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ABSIRACT
Inference for Nonlinear Models

The study considers estimation and hypothesis testing problems for a
regression model whose response functlion is nonlinear in the unknown
parameters.

The results of Malinvaud are exiended to obtain asymptotlc normality for
the least squares estimates of the nonlinear paramebters. The conditions set
forth-do not reguire the existence of second order partial derivatives of the
response funchtion in the parameters and do not require that the parameter
space be bounded.

Hypothesis testing problems in the situation where the errcrs are
normally and independently distributed are considered. For the hypothesis of
location with variasnce known, a necessary and gufficient condition for the
exigtence of a uniformly most powerful test is obbtained and the asympitotic
null and non-null distribution of tﬁé likelihood ratio test is derived. A
special case investigated is a test of location when some parameters enter

the model in & linear fashion.
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INFERENCE FOR NCHLINEAR MODEIS

A. R. GALLANT

1. Introduction. The regression model considered has the structure

Lift B f(Xt;GO) -+ e{; -

The unknown paramebter £ is contained in the parameteter space () =z subset
of R . The input variables x, are contained in ¥ a subset of Rk H

the rule of formation of the sequence {Xt}:=1 is assumedrknown- The
sequence of random variablgs {et}zzl are assumed independent each with
distribution function F{e) . This determines the {marginal) probability
measures Pz o (Rn,ﬁn) where ﬁn denctes the n dimensional Borel sets
and also debtermines the measure E: over (Rm,ﬁﬁ) - A sample (yl, o tees
yﬁ) is generated according *o the model In order to estimate § and/or .
test hypotheses as toc the location of § .

In Section 3 we extend the results of Malinvaud (1970) to obtain
measurahility, strong consisztency,; and aymytotic‘normality for the least
squares estimator. In addition technical resulis on characterization
and rates of convergence are obtained for wuse in later sections. The
assumptions employed allow {7 to be an unbounded set and do not'reqﬁire
that the second order partial derivatiyes of £ in 6 exist. fhese

relaxations of the usual asswmptions were

E/ This research was supported in part by the Bureau of the Census Contract
No. 1-3504k and by a N.D-E.A. Title IV Fellowshipe



-
motivated by a desire to accommodate Problem B below and to develop an estimation
theory sufficiently general to include the grafted polynomial response functions
which have seen use in applications. A grafted gquadratic ~quadratic model
is used as the exaﬁple in Sechtion 9. It ghould be noted that our assumptians
do not rule out the case when the response function is linear in the paré-
neters.

The remainder of the paper considers these two hypothesis testing

probleams:

Problem A. The form of the response function £(x,8} is known as
PN e T N e a
well as the seguence {xt} . For given ae {0,1) and given n we wish
tal - . s} - =
to test H: 6% €, against K: 68 € Q when Oy {80} and
QK x(Zﬁ*QH >
"problem B. The form of the responsé function is known as well as the
i

sequence {xt} . . Some of the parameters enter the model in a linear

faghion so that the parameter space has the form
‘ r P
1
A= 0= (05 8 2w <R 8 0 <X

and the response function has the form

Py
£{(x,8) = &O(X:e(g)) + ﬁgil Giai(x,8(2>} .

For given. ae (0,1) and given n we wish to test H: & ¢ 0, against

K: & ¢ QK when

Py
0, = {6: 8(1) € R~ 3 8(2)‘m 08{2)}

and QK:::Q m»QH .
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The theoretical setting we adopt to approach Problems A and B follows
Tetmann (1959). Briefly, the probability Eyé(B) of obtaining a sample

falling in the set B from B is given by Pz(Be) where

BQ = {(el’ ©or tres en): (el + f(xl>e)1 Tres &) + f(ang)) e B} -

A test of H: § ¢ QH sgainst K: & ¢ QK is a (@n) measurable function
wly) mapping the éample (yl, cees yn}' into [0,1] + The power function of
¢ is given by Bge :I cp(y)cin (v} . fhe usage of the terms level « ,

uniformly most powerful {(UMP) , and most powerful (MP) are standard

(Iehmamn, 1959, p. 60 £f).

Definition 2.1+ For the regression nmodel described in Section 1

and given n define

W’ = the transpose of a matrix W .
W = the Moore-Penrose inverse of a matrix W (Rao, 1965, p. 25).
i = the Buclidean norm.
e m(el, €5 vees en)’.
y = (s ¥y oo v)
fn(e) = (f(xl,ﬁ), f(xgse): ey f(Xn,G))’ .

.Eh . o)
vf{x,8) = the pX 1 wvector whose j  elemsnt is 56 {x,8) -

J

2 . . .th 2
vor{x,8) = the p X p matrix whose i,j  element is fx,8) -

O
26,28,



e

Fﬂ(e) = the n x p matrix whose £8 row is v'f(xt,e) .
| 2
Qn(e) = {iy - fn(e)ﬁ .
’ - +_ . +
P, (6) = 7 (0)[F (8)F (8)17F, (8) = F (R)F (8) -
PH(8) =T -~ P (8) .
n n
IA{X) =14f xeh; =0 if x ¢ A .
a = the Borel subsets of ¥
M -~
Gn(y). = a (ﬁh} measurable function such that Qn(en) = 1n%}Qn(8) .
2 - -

When considering Problem B, the following additional notation is

convenient:
Definition 2.2. Given the conditions of Préblem B, define:
th . s
a(8(2)) = the n X 1 vector whose t ~ element is aO(Xt’e(z)) .

