Our exposition of the Surface Sampling Algorithm will be more detailed than Zappa,

Holmes-Cerfon, and Goodman’s exposition and will be in terms of our specific choice of

software components.

Define

Qx =

[

∂

∂x
q1(x), . . . ,

∂

∂x
qm(x)

]

, (9)

which is the transpose of the Jacobian of q(x) and has dimension da by m. Put A = [Qx | 0 ],
which is a square matrix of dimension da by da whose last d = da − m columns are filled

with zeros. Apply the singular value decomposition algorithm (Businger and Golub, 1969)

to obtain A = USV ⊤; U will be orthogonal and S diagonal with the first m diagonal entries

positive and the remainder zero. If S is not such, Qx does not have full rank, which violates

a regularity condition of the Surface Sampling Algorithm. Partition U as
[

T⊥
x
|Tx

]

, where

T⊥
x

has m columns and Tx has d columns.

A step in the chain requires solving

q(x+ v +Qxa) = 0 (10)

for a. We use Newton’s method (Suli and Mayers, 2003) with Fletcher line search (Fletcher,

1987) from a start of a = 0. The solution tolerance tol and iteration limit nmax are tuning

5A call to the generic SNP code returns ∂
∂ρ

f(y |xt−1, ρ) as well as f(y |xt−1, ρ) which facilitates the

computation of the derivatives of (8).
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parameters. The equation solver is used twice. Its performance per se is not critical; what

is critical is that it be the identical solver in both instances.

In (10), v is a proposal drawn as follows: Draw z1, . . . , zd independently from the

normal n(z | 0, s2) density, where the standard deviation s is a tuning parameter. Put

z = (z1, . . . , zd)
⊤. Then v = Txz is the draw from the proposal density p(v). In the

Metropolis-Hastings step below, evaluate p(v) by nd(z | 0, s2I) = nd(T
⊤
x
v | 0, s2I) and p(v′)

by nd(T
⊤
y
v′ | 0, s2I), where nd(· |µ,Σ) is the d-dimensional, multivariate normal density.

A difficulty with Zappa, Holmes-Cerfon, and Goodman’s p(v) is that there is no control

over the relative scaling of the elements of v. This can be partially remedied with an alterna-

tive p(v) as follows: Let S be a diagonal matrix of positive tuning parameters s1, s2, . . . , sda

along the diagonal. Let Rs = T⊤
x
S. Draw u1, . . . , uda independently from the standard

normal n(u | 0, 1) and put z = Rsu. Then v = Txz is the draw from the alternative pro-

posal density p(v). Let Σs = RsR
⊤
s . In the Metropolis-Hastings step below, evaluate the

alternative p(v) by nd(z | 0,Σs) = nd(T
⊤
x
v | 0,Σs) and p(v′) by nd(T

⊤
y
v′ | 0,Σs).

An iteration of the Surface Sampling Algorithm has the property that if Xk is a draw

from the posterior p(x | y) ∝ f(y | x)π(x) subject to (2) and (3), then so is Xk+1. An iteration

of the Surface Sampling Algorithm proceeds as follows.

1. Begin: x = Xk (Xk must be in M).

2. Proposal:

(a) Calculate Qx according to (9).

(b) Compute T⊥
x

and Tx using the SVD as described above.

(c) Draw v ∼ p(v) as described above.

3. Projection to M:

(a) Solve q(x+ v +Qxa) = 0 for a using Newton’s method.

(b) If Newton’s method fails, put Xk+1 = x. Done.

(c) Else y = x+ v +Qxa. Continue.

4. Inequality check:
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(a) If hi(y) < 0 for some i, put Xk+1 = x. Done.

(b) Else y satisfies (3). Continue.

5. Metropolis-Hastings acceptance/rejection step:

(a) Calculate Qy according to (9).

(b) Compute T⊥
y

and Ty using the SVD as described above.

(c) Find v′ ∈ Ty and w′ ∈ T⊥
y

so that x = y + v′ + w′.6

(d) Pa = min
(

1, f(y | y)π(y)p(v
′)

f(y | x)π(x)p(v)

)

(e) Generate U ∼ Uniform(0,1).

(f) If U > Pa, put Xk+1 = x. Done.

(g) Else Continue.

6. Reverse Projection:

(a) Solve q(y + v′ +Qya) = 0 for a using Newton’s method.

(b) If Newton’s method fails, put Xk+1 = x. Done.

(c) Else accept move, Xk+1 = y. Done.

2.2 The λ-prior Method

The λ-prior method is simple: One merely draws from the posterior

p(ρ, θ | y, x) ∝ f(y | x, ρ)π(ρ, θ)πλ(ρ, θ) (11)

by MCMC (Gamerman and Lopes, 2006) subject to the support conditions (3), where

πλ(ρ, θ) = exp

[

−λ
n

2

m
∑

i=1

q2i (ρ, θ)

]

. (12)

Above, q(ρ, θ) is given by (2) and π(ρ, θ) by (4). One can use other distances in the expo-

nent such as
∑m

i=1 |qi(ρ, θ)| but experience suggests that (12) works best in the applications

encountered to date for the purpose of finding a draw (ρ, θ) close to the manifold M .

