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Abstract

We consider credibility regions computed from a point cloud consisting of draws from a

posterior that lie on a singular manifold that is embedded in a natural Euclidean parameter

space. Visualization methods are developed to determine the amount of curvature of the

manifold. Methods to visualize and report credibility regions in the presence of curvature

are proposed. The motivating application is MCMC (Markov Chain Monte Carlo) applied

to a likelihood that is subject to overidentified moment equations. A common approach

when analyzing such data is to map the data to an Euclidean space of the same dimension

as the manifold, called a chart, with distance on the chart equal to geodesic distance on

the manifold. That approach is adopted here with the difference that our chart variables

are interpretable. Among the examples is a replication of the classic Hansen and Singleton

(1982) estimation using their original data and the methods proposed here.

Keywords and Phrases: Credibility regions, Point cloud, Curved, singular manifold,

Bayesian inference, Method of moments.
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1 Introduction

Constructing a (1 − α) × 100% credibility region from posterior draws is straightforward:

One centers a geometric shape at a reasonable point in the parameter space and adjusts

the boundary until (1 − α) × 100% of the draws are within the region. If the draws lie in

a curved manifold that is both contained within a higher dimensional, natural parameter

space and singular with respect to Lebesgue measure on the natural parameter space, then

the credibility region is also a curved, singular manifold. The problem considered here is how

to visualize and report that credibility region with respect to the natural parameter space.

A standard approach when analyzing such data is to map the data to a Euclidean space

of the same dimension as the manifold, called a chart, with distance on the chart equal to

geodesic distance on the manifold. That approach is adopted here with the difference from

the standard approach in that chart variables are a subset of parameter space variables.

The situation just described can arise as follows:1 A likelihood

f(y | x, ρ) =
n
∏

t=1

f(yt | xt−1, ρ), (1)

is available where yt is a column vector and xt−1 is a matrix of exogenous and predetermined

variables with a fixed number of rows. The vector ρ contains the location, scale, etc. param-

eters of the likelihood. The number of columns of xt−1 is either fixed, as in a cross-sectional

model or a VAR model or increasing with t, as in a VAR-GARCH model.2 The y and x are

objects that contain the observed yt and xt−1. The likelihood can be a sieve with variable

number of parameters thus making the Bayes estimator nonparametric.

Estimation of the parameters in (1) is subject to moment conditions3

0 = q(ρ, θ) =
1

n

n
∑

t=1

∫

m(y, xt−1, ρ, θ)f(y | xt−1, ρ) dy, q ∈ R
m (2)

support conditions

h(ρ, θ) > 0, h ∈ R
l (3)

1This description follows Gallant (2022a) with slight modification.
2This is due to the recursive structure of GARCH variance which causes a VAR-GARCH model to be

non-Markovian and to depend on the past up to the initial observation as most VAR-GARCH likelihoods
are implemented in practice.

3Note that m and m in (2) are distinguished. One can integrate with respect to the distribution of xt−1

rather than the empirical distribution of xt−1 if it is available.
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and a prior

π(ρ, θ). (4)

The vector θ contains the parameters of the scientific model that determine the moment

conditions and that are not in ρ. The natural parameter space is Rda where da is the sum of

the dimensions of ρ and θ. Distance between two points in the natural parameter space is

measured along a straight line using the Euclidean norm.

Letting4 x = (ρ, θ), the support of the posterior density p(ρ, θ | x, y) is the manifold

M =
{

x ∈ R
da : qi(x) = 0, i = 1, . . . ,m, hj(x) > 0, j = 1, . . . , l

}

(5)

The parameters ρ are induced in q(ρ, θ) by the integration. They may also appear explicitly

in m(yt, xt−1, ρ, θ) as the notation indicates but in most applications m does not actually

depend on ρ.

We assume overidentification, i.e., that the dimension m of q(ρ, θ) is larger than the

dimension of θ. Under this setup, the support of the posterior density p(ρ, θ | x, y) is singular
with respect to Lebesgue measure on R

da (Bornn, Shephard, and Solgi, 2018). Let d = da−m

denote the dimension of the support.

The posterior density p(ρ, θ | x, y) is determined by (1) through (3). It is not known in

closed form but can be simulated (Gallant, 2922a)..

Often f(y | x, ρ) is a sieve so that the elements of the parameter ρ determine loca-

tion, scale, heteroskedasticiy, etc. An interesting attempt to make both f(y | x, ρ) and

m(y, xt−1, ρ, θ) nonparametric is Gallant and Tauchen (1989).