A a . .th . ~
A(B(g)) = the n X‘pl matrix whose £, element is aj(xt,e(a))
8 = a(osiz)) .

AH = A(OG(E)) -
7(8)

H]

([Ag(fn(e) - aH)}, 2 05(2)) .

; + 2 +
Py = AgdAghyl Ay = Ah,



pg =1-7%, -
-~ ~
e ~ :
- 2 measurable functi ch % = 1 .
8 (v) =a (&) asureble function such that @ (8 ) 1n%}HQn(9)

Definition 2.3. (Malinvaud, 1970)  Given the sequence {xt}z ;
W ) =4

from X and ean n define e to be the measure on (¥X,G) which satisfies
LN £
un(A) =n T 4 IA(Xt)
for each A e (O -

Definition 2.4 (Billingsly and Topsoe, 1967) A segquence of
meagures {vn3 on (X,G) is said to converge weakly to a measure Vv on

“r

(x,6) if for every real valued, bounded, continucus function g over X
[e(x) av () - fe(x) av()

as n - ® .
The following definition is an extension to a sequence of veactor

valued random variables of the definition given by Pratt (1958).

Definition 2.5. ILet {Zn} be a segquence of vector valued random

variables, and {an} a sequence of (strictly) positive real nunbers.
We say that 7 is order in probability a_ and write Z_ =0 (a )
n n n o n
if Tor every € > 0 there an M and an N such that
1
|

Pla "z l2Ml<é for n>N.
sl n

We say that Zn is of smaller order in probability than a, and write
7 =o{a} if sty E L0 as now .
n DR nn

For each assumption below it is implicitly assumed that any lower

numbered assunpbion necessary for existence of terms is satisfied. ¥For
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example, the statement of Assumption 7 requires Asgumption 6 for definition

of u and Assumption 2 for the O measurability of {x: £(x,8) £ £(x, 37 .
Assumption 1. (3 is a closed subset of RY
Assumption 2. f{x,8) is continuous on X %Q .

' *
Assumption 3. For given n and almost every y (Pyeo) there is a 9

in 0 minimizing |y - fn(G)H8

Assumption L.  The errors { et3 are independent and identically

dis%;:}ribute_d with mean zero and finite variance 52 >0 .

Assumption 5. X is a compact subset of Rk .

Asswa@tlon 6. The seguence of measures {un} determined by {Xt}

e

c:onverg;eu weakiy to a measure p on (X,4) .
Assumption 7. If. 946 and 8e(l then ulx: £(x,8) A £{x, )1 >0 .

ASSlL:HEulOIl 8. Given M™> O there is an N and 2 X such that for

e e e e e e

all n>N. and all eQ if :é-l Zzzﬁ‘g(xt,{%) <M then |8 <K.

Ass tlcn 9 There is a bounded open sphere (° containing & whose

closure Q— 1s A su‘bset of Q .

Ass y:_r%%;zon 10.  vZ(x,8) exists and is continuous on X X () .

e P T T e T

Assg@tion 1l The matrix

P L] g f0) ._.g_., 20,6 Jau ()]

o X p

is non~gingular.
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Assumpiion 12. There is 2 function ofx,8) which is uniformly bounded

for (x,8) ¢ ¥ ¥{ such that

£(x,8) = T, ) + v/ 2(x, ) (8 - ) + o(x,8) I8 - &1 .

Assugmption 15. The response function £ , dnputs {xt} and errors
{et} are such that given a sequence of random variables {%}} with

Lp-d B+ B el . e!“ s v " o . 4 g
eﬁ—-—mmw~» 8% and Pn“angg) = 1nthh(8)j <1 as n-=® it follows that

'“%" ) " o] o P
as n->e for 1 =1, 2, cec; P o
As shown laster the verification of Assumption 8 is unnecessary when

those which preceed it are satislied and.

Assumption 1h. O is bounded.
Alseo, the verification of Assumptidns 12, 13 is unnecessary when those
which preceed them and

2
Assumption 15 The partial derivatives S§§8§— f(x,8) exist and are
ERN

continuous over X X(Q .

.  Targe sample estimation. As stabed earlier, our objective is to

obtain a largs sample theory sufficiently general to accommedate the linear
model, the partially linear model of Problem B, and the class of nonlinear
models typified by the examplie.

Ekﬁazsmv£° If a regression model satisfies Assumptions 1, 2, '3 for

Fal
given n then there is a Borel measurable function en mapping rY  into



8-
s
¢ suen that q (8) = inf.Q (¢) for all y in a seb with (Pyagj

probability one.

Proof. Construction. Iet Q. = {8 e : |9l il which is compact

by Asswmption 1. Apply Lemma 2 of Jennrich (1969) with © =Q., ¥ = R

and Q{(8,y) = Qn(e) obtaining the measurable function @i : Y -1, which

satisfies Qn(§i) = in%):(ﬁ) . Since in%QQn(ﬁ) is measurable by Asswmption 2
e .