6I.e., put z = [T⊥

y
|Ty]

⊤(x− y), then w′ = T⊥

y
z and v′ = Tyz.
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It is obvious at sight that the (ρ, θ) draws in the MCMC chain will be forced closer to the

manifold M as λ increases. Less obvious is that there is a limit to how large λ can be before

the MCMC chain fails to mix. But this is indeed the case as discussed in theory by Born,

Shephard, and Solgi (2018) and as borne out in practice. In our experience many draws of

(ρ, θ) within the chain get close enough to the boundary of M to provide a start Xk for the

first step of the Surface Sampling Algorithm whether the chain mixes or not.

2.3 Estimating Scale

On a submanifold M ⊂ R
da of dimension d < da, distance is computed along geodesics. One

computes distance δM(s, p) by traversing a geodesic from a starting point s to an end point

p and accumulating (infinitesimal increments of) a weight function defined on M .7 Average

squared distance is computed by integrating [δM(s, p)]2 as a function of the end point p with

respect to the probability distribution over the manifold. The mean x̄ is defined as that

starting point that minimizes average squared distance. Variance is computed similarly by

accumulating distance elementwise over a geodesic to obtain a vector DM(x̄, p) and then

integrating DM(x̄, p)D⊤
M(x̄, p) as a function of p with respect to the probability distribution.

If one has a sample from the distribution, e.g., MCMC draws, one averages distances over the

sample to estimate the mean and variance instead of integrating with respect to a distribution

on the manifold.

The question then becomes how to compute a geodesic on a manifold when one only has

a point cloud.

Distance along a geodesic on a d-dimensional submanifold of Rda satisfies the intrinsic

Eikonal distance equation

‖▽MδM(s, p)‖ = 1 p ∈ M (13)

δM(s, s) = 0

where ▽MδM(s, p) denotes intrinsic differentiation, δM(s, p) denotes intrinsic distance as

described above, s is the starting point, and p is the end point.

7See Memoli and Sapiro (2001, Subsection 1.1) for details; non-Euclidean distance is obtained by making
the right hand side of (13) and (14) a weight function other than g ≡ 1.
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If one puts an ǫ-offset on the submanifold M to obtain a da-dimensional subset Mǫ of

R
da , then one can solve, instead, the extrinsic Eikonal distance equation

‖▽δ(s, p)‖ = 1 p ∈ Mǫ (14)

δ(s, s) = 0

where δ is Euclidean distance and differentiation is the usual one. One can construct such

an Mǫ as the union of ǫ-balls centered at the draws of an MCMC chain on the manifold M

provided ǫ is large enough that Mǫ is a connected set. In view of the fact that the contours

of the posterior density determined by the Surface Sampling Algorithm are not spheres, our

ǫ-balls for determining Gǫ are actually rectangles with sides k equal to ∆max{|xk,i− xk,i−1| :
xi ∈ D} where D = {xi}Ni=1 denotes the ordered Surface Sampling MCMC chain and xk,i

denotes the kth element of xi. The approximation of the solution of (13) by the solution of

(14) improves as ǫ decreases. To decrease ǫ while retaining connected Mǫ usually requires

an increase in the length N of the MCMC chain D. See Memoli and Sapiro (2005).

Standard algorithms for the solution of (14) produce as a by-product the geodesic that

connects the starting point s to the end point p.

The Fast Marching Algorithm (Sethian, 1996) is frequently used to solve (14); see Sethian

(2010) for an excellent introductory exposition. For this algorithm, Memoli and Sapiro (2001,

Section 3) provide the upwind equation and the neighbor checking modification needed

to adapt the Fast Marching Algorithm to Mǫ constructed from a point cloud as above.

Unfortunately, the Fast Marching Algorithm requires that Mǫ be placed on a Euclidean grid

by interpolation. The demands of a grid on computer memory limit the applicability of the

implementations of the Fast Marching Algorithm known to us to problems where da is less

than about five.

For dimensions higher than five the best available method appears to be Dijkstra’s al-

gorithm (Dijkstra, 1959). If Mǫ is a connected set, then the MCMC draws may be viewed

as nodes pj of a graph Gǫ connected by edges ej,j′ that have length δ(pj, pj′) and that stay

within Mǫ. From a start s, Dijkstra’s algorithm finds the shortest path that traverses edges

to every node pj. These distances will be larger than those of the Fast Marching Algorithm,

were it applicable, because the Fast Marching Algorithm is not constrained to follow edges.
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Computations are as follows.

The Surface Sampling MCMC chain D = {xi}Ni=1 will contain duplicates due to rejections.

They are easily detected because they must occur in succession with probability one. Nodes

are the distinct points {pj}N∗

j=1 and j(i) is the mapping from draw index i to node index j.