The example in Subsection 7.4 is an illustration of the above considerations.

The point cloud need not be generated in this way. It could be a simulation other than

by MCMC from an analytically intractable posterior. Or generated by a scientific apparatus.

The relevant characteristics of the motivating problem are that d, q(ρ, θ), and p(ρ, θ | x, y)
are known.5 Here, we shall presume that q(ρ, θ) and p(ρ, θ | x, y) are not known.

4In this paper, sans serif x and y are distinguished from italic x and y; the former referring to parameters
and the later to data. This is to maintain compatibility with both econometric conventions and the numerical
analysis conventions of Zappa, Holmes-Cerfon, and Goodman (2018) and Gallant (2022a, 2022b).

5For the motivating problem, the normalizing constant of p(ρ, θ |x, y) is compatible (Gallant, 2022a,
Subsection 2.4) although knowledge to within a multiplicative constant is usually adequate.
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Denote the point cloud by

D = {xi}Ni=1 = {(ρi, θi)}Ni=1. (6)

For a set R that may be either a subset of the manifold M or of the embedding parameter

space Rda , denote probability with respect to the empirical distribution determined by D as

PD(R | x, y) = 1

N

N
∑

i=1

I(xi ∈ R). (7)

On the manifold M distance is computed along geodesics. One computes distance by

traversing a geodesic from a starting point s to an end point p and accumulating (infinitesimal

increments of) a Hausdorff weight function defined on M (Morgan, 2016). Denote geodesic

distance between two points s and p in M by

δG(s, p) (8)

and denote Euclidean distance between them by

δE(s, p). (9)

A measure of the location of the point cloud is the intrinsic mean x̄. It is the point s in D
that minimizes 1

N

∑N

i=1 δG(s, xi).

Letting

V = VIC =
1

N

N
∑

i=1

(xi − x̄)(xi − x̄)⊤, (10)

we give primary attention to two regions. The first is a rectangle

Rr =×da
k=1

[

x̄k − τ
√
vkk, x̄k + τ

√
vkk

]

, (11)

where x̄k denotes an element of x̄, and the vkk are the diagonal elements of V . Choosing τ

such that PD(Rr | x, y) = 1−α gives a set of simultaneously valid (1−α)× 100% credibility

intervals. An advantage of this region is that it is amenable to tabular reporting.

The second is an ellipse

Re = {x ∈ D | (x− x̄)⊤V −1(x− x̄) < τ}, (12)

5



with τ such that PD(Re | x, y) = 1−α. Aside from being a traditional region, it can be used

to localize the point cloud around x̄ to facilitate certain computations.

Our interest is in draws from exact data generating mechanisms. That is, the draws

D = {xi}Ni=1 are in M to within reasonable precision for linear algebra on a machine. To

our knowledge, there are three algorithms that can satisfy this requirement for the Bayesian

inference problem defined by (1) through (4). Gallant (2022a) generates draws {xi}Ni=1 in M

for the problem as stated by using the Surface Sampling Algorithm of Zappa, Holmes-Cerfon,

and Goodman (2018). Bornn, Shephard, and Solgi require that (1) has discrete support,

which makes (2) a sum involving probability weights and their corresponding support. Their

paper contains numerous examples and an extensive review of literature related to this

problem. Shin presumes that (1) is a mixture of specific parametric distributions with

random weights drawn from a discrete distribution. The constraint (2) becomes a constraint

on the discrete distribution of the random weights. His examples are from macro economics.

In what follows, requirements are as follows: The manifold M that contains the point

cloud D must be connected and have the same dimension d everywhere. Either the point

cloud does not contain duplicate points or they are easily detected. If the point cloud is

an MCMC chain then duplicate points must occur in succession and therefore are easy to

detect.

Code, including a User’s Guide, implementing methods introduced here for the SNP sieve

f(yt | xt−1, ρ) proposed by Gallant and Nychka (1987) as adapted to time series applications

by Gallant and Tauchen (1989) is at http://www.aronaldg.org/webfiles/npb.

Parts of this paper borrow from Gallant (2022a, 2022b) so as to make this paper mostly

self contained.