+the selts
* il .
v, = {yeR Qh@i) = inf, 4 (6)]

* 3 - *
are in B . Iet Y. =T ~UT Y ; note that the Y., are disjoint.
n i i J=1 7 i

- - 0 o
Iet 7 = Uixl Yi and set

~ % 5 . M
9, (v) =8 Eﬁ(Y) + m, Zg=1'§i<Y> IYi(y1 ’

- L0
Verification of properities. By Assumption 3 Pygg(inlYi} =1 and
Hu

en is the limit of measurable funciions hence measurable. For given

it s ¢ * . - . . °~ .,..- _
yeU Y, v isin ¥, &Y, for some 1 hence Qn(en) = Qn(ai) =
inf, Qn(e) . i

Temma 3.1. Iet a regression model satisfy Assumption 1 through 8

for 81l n > N . Then there is a bounded open subset S of RF containing
&° such that for almost every realization (32) a sequence of least squares

estimators is in 8 for n sufficiently large.

Proof.

2% Qi ()1 < nF 1y - 2 (8 )1+ iyl



d.g...

...'%l

"y *
....'E" R e P

<n "y - £ (€)1 +n leil + n “ e, (8711

Hi

2”8 Ylell + 5% Yz (€)1 -

el 2o,

- 2] - )
Since n L an(GO)HQ:S supr“(x,ﬁa) and n Z% 02 by the Strong

Taw of Large numbers, there is an M for almost every realization of {et}
; s

e oY
such that n =~ £, (8 )< 1. By Assumption 8 |8 Il <K for n >N . Choose

B> K large enough that & e 8 = [8: jI8ll< B} . |

1
lemma 3.2. Iet 8 C Rp and X C R be compact sets. Let the real
valued function g(x,8) be continuous on ¥ X @ . If a sequence of measures

{vn} converges weakly to a measure v on (X0} then

f g(x,;8) d*dn(x) - r 5(x,8) av{x)

miformly in @ over ® as n-= .

Proof. Malinveud (1970, p. 967). 1

Theorem 2. Ilet a regression model satisfy Assumptions 1 through 8 for
N il e et i el -

N Cal
all n>N and let § De a least squares estimator. Then A asSs | g0
B
and Gim:———ﬂoz) as n - © .

1}

Proof. Iet 8 be as in Lemma 3.1. If we take @ = N S as the
L W
parameter space of the regression model it will satisfy Assumption {a)
of Jennrich (1969)}. We next ghow the model satisfies Assumption (b) of

Jemnrich when ® 1is the parameber space.

a7t sl 17(x,,0) - [ 17(x,8) u(x)
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uniforply on © by Asswmpllions 1, 2, 5, 6 and Iemma 3.2; 1f 8 es and

LALL

8 48 then
T [2(x,8) - £(x,8°)1% alx) >0

by Assumption 7.
*
Iet Gn be a least squares estimator for the model with parameter
space © and set

B o= gn + ({-}z - gn) (1 ~ ES(‘gn)) -

n

How Fén is a least squares estimator for the model with parameter space 8

e S.

&° anann(M)-—m———mgge By

and by Theorem 6 of Jemnrich @n

Temma 3.1, except for realizations in E with PW(E) = 0, we have

L &
) _ - = R o
KS(Bn) = 1, @’n =6 , end n Qh(gn} = o~ for n sufficiently large i

Temma 3-%. let a regression model satisfy Assumptions 5, 6, 9, 10, 1i.
P e L B
Tet {Eh} and, {'BJH'% be sequences of random variables with range in (

, 8s T
such that o ﬁn —rs 8% . Then

F/(3) 7 @) 2 'r .

n n' o

Proof. We may write the elements of n"}“F'i’cx,‘)Fn(ﬁj where

le[]

(e, B) e XQ as (8) = [ =8 56, (x5 a) b@ £(x,8) qu (x) - By

Temma 3.2 £ cg,s)ﬂf @) = [ 58 fGoa) 55 £6oB) wlx) e
i J

n - @ uniformly on (& X({F ; further, the uniform limit figfmﬁ) of

continucus functions 1s continucus on P %P . As a conseguence

AN O gﬁ)mfij(e%e")‘. i

nijt n
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Temma 5.k Tet {e.}, X, {x. 1 satisfy Acsumptions k, 5, 6
P i 4 L
. respectively and let @< B be compact. If g{x,8) is continuous on

% % 8 then for almost all realizations of {et}

B

n
Tiy g(xt;e) e, = 0
yniformly for all € € ©® .

Proof. By Lemma 3.2, n™t 22:1 ga(xk,e) - f gg{xjg} du{x) uniformiy

over 8 . Apply Theorem L of Jennrich (1969). |

lemms 3.5. Iet {aﬁ s X, {xﬁ satisfy Assuwmptions b, 5, 6

regpectively. Iet
g(z) = ggl(x}’ wesy gp(x)),

where each g, 1s continuous over X . Then

1
w5 N £ 2.
n® g etg(xt) mﬁ{O,o ?}

where V = { f gi(x) gj(x) du(x)}y and NP&;,V} denoctes the D

xXp

dimensional multivariate normsl distribution with mean u and dispersicn

matrix V .

Proof. Apply Corocllary 1 of Jennrich (1969). The existence of the
requisite tail products follows from Assumption 6. |
Conclusions {(a), {c) of the theorem which follows characterize

Fay
2 . . . , -
s Gn ; ag linear snd guadratic functions of the errors {et} similar to

<y

Il

those ocourring in linear regression models plus remainders of specified
Pl
probability order. Conclusion (v} specifies the rate a2t which Gn CONVErges

Lo
o 8 .
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Theorem 3. Let a regression model satisfy Assumptions 1 through 13 for
B i

a1l © 5 N and let én be a least squares estimater. Then there is an M

such that for all n>M det[F;(ec')Fu(e")] ~ 0 and:

il

(ay (8. - 8")'

. (R (e")E, (") 17 my 08 + 0 )

() (B, - 97 =0, G
(@ 52 =a e 0 )

if, in addition, Assumption 15 is satisfied then:
Az '-'1, 3 L+ 2 1
o ] [} o
(dy o =n P (s yell © + o)

- P .