Dijkstra’s algorithm gives the distance δ(s, pj) along edges from s to every node pj and the

path (jp1 , j
p
2 , ..., j

p
k) that connects them, where jp1 refers to starting node s and jpk to node pj

First one chooses a ∆ and constructs the graph Gǫ. If Gǫ is not connected, Dijkstra’s

algorithm will return∞ for the distance from s to an isolated node. One can find the smallest

admissible ∆ by increasing ∆ until Dijkstra’s algorithm does not find isolated nodes.

The estimated posterior mean x̄ is the start s that minimizes 1
N

∑N
i=1 δ

2(s, pj(i)).

To compute scale, for the path (jp1 , j
p
2 , ..., j

p
k) that connects s to pj put

8

Dj = diag[sgn(pj − x̄)]
k

∑

ℓ=2

|pjp
ℓ
− pjp

ℓ−1
| Dj ∈ R

da (15)

where the signum and absolute value functions are applied elementwise to pj−x̄ and pjp
ℓ
−pjp

ℓ−1
,

respectively. The estimated variance matrix is

V =
1

N

N
∑

i=1

Dj(i)D
⊤
j(i). (16)

The ∆ that determines the graph Gǫ is a tuning parameter. As yet we do not know

the optimal choice. Too small and one is essentially forcing Dijkstra’s algorithm to traverse

the entire Surface Sampling MCMC chain to find a path. Too large and nodes that should

not be connected by edges are. Our thinking at present is to increase ∆ until standard

deviations are larger than but reasonable relative to those returned by the λ-prior method

with λ chosen to get a close match to GMM estimates of the location and scale for θ.

A lower bound on variance is obtained by making ∆ large enough that every draw is

connected to all of the other draws. The sample variance computed directly from the MCMC

draws D = {xi}Ni=1 is a slightly smaller9 lower bound but much cheaper to compute.

Unfortunately, computing the posterior mean is an order N2 computation and is quite

time consuming. Efforts to improve it by eliminating seemingly irrelevant comparisons have

8This expression is wrong in versions of the MS prior to June 11, 2021; that includes the published version.
9Because the sample mean is not restricted to be one of the draws.
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so far caused erroneous computation of the posterior mean. The posterior mean does not

change much with changes in ∆ so that the search for the best ∆ can avoid computation of

the mean except at intervals along the ∆ search path.

2.4 Estimating the Normalization Constant

Consider the normalization constant, aka marginal likelihood or marginal data density,

Z =

∫

M

f(y | x) π(x) dσ(x), (17)

where σ(x) is d-dimensional Hausdorff measure on R
da . If a mapping from R

d to M can be

found, then computing (17) can be accomplished by Riemann integration after multiplication

by a Jacobian term (Morgan, 2016, p. 29). The strategy proposed by Zappa, Holmes-Cerfon,

and Goodman (2018) consists of successively reducing the domain of integration until such

a mapping can be found. The remaining part of the integral can be computed from Surface

Sampling draws. As above, their algorithm is presented here in terms of our specific choices

of software components and options.

Let x0 be that draw with the highest value of f(y | x)π(x) in the set of Surface Sampler

MCMC draws that are to be used for estimation and inference; i.e., an estimate of the

posterior mode. Let D0 = {xi}n0

i=1 be n0 subsequent Surface Sampler draws. Duplicates

in D0 due to rejections are easily eliminated because they must occur in succession. Let

De
0 denote the subset of D0 remaining after elimination. Compute the Euclidean norms

N0 = {‖x − x0‖ : x ∈ De
0}. Let r0 = maxN0, r1 the 90th percentile, r2 the 80th, and so

on until r9 the 10th. Let Bi be a closed ball in R
da with center x0 and radius ri. Note that

B0 ⊃ B1 ⊃ . . . ⊃ B9. Let

Zi =

∫

M∩Bi

f(y | x) π(x) dσ(x).

For k yet to be determined, note that

Z = Zk

k−1
∏

i=0

Zi

Zi+1

= Zk

k−1
∏

i=0

Ri.

Now Zi+1

Zi
= 1

Zi

∫

M∩Bi
IBi+1

(x)f(y | x) π(x) dσ(x). Therefore, if we add the constraint ‖x −
x0‖ <= ri to the support conditions (3), generate ni draws from the Surface Sampling

Algorithm and count the number Ni,i+1 of those draws that are in Bi+1, then an estimate
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of Zi+1

Zi
is

Ni,i+1

ni
. Thus, an estimate of Ri is R̂i =

ni

Ni,i+1
. The number of draws ni and the

starting values of the Surface Sampler to compute the Ri are tuning parameters. We set the

starts to x0 and the ni to a single value on the order of 10,000.

Now consider determination of k. Start with a first guess at k, which is a tuning parameter

that we set to 5, and a tuning parameter nk that we set to N . Compute Qx0
and Tx0

, i.e.,

compute Qx and Tx as described in Subsection 2.1 with x set to x0. For i = 1, . . . , nk, draw

ui from the uniform distribution on a ball of dimension d and radius rk and put vi = Tx0
ui.