2 Geodesics

An approximate geodesic between two points s and p on M can be computed by centering ǫ-

balls at each point in the cloud that are just large enough that their union Mǫ is a connected

subset of Rda . The approximate geodesic is the path with shortest Euclidean distance along

line segments between s and p that stay within Mǫ. The approximation improves as ball

radius becomes smaller due to adding points to the cloud (Memoli and Sapiro, 2001).
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The Fast Marching Algorithm of Sethian (1996) is a standard method for finding the

shortest path between a selected point s and all other points in Mǫ but, unfortunately, it

is limited to dimensions da less than about five due the demands on computer memory

caused by to having to interpolate the point cloud to an equally spaced grid. Regardless of

dimension, the method described next is far more convenient for a point cloud.

Rather than an interpolated, equally spaced grid, one can let the point cloud determine an

unequally spaced grid and use Dijkstra’s algorithm (Dijkstra, 1959) to compute geodesics.

If Mǫ is a connected set, then the points in D may be viewed as nodes pj of a graph Gǫ

connected by edges ej,j⊤ that have Euclidean length δE(pj, pj⊤) and that stay within Mǫ. In

view of the fact that xi ∈ D are draws from a posterior and the contours of the posterior

density are not spheres, our ǫ-balls for determining Gǫ are rectangles with sides k equal

to ∆max{|xk,i − xk,i−1| : xi ∈ D} where xk,i denotes the kth element of xi. If the point

cloud D is an MCMC chain, then D will contain duplicates due to rejections. They are

easily detected because they must occur in succession. In this case, nodes are the distinct

points D∗ = {pj}N∗

j=1; j(i) is the mapping from the point cloud index i to the node index j,

which is the identity map if there are no duplicates. This construction is necessitated by the

requirements of Dijkstra’s algorithm. As will be seen in the remainder, all of the points in

D are used in other computations whether duplicates or not by means of the mapping j(i).

See, e.g, (14).

From a start s, Dijkstra’s algorithm returns the shortest path that traverses edges to

every node pj and returns the path (jp1 , j
p
2 , ..., j

p
k) that connects them, where jp1 refers to

starting node s and jpk to ending node pj. The approximation to δG(s, pj) is

δG(s, pj) ≈
k

∑

i=2

δE(pjp
i−1

, pjp
i
). (13)

Computations are as follows.

One proceeds by choosing a ∆ and constructing the graph Gǫ. If Gǫ is not connected,

Dijkstra’s algorithm will return∞ for the distance from s to an isolated node. As ∆ decreases

the number of isolated nodes increases. At first these isolated nodes typically occur on the

fringes of the point cloud and are few in number. Again, typically, as ∆ decreases further,

the number of isolated nodes increases abruptly. The recommendation here is to choose
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∆ such that the number of isolated nodes is either few or none and to remove the points

corresponding to unreachable nodes from the point cloud. This leaves a point cloud where

all nodes are reachable for that ∆.

Note that the presence of spurious edges in Gǫ increases as ∆ increases. Spurious edges

cause the difference between δG and δE to decrease. Indeed, for ∆ large enough, all nodes

become connected and δG becomes δE. The method for detecting curvature proposed later

becomes less sensitive as ∆ increases because it depends on the difference between δG and

δE. This suggests that for the purpose of detecting curvature, it is better to lean toward

small ∆. Hence the advice for choosing ∆ above.

Hereafter, ∆ is fixed and D and PD given by (6) and (7) refer to a cloud for which all

points are reachable for that ∆.

3 The Intrinsic Mean and the Chart

As mentioned previously, the estimate of the intrinsic mean x̄ is the start s for Dijkstra’s

algorithm that minimizes the average distance to all points in the point cloud. I.e.

x̄ =
s∈D

argmin
1

N

N
∑

i=1

δ2G(s, pj(i)), (14)

where nodes D∗ = {pj}N∗

j=1 are the distinct points in the point cloud D = {xi}Ni=1 and j(i)

maps the point cloud index i to the node index j.

Computing the intrinsic mean is an order N2 computation and can be quite time con-

suming. One way to reduce run times is to search only among likely candidates for the mean.

One can, say, randomly divide D into ten subsets and unrestrictedly search for the intrinsic

mean in the first subset. Then search only among, say, the thousand nodes closest to the

mean found in the first subset in the union of the first and second. Continue so on until one

is searching among, say, the closest one hundred in the full cloud. A better suggestion might

be to start the computation searching all of D then go out for coffee.

A common approach to interpretation and visualization when dealing with a posterior

whose support is a singular, curved manifold is to appeal to Riemannian geometry; a good

reference is Pennec (1999, 2006). The idea is to represent the manifold as a flat space6

6The terms flat space and Euclidean space are used interchangeably.