Proof. Assumptions 6, 10, 11 imply det[=n SN (8°§ﬁ 5 det(F'F) » O
At ] n n

28 1 oo hence the existence of M , All statements below are for

o > max[ M, N} .

Conclusion (a). Let @n(e} = {¢€ﬁl,e), v m(xn,e))’ where o@f{x,8) is
given by Assumption 12 and let 8, = enIQo(en) + 5 {1 "'%ﬂo(en>> . Note that
@nign) is measuvrable by Assumptions 2, 10 and the measurability of én . If
@ﬁ e O then \n %n = Vn.gn and by Assumption 10 Yn ¢ Qn(@n} = 0 hence by

\ & = - = l
Theorem 2 \n 8, \n GRS op(l) and \n ¥ Qng§;> o?(l} . Using the fact
that ¢ Qn(gn) = ZF;{en}{y - fnfgn)} and substituting the expression for

fn(en} given by Assumption 12 we have

6 (1) =0 2 (3 Ye - 6 Vn (5. = 8°)"

o n'fn n “A © :
where

¢ = a R G E O + FIE e, (B E, - 8] -
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By Assumption 13

. —35 .5 a x : Vg
0 (1) == F'("ye - ¢, \n (gn -8t .

i
How 0 2:5:, F'F as we will show below and n ZF;(ee}e gw Np by Lemma 3.5 so

that \n {gn -8t L N, « Thus

(1 - [Erer, 1) o G - 8 Do

hence
Vo B_ - 87" =Vn (8, - 87" + o (1) =Vn [E'(e")F_ (671 EL (s e + o (1)
=

To see that Gn 8:35, ¥'F note that nmlF;{gﬂ)Fr(ea) el FIF by Iemma 3.3

" and the elements of n-lF;(en)@nﬁen) are uvniformly bounded by Assumption 12

hence
-3 sy o g 2,8,
n -Fn(en)wn(en)(gn 6 ) o 0 by Theorem 2.

Conclusion (b). By Chebishev's inequality the elements of
¥ gt [ R o "1 ] o
Vn LFn(e }xn(e )] Fn(e Ye are Op(lj .

Conclusion {¢). Omitting the subsecript n we have

it

B2 =y - @i+ (ly - £@®)7 - Iy - £@I1H A - 160

4

Iy - £6°) - Fe")G - 0% - [ = 6"l + o (D)

2

12 (a%ye + PCode =~ F(°IE - 8°) = o - ol %@i? + o (1)

]

upsing comelusion (a) and letting § represent a random p X 1 vector of

‘ probability order Gp(l) we have
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gl fa® = oy . A ey
= IB (67)e = o (0 HF(DI - [T wl@]” + o (D)

[

H#wwﬂﬁﬁwbgﬁ%wmwj+ﬁé~&u%@nﬁ
. ze'P*<@°>[F<e°>jop<n“%> +15 - o°Pe@®T + 0, ()

= 125 e™el® + Jlo a HF(e™) 5 + 0, He®l”

S 2fff - o7 e P e + 0, (1)

Now *he second term of this expression is bounded by the square of the sum
"’1 . LI "‘2 ~ -~ X
o (a™h 31 F (0 )¥(e*) 377 + [0,(n” o’ (e

. which converges im probability to zero since (1/D)F'(a°)F(8°) » F'F by
Tesma 2.3 and {1/n)@*(§)@(§) is uniformly bounded for azll = . The

absolute value of the term
o~ o2 o g Sl
2lfe - o7l TeF (87 )0 ()
iz bounded by
20p(1§!ln"%e‘£’*(e")lilin"}é:@(é)u
fo VRt s
< 20p(1)[e e/n] [o" (®)(8) /n]

and the latter term is (3p(1) by the Strong Law of Large Numbers and the .

uniform bound on @(x,e} given by Assumption 12. Thus, we bave shown that

-~

2 )
o = et (a®)ell” + OP{:L) + {39(1) + o (1)

which sstablishes comclusion (c}.
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Conclusion (d)., What is required is to use Assumption 15 to show that
the term 2ﬁ€’w Qﬁﬁze’Eg(@o)mfﬁ} obtained above is op{i} rather than Opil} .

By “avior's theorem, there is a function é: X % ﬁo -3 ﬁg such that
' ng 1 L.} 2 g ©on oy
o = 6°l“w(x,8) = %(s - 6707 £(x,0)(0 - 8 )

ni 5Gee) - 0%l < flo - 6%l forall (x,e) ex x@ . Let w=P(e%es:

then
1 & ‘2 SP_L o — g G e
2l = "% (8%)e(® = @ - 0 )zt 1 U f(x- ¥ ~ 87 .