Note that xi = x0 + vi ∈ Bk because Tx0
has orthonormal columns. Project onto M by

solving q(x0 + vi + Qxa) = 0 given by (10) for a, then setting yi = x0 + vi + Qx0
a. If the

projection fails for some i, abort, increase the guessed value for k by one, and repeat. If

k = 9 fails, one can set r10 = r9/2, and try again. Repeat thus with successive divisions by

2. For us so far, failure to accept k = 5 has never happened.

The Jacobian term that corresponds to xi and yi is Ji = det(T⊤
x0
Tyi).

We can now compute Zk by Monte Carlo integration as follows. Compute

Î =
1

nk

nk
∑

i=1

IBk
(yi) (Ji)

−1 exp [log f(y | yi) + log π(yi)− log f(y | x0)− log π(x0)] .

Then

logZk = (d/2) log π − log Γ(d/2 + 1) + d log(rk) + log(Î) + log f(y | x0) + log π(x0)

and

logZ = logZk +
k−1
∑

i=0

log R̂i.

2.5 Regularity Conditions

The class of models for which the SNP sieve is dense is specified in Gallant and Nychka (1987).

The most stringent of the requirements there are that densities in this class must possess a

moment generating function and must be dominated by a Sobelev norm. Usually domination

has the effect of requiring the parameters of models in the class to be in a compact set. The

algorithm for computing the normalizing constant described in Subsection 2.4 also requires

the parameters x = (ρ, θ) to be in a compact set. In most applications the compactness

requirement is honored in the breech: One can set bounds on the parameters so large that
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they might as well be absent so there is no point to bother with imposing them in the first

place. Relevant is that the algorithm in Subsection 2.4 does not make use of bounds, were

they present, to determine the radius of B0.

The choice of quadrature rule in Subsection 2.1 is dictated by the tail behavior of the

density f(y | xt−1, ρ); see Golub and Welsch (1969). For instance, in the example of Subsec-

tion 3.2, were we to work with gross returns instead of log gross returns, the appropriate

expansion for f(y | xt−1, ρ) would be the Laguerre polynomials instead of the Hermite poly-

nomials of the SNP density and the appropriate quadrature rule would be Gauss-Laguerre.

Similarly, if f(y | xt−1, ρ) had bounded support, Gauss-Legendre would be the appropriate

rule.

The manifoldM given by (5) must be connected. The Jacobian transpose Qx given by (9)

must exist and be full rank on M . Because of our use of quadrature, for integration, it is the

right hand side of (8) that must be differentiable. The SNP density is differentiable in ρ and

usually m(y, xt−1, ρ, θ) does not depend on ρ so that it is differentiablity of m(y, xt−1, ρ, θ)

with respect to θ that is usually required.

Technically, the starting value of the Surface Sampler must be in M ; practically, very

close to M . Violation of this requirement causes the Surface Sampling Chain to stick at the

starting value.

Zappa, Holmes-Cerfon, and Goodman (2018) provide detailed proofs of why Step 3,

Projection, and Step 6, Reverse Projection, of the Surface Sampling Algorithm, imply that

detailed balance holds and why no Jacobian terms are present in Pa of Step 5d.

The implementation described here is intended for overidentified moment conditions. If,

instead, the moment conditions are just identified, i.e., the dimension m of q(ρ, θ) is the same

as the dimension of θ, then ρ is unrestricted, can be sampled directly by MCMC, and can

provide corresponding θ draws by solving q(ρi, θ) = 0 for θ at each draw ρi. Examination of

Step 3, Projection, of the Surface Sampling Algorithm reveals that this is what the Surface

Sampling Algorithm will do but accompanied by linear algebra that is wasteful for that

purpose. Step 6, Reverse Projection, is completely wasteful for that purpose. We confirmed

that the Surface Sampling Algorithm does behave as just stated by trying it on a trivial,

just identified model with a weak prior.
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If q(ρ, θ) = 0 does not have a solution, then the Surface Sampling Algorithm will not

work at all because one cannot even provide a starting value. If one persist with a start that,

perforce, does not solve q(ρ, θ) = 0, then the Surface Sampling Algorithm cannot get past

the Projection step and will stick.

3 Examples

3.1 A Simple Instrumental Variables Example

Consider a simulation of the demand and supply system

xt = (σx + ρxxt−1)z1,t (18)

log qd,t = a1 + a2 log pt + σdz2,t (19)

log qs,t = b1 + b2 log pt + xt + σsz3,t (20)

with solution (log pt, log qt) under qt = qd,t = qs,t, where σx = 3, ρx = 0.2, a1 = 12, a2 = −2,

b1 = 3, b2 = 4, σd = σs = 0.1, zi,t standard normal, and sample size n = 500. Note that

the supply shifter xt is heteroscedastic with variance dependent on xt−1 whence the same for

price pt and quantity qt. The data are yt = (log pt, log qt, xt) for t = 1, 2, . . . , n.

The SNP likelihood used for estimation is normal with heteroscedastic errors that depend

on past values of yt:

yt ∼ n3(yt | yt−1, µ,Σ) (21)

Σ = RR′ + P (yt−1 − µ)(yt−1 − µ)′P ′, (22)

where R is upper triangular, and P is diagonal. Thus,

ρ = (µ1, µ2, µ3, R1,1, R1,2, R2,2, R1,3, R2,3, R3,3, P1,1, P2,2, P3,3) ∈ R
12.