8



called a chart. For example, if the manifold were the surface of the earth with elevations

disregarded, a chart would be a two dimensional world map and the point cloud would map

to points on this world map.

When the chart is a flat space, one can define or infer probability distributions on the

chart following standard statistical methods for a Euclidean space and then map them to

distributions on the manifold M (Pennec, 2006). Similarly, one can determine credibility

regions on the chart and then map them to credibility regions on the manifold.

The flat space one uses as a chart with the Riemannian approach is the plane Tx̄M

tangent to the manifold M at the intrinsic mean x̄. A point xi from D ⊂ M is plotted

on this chart as follows. One presumes that an analytic representation of a geodesic of the

form γ(t) is available. For each geodesic γ(t) with γ(0) = x̄, the tangent vector d
dt
γ(0) is in

TxM . Let γi(t) be the geodesic connecting x̄ to the point xi for which the distance δG(x̄, xi)

is smallest and let v̂i be the tangent vector v̂i =
d
dt
γi(0). The marker ẑi corresponding to xi

is placed on the chart Tx̄M at ẑi = δG(x̄, xi)
v̂i

‖v̂i‖
.

There are some technical problems with this approach, the most important of which is

that the geodesic with smallest distance may not be unique. These can be addressed in ways

that need not concern us because the method is not feasible when all one has available is a

point cloud on M . But we can borrow the ideas of a chart, of mapping xi from the cloud to

ẑi on the chart by means of lines emanating from x̄, and of making the straight line distance

of ẑi from x̄ along the line in the chart the same as the geodesic distance δG(x̄, xi) from x̄ to

xi on the manifold.

From the present perspective the most serious deficiency of the Riemannian approach

is making the chart tangent to the manifold M at the intrinsic mean x̄. The coordinate

system on such a chart has basis vectors that are orthogonal to the Jacobian of q(x̄). This

interferes with interpretation because coordinates on the chart are not expressed in the

natural parameters x = (ρ, θ). Therefore, the chart that we shall use is a plane of dimension

d whose coordinates are a subset of x. There appears to be no defensible best way to construct

a chart with an interpretable coordinate system nor is it clear that uniqueness even matters.

The chart suggested here is constructed as follows.

One sets a ball B ⊂ R
da centered at x̄ that contains about 5% of the points in D. Only
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the points from D in B are used to find the basis vectors for the chart so as to eliminate the

influence of points on the fringe of the point cloud D. Recall that the number of restrictions

m is known. The goal is to find that set of d explanatory variables that best explain the

remaining set of m variables.

The only practical effect of changing the above suggestion of using 5% of the points in

D is to possibly change which set of d explanatory variables get chosen. In this connection,

one might override the automatic selection suggested immediately below in order, e.g., to

ensure that all location parameters in ρ get selected.

Denote a set of m indices from the set I = {1, 2, ..., da = m+d} by LHSk and denote the

set of those that remain by RHSk; thus, LHSk ∪ RHSk = I and there are
(

da
m

)

distinct pairs

(LHSk,RHSk). Regress each variable in LHSk on the variables in RHSk with an intercept

term. Denote the sum of the R2 for these m regressions by R2
k. Let k̂ index the maximum

of the R2
k. The d elementary vectors ej with j ∈ RHSk̂ are the basis vectors for the chart.

Denote the da by d matrix containing the ek as columns by Px̄ and the chart by Cx̄.
A point xi from from D = {xi}Ni=1 ⊂ M is plotted on the chart Cx̄ as follows. Put vi =

Px̄P
⊤
x̄
(xi − x̄); vi is the orthogonal projection of xi − x̄ onto Cx̄. The marker zi corresponding

to xi is placed on the chart Cx̄ at zi = δG(x̄, xi)
vi

‖vi‖
. The marker z̄ for x̄ is placed at zero.