1f we show that (1/n) Et 1‘Jtd(x ,0) converges in probability to zero where

2.
d(x.p) denotes a typical element of ¢ £{x,8) the desired result will follow

from conclusion (b). The sum

(1/n) T 1u=td(xt,e) ‘

B

(/2 v [a0L8) - aGe,e%)] + (U/m)z 2, w80

i#
|
e
ja

Fow E(Z;) =0 and

]

var(z,) = (1/n")a"(0°)C a )4 (e")

it

(1/n2)02dt (9°)PH(6°)ale")

< (1/nD)e’df (67)d(e")

i

SV LI R AP LR CY
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as n -0 . Thus, by Chebishev's inequality ZE = apil}‘a Since X x O is
compact d{x.93) ig uniformly continuous over % x ﬁo . Given ¢ > 0 there is
a & such that Eé.“ 8°H <& and {(x,8) ¢Xx2 0 imply ‘é(xgé) - d(x,gd);

< {o +‘3)”1g . Then for almost every realization of {etE there is an N

such that

[=750d@B) - 4@ < o+ e

o754 0")e] < 0%l <o + ¢

so that
H "% = © -% P
12,1 < In770d@ - a7 T @Mel < ¢ -
Thus '22 2222, 0 which implies Z, = 09(1) .

Theorem 4. Llet a regression model satisfy Assumptions 1 through 13 for
Pt gl el At - "

all n>H¥ and let @n be a least sauares estimator. Then

ey G i‘£ 2 i "“}_
Vo (B, - 6% Z» B {0,07(F'F) ]

-3 § e ~ .85, ¥
n Fn(en>Fn(9n) emamy FYE

Proof. The first conclusion follows from {a)} of Thecrem 3, Lemma 3.3
o Praiaed

with &g m~§n = g° , and Lemma 3.5. The second conclusion follows from Lemma

3.3 with o, =8 =8 - 1}

Theorem 5. Lf & regression model satisfies Assumptions 1, 2, and 14 it
PPl o PadE e R et .

satisfies Assumptions 3 and 8 for all =n .,
1f 2 regression model satisfies Assumptions 1 through 11 and 15 for all

n >N it satisfies Assumptions 12 and 13,
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Proof. First atatement. Assumpbions 1, 2, 1h imply Assumpbion 3.
get K = Sﬁ%ﬂ@ﬁ +1 and Assumption 8 folldwse

gocond statenent. By Assumption 15 and Taylor’s theorem there ig a

fonction B: X X (P —— P such that Assumption 12 holds with
Blie - 1B - @)D - &) g 4

@(x,8) = <

0 8 =82

\

N s =T BeBe
Iet {@ﬁ} satisfying '@neﬁ 5 @’n

80 3 and

Fne{%@n) = ianQn(e)] - 1 be given. By Jennrich (1969) Iemma 3 there

are measurable functlons gi tn(e) with range in P such that
@) ST = D E - )
n*n n ntn

where D is the p X p matrix with row index 1 and column index J
defined by
a2 m
D, =™ 5, {'5536"’5;“ ey Bypleddied
Assumptions 1 through 11, 15 imply that Assumtions (a) thiough {d) of
Jennrich ave satisfied for the regression model with parameter space replaced

Qs S
e 6F and

by O - By Theorems 6, 7 of Jennrich @n
Jo an - g }’WL Np o By ILemma 34 the elements of Dn converge almost

surely to zero. Thus D NS @ﬁ -8y E 0 and Assumption 13 is

satisfied. i
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e
L, Uniformlyv most powerful tests for Problem A. In this section, we
R Tt

will consider Problem A under the asswmmption that the errors e, sare

independently and normally distributed with known variance 68 3 O*<'g2-< ® s
Jetting m represent lLebesgue measure, Pg will nave the density function

2.-0/2 L =D 2
py(v) = (2m0%) exp{-% o “lly - £ (8)117}
with resgpect to m . The regulits of this section are stated in terms of

Condition bele There is an n X 1 vector T and a function
,WHPWWM\J

c: {1 —= [0, ®} such that fn(So) - fn(e) = (87 .

Temna 4.1. Iet a regression model have normally distributed errors,
P Y M e e
2

g known. For the hypothesls H: © = GO Vo Ki: £ = 81 at leﬁel 22
where fﬁ(eo) £ fn(@l) and 0< @< 1 the uniqﬁe s.e. m most powerful
test is

aly < ¢
o(y) =
o a'y > ¢
whers _
a = fﬁ(eo) ”,fn(gl)
— ! '
e = lall oz +a'f (6)
and  z_ satisfies @(zap = o+ {& is the distribution function of a

standard normal random variable. )

Proocf. The proof follows from the Neyman-Pearson fundamental lemma

- {Iehmzn, 1959, p- 65). |
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Theoram H. let a regression model have normally distributed errors,
P i il
2
s} Known.

a) If Condition 4.1 is satisfied there is a uniformly most powerful

test Tor Probliem A .givem by

1 Ny £ ¢
oly) =
0 My > ¢
where
¢ = IMloz 02 (e).

(T is given by Condition %.1; if M =0 set o(y) =a. )
b) If Condition 4.1 is not satisfied there does not exist a uniformly

most powerful test for Problem A.

’ . . s s . o
Proof. Conclusion {a). Iet 8, € 0, ond consider testing H: & e Oy

vs. K: 6 =8, atlevel a. klf M or c(,) =0 then fn(eo) = fn(el)

1

and for amy test ¢ which is level o« for H we have &g o= EB < o
: o
~Eqg 9 =E ¢ so o is MP for X)) - If- c(8) > 0 and N A0 the
0

MP test o, of {H, Kl) at level o is given by Iemma L.1 with

a=c(8,)1 and e =c(8) [ 1Moz +1'f(8)] . Hence oly) =9,(y) -
Thus for every 8 e, o is MP for il: g° € Q, vse X & =8 .