A set of moment conditions for estimation of the demand equation (19) are

md,1(yt, yt−1, ρ, θ) = log qt − a1 − a2 log pt (23)

md,2(yt, yt−1, ρ, θ) = xtmd,1(yt, yt−1, ρ, θ) (24)

md,3(yt, yt−1, ρ, θ) = xt−1md,1(yt, yt−1, ρ, θ) (25)

θ = (a1, a2)

ρ not used
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Table 1 about here.

The prior for ρ is independent normal with location the unconstrained maximum likeli-

hood estimates of (21) and scale twice the maximum likelihood standard errors. The prior

for θ = (a1, a2) is independent normal with means (12,−2) and standard deviations (2, 2).

The support conditions on R and P of (22) are that diagonals of R0 must be positive, the

first diagonal element P must be positive, and the eigenvalues of the companion matrix of

Σ must be less than one in absolute value. In addition, a1 must be positive and a2 negative.

We ran the Surface Sampling Algorithm, with moment conditions, prior, and support

conditions as immediately above and retained 50,000 draws after transients had died out.

The tuning parameters were tol = 0.001, nmax = 20. The scaling matrix S of the proposal

density p(v) had diagonal elements 0.006 corresponding to µi and Pi,i and 0.005 corresponding

to Ri,j and ai. We used a five point rule for (7) whence (8) is a 125 point rule.

Because the data are simulated, we were able to start the Surface Sampling Algorithm

from the maximum likelihood estimates of ρ and the known values of θ. Use of the λ-prior

method to get starts was not necessary. The discussion of λ-prior and Surface Sampling

tuning in the next subsection is more relevant to applications because that example is for

real data with answers not known in advance.

Parameter estimates are shown in Table 1. The posterior mode is used as the estimate of

location for reasons discussed in the next subsection. As discussed in Subsection 2.1, SNP

uses normalized data so estimated µ and RR′ should be near zero and the identity, respec-

tively; the moment equations use raw data so estimated ai are in natural units. Reduced

form and nonparametric Bayes estimates of ρ differ little because this is simulated data and

(ρ, θ) is on the manifold (5). The effect of imposing the moment conditions (23), (24), and

(25) to reduce standard deviations computed from MCMC draws, as discussed next.

Scale marked Hi Std.Dev. in Table 1 is computed as described in Subsection 2.3 with

tuning parameter ∆ = 2. These are sometimes called ”Intrinsic Standard Deviations” be-

cause the distance between points on the singular manifold (5) is computed by following the

geodesic that connects them. Scale marked Lo Std.Dev. in Table 1 is the sample variance

computed directly from the MCMC draws. These are sometimes called ”Extrinsic Standard

Deviations”. The intrinsic distance between any two points on the manifold is greater than
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or equal to extrinsic distance whence intrinsic standard deviations are greater than or equal

to extrinsic standard deviations. See Subsection 2.3 for details.

3.2 Extraction of the Stochastic Discount Factor

As a substantive example, we consider the specification and extraction of the ex post stochas-

tic discount factor.

Let Rt =
Pt+Dt

Pt−1
denote the gross return to a security whose price is Pt at time t and that

pays a dividend Dt at time t. Let rt = log(Pt +Dt)− log(Pt−1) denote its geometric return.

For any security, the stochastic discount factor satisfies

1 =

∫

SDFt(y)Rt(y) f(y | xt−1, ρ) dy (26)

provided that, indeed, the SDFt and Rt are functions of y. The density f(yt | xt−1, ρ) is that

given by (1) and xt−1 is the time t− 1 information set of the conditional expectation (26).

Table 2 about here.

As data we take y1,t to be daily, inflation adjusted, geometric returns on the S&P500

stock index (including distributions) and y1,t the same for the NASDAQ stock index for

January 1, 2010, to December 31, 2018, which are n = 2264 bi-variate observations. Sources

are the Center for Research in Security Prices at the Wharton Research Data Services

web site (http://wrds.wharton.upenn.edu) for the S&P500, the St. Louis Federal Reserve

bank (https://fred.stlouisfed.org) for the NASDAQ, and the Bureau of Economic Analy-

sis (https://www.bea.gov) for the GDP deflator used to adjust returns for inflation. The

returns are expressed as a percentage, i.e., yt = 100rt. simple statistics are shown as Ta-

ble 2 together with simple statistics on the extracted SDF. These data are available at

www.aronaldg.org/webfiles/data as files stocks s.dat for data and stocks s.doc for

documentation.

We consider a log linear and log quadratic specification of sdf = log(SDF); viz.,

sdfl(yt) = a0 + a1ft (27)

sdfq(yt) = a0 + a1ft + a2f
2
t , (28)
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where ft =
1
2
(y1,t/100 + y2,t/100).