Note that the coefficients c ∈ R
d for Cx̄ = {z = Px̄c | c ∈ R

d} show up as the non-zero

elements of z ∈ Cx̄.
Denote probability with respect to the empirical distribution on the chart by

PCx̄(R | z) = 1

N

N
∑

i=1

I(zi ∈ R). (15)

The draws D = {xi}Ni=1 that are expressed in terms of the natural parameter space are

in one-to-one correspondence with the points {zi}Ni=1 on the chart Cx̄ that are expressed in

terms of the basis vectors Px̄. Denote this mapping by

Z(xi) 7→ zi ∈ Cx̄ X(zi) 7→ xi ∈ D (16)

A credibility region constructed on the chart, which is a flat space and therefore amenable

to standard statistical analysis, can be mapped to the manifold M in R
da by mapping the

points zi in the credibility region on the chart to the corresponding points xi on the manifold
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M using (16). As a practical matter, for reporting results when da > 3, one will probably

have to restrict attention to regions of the form (11) that can be described in tabular form.

4 Interpretation

The main contribution of this paper is to study the consequences of departing from the

conventions of the related literature by substituting a chart with an interpretable coordinate

system for the conventional chart. As noted earlier, the reference system for the point cloud

D is extrinsic; that is, the parameters x = (ρ, θ) are expressed in a da-dimensional, Euclidean

coordinate system that embeds the d-dimensional manifoldM . This permits using a subset of

the basis vectors for the parameter space as the basis vectors for the chart thereby providing

an interpretable coordinate system for the chart.

Due to the one-to-one correspondence (16) between the chart Cx̄ and the manifold M , an

interpretable coordinate system on the chart is an aid to visualization: The x and y axes of

three dimensional plots become meaningful relative to the extrinsic coordinate system.

In the related literature, the appeal of Riemannian geometry grows out of cartography, the

study of distributions on the sphere, and, to some extent, familiarity with general relativity.

At least in cartography, being on the surface of the manifold makes sense: A slight error in

someone’s location puts them in the air falling to death or underground suffocating to death.

Slight differences matter.

For the motivating problem, slight differences do not matter. The functions f(y | x, ρ)
given by (1) and γ(ρ, θ) given by (2) can accept any values in the parameter space that

satisfy support conditions. These values do not have to be on the manifold M given by (5).

5 Curvature and Visualization

5.1 Assessing Curvature

The idea here is to compare the Euclidean distance δE(x̄, xi) between the intrinsic mean x̄

and a point xi ∈ D to the geodesic distance δG(x̄, xi) between these two points. Curvature is

indicated when the geodesic distance exceeds the Euclidean distance. For this to be effective,

the points xi that are selected for examination must be exhaustive and must be ordered such
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that a graphical display is interpretable.

Let

Qi = (xi − x̄)⊤V −1(xi − x̄) (17)

for xi ∈ D and let

Q = {Qi | xi ∈ D}. (18)

Select for examination those xi for which Qi is between the 90th and 95th quantiles of Q.7

Denote the set of such xi by L. Select some x∗ from L as a benchmark and order the points

in L by cos(x∗, xi), largest to smallest.8 Let yj, j = 1, . . . , K, denote these ordered points.

On the same graph plot δG(yi, x̄) against i = 1, . . . , K and δE(yj, x̄) against j = 1, . . . , K. An

example is Panel (a) of Figure 5. The vertical distance between these two lines is a measure

of curvature.

5.2 Visualization

There is a large literature on visualization of high dimensional data. A good survey is Engle,

Huttenberger, and Hamann (2011). Unfortunately, in general, this literature can be classified

as cluster analysis and therefore is not very relevant to our problem.

For da = 3 visualization is trivially easy; see Panels (b), (c), and (d) of Figures 2 and

4 which plot the manifold M in Panel (b), credibility region Rr in (c), and region Re in

(d). Note that the x-axis and y-axis must be chart variables. The variable on the z-axis is

a predicted value from a regression of xi = X(zi) on zi ∈ Cx̄; see the figure legends.

The idea is to borrow from these plots, put meaningful groups of chart variables on the

x and y axes, and a relevant predicted manifold variable on the z axis, which is usually an

element of θ. Figure 5, which relates to Example 7.3, is a good illustration of this idea. In

Panels (b), (c), and (d), the x-axis is location, the y-axis is heteroskedasticity, the scale chart

variables are held fixed, and the z-axis is price elasticity.

7Other choices such as the 50th and 52th quantiles work equally well.
8cos(u, v) = u⊤v/ (‖u‖‖v‖).
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6 Credibility Intervals

Because a joint credibility rectangle respects the fact that the point cloud is confined to the

manifold M , we suggest using joint credibility rectangles rather than marginal credibility

intervals. We construct the chart rectangle as follows:

On the chart, compute τ such that

PCx̄(R̃τ | z) = 1− α

where

R̃τ =×d

k=1[ z̄k − τ sdev(zkk), z̄k + τ sdev(zkk)]. (19)

In (19), k denotes an element of z̄, z̄ is the point on the chart to which x̄ maps, and the

sdev(zkk) are the square roots of the diagonal elements of

Ṽ =
1

N

N
∑

i=1

(zi − z̄)(zi − z̄)⊤ (20)

for zi ∈ Cx̄.
For tabular display of the chart credibility rectangle, we shall have to shift the center,

viz.