Conclusion {b). Given choices of 6,5 8, ¢ QK let a, = {fn(éo) - fn(gi)]

(i = 1, 2) « There is a choice of 61‘ such that a, # 0 or else Condition

ol will held with T = 0 » There is a choice of Sp such that a, # coy for

sny © 2 O or else Condition 4.1 will hold with T = a, - Consider.
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with associated unique ase.

8 = Qi at level o

m MP hesis

= 1 o= 1
o {v) = Ify, aly < ci}(y) (1=1 2)
given by ILemms 4.1. If there exists a UMP test o for Problem A it is MP
= mg(y) as€: I e

= 1, 2) and we have @l(y) = o{y)
UMP +test for Problem A

pe

for (H; Kg} (

We will show that Py % @2 a.e. m sd that a
cammot exist. Set

A={y: aly<ec, ay>c iy o) Fe -

the intersection of 4two open half spaces of R' so that A = é
This is false by the choles of

1

implies a. = ca, where ¢ > 0 .
Then A is a non-empty open set and m{A) > O .

Uniformiy mosth Ecwarful tegte for Problem B. In this sectlon we

Fre
comsider Problem R under the assumption of normally distributed errors,
52 Inown. The results of this section are gtated in terms of
and a function ¢ leﬂ

vector T

Condition ée s There iz an n X 1
c(8)7 -

- ; L - v
[0, =) such that {ag fn{ej}

Iet the regression model of Problem B have normally distri-

Temme 5. 1.
For the hypothesis H: & ¢ Oy

known, and let Hl eslx .

at level o where fnCy(El}) # fniﬁl} the unique a.e-

2
buted errors; O

vse K.: & = Ql

-
-
m most powerful test is

i

o(y)



2 ey - 5,05,

®
t

o .
i

F4
Hall oz +a'ay -

. ) ) o .8 .
Procf. By Iemma 4.1 o is the unigue a.e. MP test of Hy. 8 -7(81)

vee K 6° =8, . Since any btest which is level a for (#, ¥;) must be

level o for (Hy, Kl) we will have © MP for (H, Kl} if ¢ is level o

for (H, ;%:3”} + Iet §eQ then

Eqo = P%r {y: a'y=el}

= 8z + (el )™ o’ ley - £, (6)])
= o(a + (llall )7 a Ay 80y)

= ¢ (Zoa)

A _ s = ’ _
because Py AH =0 implies a AH =0 . |

Theorsm T- Iet & regression model have normally distributed errors;

ﬁ‘g knowns
a} If Condition 5.1 is satisfied there is a uniformly most powerful

tegt for Problem B glven by

16,

f



whers

= s T’
© Hn” ZG: + i aH hd

{1 is given by Condition 5:.1; if M =0 set oly) =a- )
b) If Condition 5.1 is not satisfied there does not exist a uniformly

most powsriul test for Problem B.

Proof. The proof of Theorem 6 may be used word for word with the
substitution of y(ei) for @o {i =1, 2), Iemms 5.1 for Lemma L3,

Gondition 5.1 for Condition 4.1, and Problem B for Problem A. |

Proposition 5.1, For Problem B if aff (2)) =0 forall 8 (2) © Q (2)

and there is a 8(2) % 09(2) such that P;A(G(E}) % 0  then Condition 5.1

iz nobt satisfied.

Proof. Suppose, to the contrary. that ?Afr(ﬁ} = ¢{B)7 for all
L ? - n \ s
8 e QK . Themp 3HA(9<2)) 8(2) = c{8)] for all 8 ¢ QKL' Since 6(1)

ranges over R L. and c¢(8) 2 0 we have Péﬁ(e(g)} =0 for all
OISO

Remark 5.1. As a consequence of Proposition 5.1 there do not exist TUMP

. - . ‘T o o . o 1
tests in sucg ;ommon situations as H: 92 082 Vs X: 82 # GB2 whern -
= — 2 T= \ — '\ E3 © o { = 5
{x,8} = Sle or H: 85 = 085 rge K 65 # 8 when f{x,8) = 81 + Sge |

{under reascnable choices of {Xt} 7.

6. Tikelihood ratio test for Problem A. Under the asswiption of normally

_disﬁributed eriorss 02 known, the likelihood i=

18) = (e ™2 e (3072 iy - £ ()17 -
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Theorem 5. ILet a regression model with normally distributed errors,
N e e

62 ¥nown, satisfy Assumptions 1, 2, 3. The Iikelihood Ratio test for

Problem A is
1 t,(y) = oy
o (¥) =
<
0 tl(Y) cq
where
. (y) = o Ay - £ (8 B - oy - £ (B
1 *n¥ o : ¥ n*n’

and ¢, 1is chosen so that Eg ¢ = a (provided such a oy exists)e
o

Proofs  sup L(8) = t(@o) and by Theorem 1 S&%QL(S) = L(gn) . i
H .

_ The asymptotic distribution of tl(y) ig given by

Theorem 9. - Let a regression model with normally distributed errors,
) s
§2 known, satisfy Assumptions 1 through il and 15.