For the likelihood (1) we use a bivariate SNP-ARCH model. This model has an SNP

innovation density with VAR location and diagonal ARCH scale. It is parameterized as

follows:

y ∼ [P(z)]2n2(y |µ,Σ)
∫

[P(s)]2n2(s | 0, I) ds
(29)

where P(z) is evaluated at z = Σ−1/2(y−µ), n2(y|µ,Σ) is the bivariate normal density, and

P(z) = a01z2 + a02z
2
2 + a03z

3
2 + a04z

4
2 + a05z1 + a06z

2
1 + a07z

3
1 + a08z

4
1 .

The location and scale are

µ = b0 + Byt−1

Σ = R0R
′
0 + P (yt−1 − b0 −Byt−2)(yt−1 − b0 −Byt−2)

′P ′

where R0 is upper triangular and P is diagonal. The parameters of P(z), the elements of

b0 and B, and the non-zero elements of R0 and P are the elements of ρ; see Table 3 for the

ordering of parameters within ρ. The information set is xt−1 = (yt−1, yt−2).

The moment conditions defining (2) that we use in estimation are:

m1(yt, xt−1, ρ, θ) = 1.0− exp[sdfq(yt) + r1,t] (30)

m2(yt, xt−1, ρ, θ) = 1.0− exp[sdfq(yt) + r2,t] (31)

m3(yt, xt−1, ρ, θ) = y1,t−1m1(yt, xt−1, ρ, θ) (32)

m4(yt, xt−1, ρ, θ) = y2,t−1m2(yt, xt−1, ρ, θ) (33)

rt = yt/100

θ = (a0, a1, a2)

ρ not used

For the linear SDF given by (27), the moment are the same but with sdfl replacing sdfq in

(30) and (31) and with θ = (a0, a1).

The prior for ρ is independent normal with location and scale the SNP-ARCH uncon-

strained maximum likelihood estimated parameters and standard errors. Admittedly this is

a data dependent, independence prior, but it is so loose that we think this consideration can
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be dismissed. The prior for θ = (a0, a1, a2) is independent normal with means (0,−1, 0) and

standard deviations (1, 1, 1). This prior loosely implies a variant of CAPM (capital asset

pricing model).

The support conditions apply to R0 and P of the scale function and B of the location

function. They are that the diagonals of R0 be positive and that the first diagonal element

of the diagonal matrix P be positive. In addition, the eigenvalues of the companion matrices

for the location function and the scale function are required to be less than one in absolute

value. Their values for unconstrained estimation of the SNP-ARCH model by maximum

likelihood are 0.0784306 and 0.242951, respectively, so that it is unlikely that these last two

support conditions ever bind.10

We ran the λ-prior chain with the moment conditions, prior, and support conditions

described immediately above to get a start using λ = 10−12; the resulting estimates and

standard deviations are shown as the last two columns of Table 3. To comment briefly,

when λ = 10−14 estimates are about the same except that estimated a3 = −0.03185, and

standard deviations are one order of magnitude smaller than those shown in the last column

of Table 3. For λ = 10−16, estimates are again about the same but a3 = 0.011962 and

standard deviations are two orders of magnitude smaller than shown in the last column of

Table 3. This behavior is the main problem with using the λ-prior method for estimation

over a singular manifold such as (5): There is no known objective way to choose λ.

If one does wish to use the λ-prior method for estimation rather than the Surface Sam-

pling approach, our suggestion is to estimate the location and scale of the parameters of the

moment equations by GMM and choose λ to get the closest match possible to the GMM

estimates. The benefit over GMM being that one thus acquires an estimate of a likelihood

approximately subject to those moment conditions. See, e.g., the CRRA (constant relative

risk aversion) asset pricing example in the slides at www.aronaldg.org/papers/npbclr.pdf,

which compares estimates for various GMM estimation methods, the Surface Sampling

method, and a λ-prior fit that matches to GMM estimates.

We then ran the Surface Sampling Algorithm, using Zappa, Holmes-Serfon, and Good-

10The volatility eigenvalues for an SNP-GARCH or VAR-GARCH model are larger than one in absolute
value. All the multivariate GARCH models we tried in our specification search had explosive volatility
estimates.
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man’s p(v) with the same moment conditions, prior, and support conditions as immediately

above and with tuning parameters si = 0.001815, for all diagonal elements of S, tol = 0.001,

and nmax = 20.11 We used a five point rule for (7) whence (8) is a 25 point rule. There was

little sensitivity to tol; projection onto M was more accurate than tol.12 There was some

sensitivity to S. We collected 100,000 draws well after transients had died out. The Surface

Sampling Algorithm was remarkably effective in keeping all MCMC draws of (ρ, θ) on the

manifold M . The largest value of q(ρ, θ) in the 200,000 MCMC draws over both models was

less than 5.0e-10.

Obviously examining the posterior by computing the posterior mean by averaging over

the MCMC draws of x = (ρ, θ) makes no sense because averages of draws have to be computed

with respect to a notion of distance confined to the manifold M . Unfortunately, the latter

computation depends on a tuning parameter ∆; see Subsection 2.3. Therefore, to interpret

results as regard location, we pick the draw that has the highest posterior mode. Parameter

estimates are shown in Table 3. The normalizing constants are computed with ni = 10000

as -6154.5364 and -6153.0577 for the linear and quadratic models, respectively, using the

algorithm described in Subsection 2.4, giving a posterior probability of 0.81 in favor of the

quadratic SDF.