R̂τ =×d

k=1[ x̄k − τ sdev(zkk), x̄k + τ sdev(zkk)], (21)

where x̄ is the intrinsic mean. This is the formula used in columns labeled “Chart” in

Tables 1, 2, and 4.

The corresponding credibility rectangle on the parameter space is

Rτ = {xi | xi = X(zi), zi ∈ R̃τ}.

Unfortunately, it is hard to find the boundaries of Rτ using this construction. One can

estimate the boundaries of Rτ by min{xki} and max{xki} computed element by element,

k = 1, . . . , da, over xi ∈ Rτ but usually these estimates are noisy. Alternatively one can use

the regression of xi = X(zi) on zi ∈ Cx̄ discussed in Subsection 5.1 to map the boundary

of R̃τ to the parameter space but this suffers from prediction error and specification error.

These boundary errors are not of much concern for graphical display but are problematic for

tabular reporting.
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For tabular display one is better advised to compute Rτ using (11), (10), and (7). But,

as seen later, these intervals will be shorter than those constructed according to the previous

paragraph.

7 Examples

7.1 A Flat Manifold Example

Figure 1 displays an iid point cloud on a 1D flat manifold embedded in a 3D Euclidean pa-

rameter space. The manifold is a one dimensional circle tilted with respect to the parameter

space. Figure 2 displays the curvature indicators discussed in Subsections 5.1 and 5.2. The

geodesic and Euclidean lines in Panel (a) have negligible separation which implies that the

manifold is a flat space. Panel (b) displays the manifold variable labeled var z as a regres-

sion prediction from chart variables that are labeled var x and var y. The enumeration on

the right hand side of var x and var y on the axes of Figure 1 refers to the coordinates of

the parameter space, not to coordinates of the chart, as does, perforce, the enumeration for

var z. Panel (c) shows the intersection of the 95% rectangular credibility region Rr given

by (11) with the regression surface shown in Panel (b). Panel (d) is the same for Re given

by (12).

Figure 1 about here.

Figure 2 about here.

7.2 A Curved Manifold Example

Figure 3 displays an iid point cloud on a 1D curved manifold embedded in a 3D Euclidean

parameter space. The manifold is a one dimensional sphere. Figure 4 displays the curvature

indicators discussed in Subsections 5.1 and 5.2. The geodesic and Euclidean lines in Panel (a)

have modest separation which implies that the manifold is a mildly curved space. Panel (b)

displays the manifold as a regression prediction from chart variables, labeled var x and

var y, to a manifold variable, var z. Their enumeration refers to coordinates of the natural

parameter space as described above. Panel (c) shows the intersection of the 95% rectangular
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credibility region Rr given by (11) with the regression surface shown in Panel (b). Panel (d)

is the same for Re given by (12).

Figure 3 about here.

Figure 4 about here.

Table 1 about here.

7.3 A Simple Demand and Supply Example

This example is from Gallant (2022a, 2022b) where several measures of location and scale

are reported that make useful comparison with results reported here. It is also an instance

of Example 3 of Bornn, Shephard, and Solgi, 2018).

The demand and supply system is

xt = (σx + ρxxt−1)z1,t (22)

log qd,t = a1 + a2 log pt + σdz2,t (23)

log qs,t = b1 + b2 log pt + xt + σsz3,t (24)

with solution (log pt, log qt) under qt = qd,t = qs,t, where σx = 3, ρx = 0.2, a1 = 12, a2 = −2,

b1 = 3, b2 = 4, σd = σs = 0.1, zi,t standard normal, and sample size n = 500. Note that

the supply sifter xt is heteroscedastic with variance dependent on xt−1 whence the same for

price pt and quantity qt. The data are yt = (log pt, log qt, xt) for t = 1, 2, . . . , n.