Under the hypothesis H: & = 6,

£, (y) —2- %B(p) -

{Xz(p} denotes the distribution function of a chimsquared random variable

with p degrees freedom. )
Iet b = fﬁ(é"} - fn(ec}) . Then there is an M such that for all

n = M
4 ) =%+ Y, o (1)

where!
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a) Xn and Y are independent.
o) Xn\ ig digtrivuted as a non-centyal X2 with p degrees freedon
and non-centrality A = P Pn{@" ¥6  {Grayoill, 1961, p. 83).

2

a) Y~ is distributed as a normal with mean o - &’ PS(GO ¥  and

veriance Lo™% 8’ P;;{Qo ¥ .
Proof. The Tirst conclusion follows from the second by putting & = 0 .

Apply Theorem 3 and

i

6,(5) = 2 { Ly - £,6)IF - n 0%

i

0 { lle + 0l - IEL(E el - o (1))

i

a2 B () (e + 8)IF + a3 HIEH(E ) (e + 8)IF - ELeli®Y - 0750 (1)

it

X, +Y ¥ op(l) .

Set ‘f;n = En = 6% in Temma 3.3 then det{nwle‘;(So )Fﬁ(@o D det (7’7} .
By Assumption 11 det (F'F) > 0 and there is an M such that for all n>H
renk (Fﬁ{s")) = rank (P (6°)) = p . It is easy to verify thet X and Y,
.ha,ve the reguired distributional properties. f

When Theorem 9 applies we dencte the large sample approximetion of the
eritical point ¢y in Theorem 8 by c¥ ; that is, P [x= cgﬁ:} 42 o when
X~ ¥(p) -

7. Iikelihood ratio test for Problem B For Problem B we have that

W) = (- e gl )
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- . : ﬁ - -
. oo . n
ig (ﬁh} measurable and satisfies Qh(ﬁn) = 1n%lﬂ thﬁ) for every y e R™ .

As = conseqience we have

Theorem 10. Iet the regression model of Problem B have normally
distrituted errors, 02 known, and satisfy Assumptions 1, 2, %. The

Iikelihood Hatio test is

1 t,{y) = o,
o (y) =
0 tQ(Y) < e,
where
s (5) = o2y - £, E)IF - 02 Iy - £, (B )IP

and s is chosen so that sm%}H Eemg = a (provided such a s exists)e

M

o : _ &
Proofs -suQQH 1{8) = L(Gn) and by Theorem 1 sughlie) = L{@n) , i
The asymptotic null distribution of teiy) is given by

Theorem 1l. Iet the regression modsl of Problem B have normally distri-
vuted errors, 62 known, and satisfy Assumptions 1 through .11 and 15.

Under %he hypothesis H: & ¢ o

£

5, (y) o) -

o o ot e o . . ! o A
Proofs For 8 e Q. the matrix F, (8 ) is of the form [A, | F(E)(B ¥

R

CAg in the proof of Theorem § there is an M guch that n> M implies

rank (Fﬁ{gj}} = p hence rank (AH} = p; and renk (Fig){gg)) =D, - 511
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statements intﬁhe procf are for n > max {M ; N} . By Theorem 3 and omitting

the subscript n  we have
g

E

02 e + (&) - 2@ - 072 1Fte)® - 0 o_(2)

H

t,(v)

i

0—2 ”EE + ,AH Bc(i) - AH g%l)nz - O"2§§P.Le”2 + Op(l)

H

o2 e + A Frry - Byle + &y 674 12 . 672 |IPtell® + o, (1)

i1

07 |jz;, el - 072 NP (8")e i + o (1)

6% &/ (B(F°) - By + o (1) -

Since (P(6°) - PB} is a symmetric, idempotent matrix with rank P, the
result follows. i.
When Theorem 11 applies we denote the large sample appfoximation of the

critical point ¢, in TheoremlOby c¥X ; that is, Plx = c%} = g Where

2 2

. 2
X~ % {p,)

8. The case when 02 is unknagg» When 52 is unknown, the obvious
approach is to replace 62 in the test statistics ﬁi{y} i=1,2 by
&,

u .
3? {provided Gi exists and is non-zerc). The test statistics thus

obtained are:

s = @y - 6 - iy - 2,6 )17

al

@1 Ny - £ (618 - Iy - £ )11 -

&
o
P
e
et
i
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The corresponding tests ars:

;m.f

s, {y) = d;
‘i’i(y) =

0 s.{y) < d,

where d, is chosen such that sug, Bgb, = o {provided such a d, exists).
i H i ] 1
mhe same conditions which allowed us to approximate the critical points
*
ey of @i{yé by ¢y gliow us to approximate the gritical points di of
*
4.{y} by e, . To see this note that if Asswptions I through 8 are
*2  ges. e

satisfied for all n >N then o — 0 - Then if ti(y) £ XQ(fi)

when 6 sabisfies H it follows that

s; () = Ca gi? 5. {y) £ XQ{fi} .

9. Grafted polynomisls. At times, s desirable choice of a response
function iz to take f(x,@} to be joined polyndmial submodels constrained
+o be conbinuous and once differentizble in x ; somebimes called  poly-
nomial splines. Instances of their use when +the join points have been fitted
by visual inspection of the data are found in Fuller {1966} end Eppright
{1972). We will consider a case whén all paramebers, including the abscissae
of join points, are estimated by ;east squares; fitting methods are discussed
in Gallant and Fuller (1973).