Table 3 about here.

An advantage of a nonparametric Bayesian strategy subject to moment conditions as

opposed to Bayesian method of moments (Gallant, 2016, 2020) is that it permits a more ex-

haustive analysis of the data. Available for various hypotheticals are plots of the conditional

density, estimates of functionals of the density, the posterior moments of such functionals,

impulse response functions, persistence assessment via fiber bundles, etc.; see, e.g., Gallant,

Rossi, and Tauchen (1992, 1993) for examples. We provide an illustration here: Figure 1,

overplots a stationary density whose first four moments reasonably match those shown in

Table 2 and the conditional density f(y | xt−1, ρ) given by (29) estimated subject to moment

conditions (30) through (33) evaluated at ρ for the quadratic in Table 3. The conditioning

11Trace plots indicated that unequal si were not required. The odd value of the si is due to moving the
si up and down by multiplicative factors such as 0.9, 1.1, etc. It does not indicate requisite precision for si.

12This is apparently a consequence of using Fletcher line search.
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events xt−1 are the days of the largest crashes and rallies on the S&P 500 and NASDAQ, the

values of which are shown in the table legend. Volatility after a crash or rally is roughly 2.5

times larger than stationary volatility. The next day move of the mean slightly offsets the

crash or rally, but in view of the volatility, the best that can be said is that anything can

happen the day after a crash or rally. And that the move is likely to be large.

Figure 1 about here.

4 Conclusion

This paper has addressed computational problems that arise in nonparametric Bayesian

estimation subject to overidentified moment conditions. The difficulty is that the support of

the posterior is a manifold of lower dimension than the number of model parameters which

inhibits the use of MCMC methods. This paper proposes an effective MCMC algorithm

to sample the posterior, methods for estimating scale from a point cloud on the manifold,

and a method to compute the normalizing constant of the posterior density. Effectiveness is

illustrated by an a simple instrumental variables illustration and by extraction of the SDF

(stochastic discount factor) from daily S&P500 and NASDAQ returns.
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Table 1. Demand and Supply Example Parameter Estimates

Reduced Form Nonparametric Bayes

Parameter Estimate Std.Dev. Estimate Lo Std.Dev. Hi Std.Dev.

µ1 0.00417 0.04558 0.00010 0.03231 0.13842

µ2 -0.00081 0.04540 0.02049 0.03490 0.16887

µ3 -0.00147 0.04548 -0.00886 0.03532 0.16060

R1,1 0.98833 0.03900 0.98584 0.03057 0.13707

R1,2 -0.00174 0.02361 0.00485 0.01940 0.08361

R2,2 0.99996 0.03781 1.01112 0.03184 0.12225

R1,3 -0.00400 0.02157 -0.00470 0.01900 0.07417

R2,3 -0.00064 0.02448 0.00894 0.01837 0.07259

R3,3 0.99425 0.03531 0.98554 0.03009 0.13362

P1,1 0.14013 0.16614 0.15897 0.08124 0.28866

P2,2 0.07580 0.24505 0.05796 0.10914 0.40459

P3,3 -0.10131 0.19240 -0.13080 0.12833 0.42660

a1 11.99235 0.01066 0.04075

a2 -1.99928 0.00678 0.02540

The data are a simulation of the demand and supply system (18) through (20). The reduced form
estimates are maximum likelihood estimates for the heteroskedastic normal likelihood (21). The non-
parametric Bayes estimates are computed using the Surface Sampling Algorithm for the likelihood (21)
subject to moment conditions (2) as determined by (23) through (25). Average autocorrelations for
MCMC chains at lag 50 were 0.60. The estimates shown are the those with the highest posterior mode
in 50,000 Surface Sampling draws collected after transients dissipated. Scale marked Hi Std.Dev. is
computed as described in Subsection 2.3 with tuning parameter ∆ = 2. Scale marked Lo Std.Dev.
is the sample variance computed directly from the MCMC draws. Recall the coding conventions of
Subsection 2.1: SNP uses normalized data so estimated µ and RR′ should be near zero and the identity,
respectively; the moment equations use raw data so estimated ai are in natural units.

25



Table 2. Statistics for Data and SDF

S&P500 NASDAQ sdfl sdfq

mean 0.04181 0.04076 -0.04142 -0.04143

std dev 0.94408 1.08461 0.99988 0.99982

skewness -0.40315 -0.45746 0.43621 0.39168

kurtosis 4.43556 3.48237 4.03297 3.97506

Correlations

S&P500 NASDAQ sdfl sdfq

S&P500 1.00000 0.95356 -0.98664 -0.98664

NASDAQ 0.95356 1.00000 -0.98989 -0.98985

sdfl -0.98664 -0.98989 1.00000 0.99998

sdfq -0.98664 -0.98985 0.99998 1.00000

Statistics computed from the data, which are daily, inflation adjusted, geometric
returns including dividends, expressed as a percent, on the S&P500 and NASDAQ
stock indexes, and from the extracted log SDFs, sdfl, sdfq, expressed as a percent,
from January 1, 2010, to December 31, 2018, which are n = 2264 observations.
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Table 3. Linear and Quadratic SDF Parameter Estimates