The likelihood used for estimation is normal with heteroscedastic errors that depend on

past values of yt:

yt ∼ n3(yt |µ,Σt−1) (25)

Σt−1 = RR⊤ + P (yt−1 − µ)(yt−1 − µ)⊤P⊤, (26)

where R is upper triangular, and P is diagonal. Thus,

ρ = (µ1, µ2, µ3, R1,1, R1,2, R2,2, R1,3, R2,3, R3,3, P1,1, P2,2, P3,3) ∈ R
12.
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A set of moment conditions for estimation of the demand equation (23) are

md,1(yt, yt−1, ρ, θ) = log qt − a1 − a2 log pt (27)

md,2(yt, yt−1, ρ, θ) = xtmd,1(yt, yt−1, ρ, θ) (28)

md,3(yt, yt−1, ρ, θ) = xt−1md,1(yt, yt−1, ρ, θ) (29)

θ = (a1, a2)

ρ not used

The prior for ρ is independent normal with location the unconstrained maximum like-

lihood estimates of (25) and scale twice the maximum likelihood standard deviation. The

prior for θ = (a1, a2) is independent normal with means (12,−2) and standard deviations

(2, 2). The support conditions on R and P of (26) are that diagonals of R must be posi-

tive, the first diagonal element P must be positive, and the eigenvalues of the companion

matrix of Σt−1 must be less than one in absolute value. In addition, a1 must be positive and

a2 negative. The point cloud is 50,000 draws generated using Gallant (2020) with tuning

parameters as in Gallant (2022a).

Curvature is moderate, as seen in panel (a) of Figure 5, which plots the explicit the curva-

ture measure proposed in Section 5.1. Regression visualizations are shown in the remaining

panels, which plot price elasticity a2, z-axis, confined to the manifold M against location

chart variables moved as a group, x-axis, and heteroskedasticity chart variables moved as a

group, x-axis, Scale parameters are held fixed at z̄.

Figure 5 about here.

Table 2 about here.

7.4 Hansen and Singleton (1982) Revisited

The original data from Hansen and Singleton (1982) are published in Gallant (1987, pp.

416–420) and available online at www.aronaldg.org/webfiles/data/hansena.dat. The

data are monthly observations, t = 1, . . . , 239 = n, for the US economy on nondurables and
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services, NDSt, population, POPt, value weighed NYSE returns with dividends, NYSEt, and

the implicit price deflator, DFLt, from 1959 through 1978. Set

lcg = log

[

(NDSt)/(POPt)

(NDSt−1)/(POPt−1)

]

lsr = log

[

(1 + NYSEt)
(DFLt−1)

(DFLt)

]

.

The economic model describes asset pricing in an exchange economy under constant relative

risk aversion, CRRA, utility.

The statistical model is equations (1) through (4) where f(yt | xt−1, ρ) is a bivariate,

Gaussian, conditionally heteroskedastic, autoregression with location and scale given by

µt = b+ Byt−1 (30)

Σt = RR⊤ +QΣt−1Q
⊤ + P (yt−1 − b−Byt−2)(yt−1 − b−Byt−2)

⊤P⊤ (31)

where R is upper triangular, P is diagonal, and Q is a scalar. Thus

ρ = (b1, b2, B1,1, B2,1, B1,2, B2,2, R1,1, R1,2, R2,2, P1,1, P2,2, Q1,1) ∈ R
12. (32)

Set

yt =





y1t

y2t



 =





lsrt

lcgt



 . (33)

The variable xt−1 denotes the information set and has as many lags in it as are needed to

compute f(yt | xt−1, ρ) of equation (1).

The moment conditions for estimating θ = (β, γ) are

m(yt, xt−1, θ) =











1

lsrt−1

lcgt−1











[1− exp(log β − γlcgt + lsrt)] , (34)

for t = T0, . . . , n. Thus, (2) becomes

0 = q(ρ, θ) =
1

n

n
∑

t=T0

∫

m(y, xt−1, θ)f(y | xt−1, ρ) dy, q ∈ R
m (35)

where ρ is (32) above and θ = (β, γ).
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The prior is shown in Table 3. The support conditions are that 0.1 < β < 1.0; 0 < γ <

200; R1,1 and R2,2 must be positive; P1,1 and Q1,1 must be positive; and the eigenvalues of

the companion matrices for the location function and the scale function must be less than

one in absolute value.

Parameter estimates of θ from Hansen and Singleton (1982), unconstrained maximum

likelihood estimates of ρ using Gallant and Tauchen (1990), and Bayesian estimates of (ρ, θ)

subject to (2), (3), and (4) using Gallant (2020), together with confidence intervals for the

frequentist estimators and credibility intervals for the Bayes estimator are shown in Table 4.