Tetting Tk{r} - i rzo0 and 0 if r<0, =& quadratic-
gquadratic model will join point abscissa g constrained to be once

>

continuously differentiable in x may be put in the form

£{x,8) = 9, +8x + 63x2 + ﬁkfgigﬁ - %) .



e
Nobe that the model is of the form described in Problem B with

= f a{ﬁﬁ} = 0, and A(85) the

I - Q ) A
5{1§ {’13 923 eﬁﬁ QQB: 9(2} 5 7
s . 2 . Co.

n ¥ b matrix with rows {1, Kyo K T2(§5 ~ "sct}} . Since Tz(r} is
only once differentiable with Té(r) = ETl(r) the second partial
gerivatives of f{x,8) do not exist at all points in X X0 -

Let us further specify the model by taking X = [a, bl and

b . ) &
0 =R % [c, dl where ~eo<a<c<d<b<e. The inpuls {Xt}tzl

from ¥ will be chosen as mear replicates according to the following

1% from ¥ so thab the first

construction. Choose g {2 5} points {Z:L;':Lzl

five satisfy Zl < 22< e<d< i < ZA < %_ . Choose ¢ sSequences

3 5
& 2
- i ' r L. = 71 <
iz }jzl from X converging to the Z; at the rate 2321{213 Zl} =
for L =1, 2, s+e2, 0 and such that Z.. < Z_, < c<a<i <z&l<z -

11 Yol 31 51

o]

1j

110 Fp TPy vrs Ky =By

Assign the inpubs according to Xy o= Z
X~ 212, ; Tastly, teke the errors {et} o szatisfy Assumpiion 3,
take §° interior to 0 , and assume 6‘;_;_ £ 0

The gquadratic-guadratic model thus specified can be shown o sé.tisfy
Asgunmptions 1 *;h:ﬁ;ough 13 for all n =2 5 ; a detailed verification may be
found in_{}aﬁ_lant {1971). TIn the next few paraéraphs we will sketch the
verification of Assumptions 8, 12, 13 for this response Tunction-

Assumption 8. The seguence of measgures {_un} determined by {Xt}
converge weakly to the measure defined by n{a) = qml ""233:1 IA(ZJZ} . The

matrix 'nflﬁ.’{ﬁijﬁigg is positive definite for n = 5 and using lLemma 3.2

its elements can be shown to converge wniformly to the elementsg of

99 = [[ g~ o) gg: £0,8) a ()l |,y
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oy - .i -1 L2 S TR /

o Eal e . f . -
provided ¢ = 65“ 4 Since n = Iy (Xt” g§) =n tﬁ(l)é {85)1%(85)8 )
et ~1.a 2 - s L2
it follows that n =~ I . T {Xt’ ) =M implies . . Sé_ <

trace (nﬂlgf(eﬁ)A{S‘;))_jM . a(8.) is positive definite for c¢= 85 < d
- -
and trace inulﬁ'(ei)}%(ég)"l converges uniformly to trace Gwl(95) as

n -« provided ¢ = 95£ 4. Then given € > 0 there is an N such that

for n> N, n~t i:;l f‘?(xﬁ, ) <M implies

iie§§2 = trace (n“zﬂ’(sﬁ}g(gﬁj}“; Mo+ et 4 a2

: -1
< ! £
= 'supr, g trace G (%5, M+Meg +c +d

<m@-

Assumption 12. Given the point {rO, s(}} the function s=T2{r) can

be put in the form

ScTEKZ') = SOTR{TG) + Te(r{)} (s - sg) + s{}QTl(rg} (r - z,)

+Blrs Ty 85 5) sy ¥) -G I
where |B{r, r5s S5 SO)[ < ?ro§ +jsi . Tims

f(x,8) = £, 80) + v (8738 - 8°)7

pleg - O - x 8y, 8) N8y, ey - (8, N

The last term above can be put in the form required by Assumption 1Z.
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Assumption 13%. IT (® is a closed and bounded sphere containing

8°  +there is a finite bound X  such that

’ ; 2 2
su@@gifkfzij, 6) - £.(z., 8)1° = Kg(zij - Z)

bg £(x,0) {k =1, 2, «av, D) »
k

Civen %‘r with renge in (F and »éfﬂ Hese e
i

vhere we have written f}’;(x,@) for

P
- I £ - o 1
n Etzl{fk{xt’ '@’n) Ik(xt, Sc)JeE

H

m
Ez]qj}_ Jl{f<z :6)-:5’(3 ;BO}FEeiJ

i

L
~5 R 7 . 7
n B T {r (Zi;é’ %’n} £(%,5 'é”n}} ® 5

+

m, . i
z, () (02, B - £, €0 ) FEe

+ B, ( )ﬁi )22 {£7(z;, @) - £7(2;, 7)) ey

nXﬁ-fYn-s»ZH .

Yow

n' 1%5=1 o) 13

e Se
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The last berm on the right can be made arbitrarily small by varying M

i
pence ¥ 218 ; ~% T S
nence X ¢ - Since (min) 23 ¢ 5 N, and
' m, & ~ a D m;_ @ #
(=% [£7(2,, 8) - (5, &)} 25 gB . 0=0 wenave Y 2l 0.

n 3

Finally, Zq«mgmﬂ 0 by Chebishev's inequality.
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