Linear SDF Quadratic SDF

Surface Sampling Surface Sampling λ-prior

Low High Low High

Parm Est Sdev Sdev Est Sdev Sdev Est Sdev

a01 0.11862 0.03268 0.16628 0.14440 0.03642 0.27323 0.15385 0.00562

a02 0.01399 0.02812 0.18932 0.01115 0.02840 0.20699 -0.03775 0.01708

a03 0.02636 0.01529 0.10085 0.02136 0.01432 0.12896 0.00749 0.01230

a04 0.08140 0.01068 0.09451 0.08448 0.01052 0.12633 0.07901 0.01236

a05 -0.04835 0.02502 0.11964 -0.05492 0.02075 0.14644 -0.04508 0.00500

a06 -0.02255 0.02092 0.15480 -0.03920 0.01923 0.17775 -0.02550 0.01672

a07 -0.03390 0.01371 0.10433 -0.03312 0.01353 0.13481 -0.02797 0.00875

a08 0.15204 0.01152 0.08969 0.15183 0.01112 0.15327 0.15182 0.00947

b0,1 0.12552 0.04330 0.18922 0.14067 0.03439 0.19499 0.12560 0.00364

b0,2 -0.23809 0.06133 0.27905 -0.29055 0.06939 0.46305 -0.28476 0.00685

B1,1 -0.04869 0.01531 0.08063 -0.03979 0.01379 0.11784 -0.05413 0.00425

B2,1 -0.06418 0.01957 0.11300 -0.04801 0.01837 0.16854 -0.06388 0.00740

B1,2 -0.00307 0.01955 0.10959 -0.00388 0.01850 0.17987 0.00157 0.01408

B2,2 -0.02274 0.01960 0.10424 -0.02041 0.02147 0.18976 -0.02974 0.02036

R0,1,1 0.83003 0.03037 0.16300 0.83914 0.02620 0.23278 0.82794 0.02032

R0,1,2 -0.03206 0.01125 0.08293 -0.03956 0.01081 0.14755 -0.03682 0.01012

R0,2,2 0.95712 0.04378 0.27808 0.98015 0.04376 0.26173 1.02870 0.02727

P1,1 0.45712 0.05754 0.26017 0.51896 0.05586 0.29325 0.49067 0.05880

P2,2 0.09592 0.05605 0.24186 0.11608 0.05281 0.28683 0.18463 0.05458

a1 -2.45e-6 5.30e-6 3.23e-5 2.33e-5 1.57e-5 0.00007 2.62e-5 6.46e-6

a2 -0.99733 0.01139 0.05765 -0.99814 0.00933 0.07215 -0.99574 0.00497

a3 -0.25289 0.14899 0.41864 0.23894 0.06461

Surface sampling parameter estimates are for the SNP-ARCH likelihood (29) estimated from daily, inflation
adjusted returns on the S&P500 and NASDAQ indices (including distributions) from January 1, 2010, to
December 31, 2018 under moment conditions (2) as determined by (30) through (33). The prior for ρ is
independent normal with location and scale the SNP-ARCH unconstrained maximum likelihood estimated
parameters and standard errors. The prior for θ = (a0, a1, a2) is independent normal with means (0,−1, 0)
and standard deviations (1, 1, 1). The support conditions are normalizing sign restrictions on variance
parameters and that the eigenvalues of the companion matrices for location and scale are less than one
in absolute value. Average autocorrelations for both the linear and quadratic MCMC chains at lag 50
were 0.87. The estimates shown are the those with the highest posterior mode in 100,000 draws collected
after transients had dissipated. Estimates of scale are computed as described in Subsection 2.3 with tuning
parameter ∆ = 4. The normalizing constants are computed with ni = 10, 000 as -6154.5364 and -6153.0577
for the linear and quadratic models, respectively, using the algorithm described in Subsection 2.4, giving a
posterior probability of 0.81 in favor of the quadratic SDF. The λ-prior estimates are computed with λ = 1012

from 50,000 MCMC draws for the same likelihood, moment conditions, prior, and support conditions.
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Figure 1. Crash and Rally The SNP-ARCH conditional density f(y |xt−1, ρ) given by (29) is plotted

for the day after the conditioning event (solid line). The density is estimated subject to the moment

conditions (2) determined by (30) through (33) and evaluated at the parameters shown for quadratic

in Table 3. The conditioning events are the largest crash, xt−1 = (−6.65,−7.15,−0.07,−0.94), which

occurred on the NASDAQ on August 8, 2010, and the largest rally, xt−1 = (4.98, 5.67,−2.69,−2.24),

which occurred on the NASDAQ on December 26, 2018. Overplotted is a nonparametric estimate of

the stationary density of the data whose first four moments reasonably match those shown in Table 2.

Means and standard deviations in the figures refer to the solid line.
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