The Bayes estimates differ little from the Hansen and Singleton estimates.

Table 5 shows marginal credibility intervals for comparison with the joint credibility

intervals shown in Table 4. As shown in the table, the length penalty is about 50% for using

joint intervals instead of marginal intervals. The view advanced here is that joint intervals

are preferred because they reflect the fact that the support of the posterior is a curved,

singular manifold and because their extra length partially compensates for ignoring geodesic

distance in their construction.

The likelihood ratio test of the restriction (35) is λ = 1319.57 − 1289.92 = 29.65, which

is asymptotically chi square on one degree of freedom provided one agrees that the prior,

Table 3, is loose relative to the credibility intervals shown in Table 4. One rejects the

restrictions (35) at the α = 0.005 significance level.

Curvature is strong, as seen in panel (a) of Figure 6, which plots the explicit the curvature

measure proposed in Section 5.1. Regression visualizations are shown in the remaining

panels, which plot γ, the z-axis, confined to the manifold M against chart location variables

moved as a group, the y-axis, and chart scale variables moved as a group, the x-axis,

Table 3 about here.

Table 4 about here.

Table 4 about here.

Figure 6 about here.
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8 Conclusion

The notion of a chart is a standard adjunct to the interpretation of a point cloud confined to a

curved, singular manifold that is embedded in a Euclidean space, Here, the points are draws

from a posterior and the embedding space is the parameter space. A chart is a Euclidean

space of the same dimension as the manifold. Points map one-to-one between the manifold

and the chart. Euclidean distance on the chart equals geodesic distance on the manifold. In

Riemannian geometry the chart is tangent to the manifold with the consequence that chart

coordinates are not easily interpretable with respect to the parameter space. This paper

proposes a chart that uses a subset of parameter space basis vectors but is otherwise similar

to the Riemannian chart. This is a substantial aid to visualization by means of interpretable

3D plots.

Using a discrete analog of a space filling curve, a measure of curvature is proposed. The

curve sweeps through points in an elliptical band at the fringe of the point cloud. Curvature

is measured by the difference between geodesic distance from a point in the band to the

intrinsic mean and Euclidean distance for same.

As a preferred reporting mechanism, a system of simultaneously valid credibility rectan-

gles is proposed. It can be constructed on the chart then mapped to the manifold or con-

structed directly on the manifold. Comparing the two constructions provides a secondary

measure of curvature.

The proposed methods are illustrated by examples that include replication of the classic

Hansen and Singleton (1982) paper using their original data. What is clear from the examples

is that confidence rectangles that use geodesic distance are improbably large. Confidence

rectangles constructed on the point cloud using Euclidean distance appear reasonable relative

to other statistical methods.

9 Supplementary Materials

C++ and R code: Provided is the code needed to produce Table 2 and Figure 5 from the

included point cloud. (curve ds eg.zip, a MAC zipped directory, or from

www.aronaldg.org/webfiles/curve ds eg)
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Figure 1. A Point Cloud on a Flat Manifold. An independent and identically distributed sample

supported on a one dimensional circle that is tilted with respect to the axes of the three dimensional

embedding space. The data are 20,000 iid uv, v ∼ N3(0, I), u ∼ U(0, 1) normalized to have length one

projected onto two dimensions.
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Figure 2. Curvature Indicators for the Flat Manifold Example.

Panel (a). Geodesic and Euclidean Distance. For points xi ∈ D between the 90% and 95% credibility

region boundaries one of them, x∗, is selected as a benchmark. The points are ordered from largest to

smallest according to cos(x∗, xi). Let {yj}Kj=1
denote the ordered points and note that y1 = x

∗. Plotted

are δG(yj , x̄) against j = 1, . . . ,K, labeled geodesic, and δE(yj , x̄), labeled Euclidean; i.e. the horizontal

axis is j = 1, . . . ,K and the vertical axis is δG and δE . The distance between the two plots is a measure

of curvature. In this instance the distance is negligible because the manifold has no curvature.

Panel (b). Regression Surface. There is a one-to-one mapping between points on the chart to points

on the manifold. Shown is a plot of a linear regression of the manifold points onto the chart points.

The corners of the plot extend beyond the boundary of the point cloud. The axes labeled var x and

var y are chart variables. The axis labeled var z is an embedding variable. Their enumeration refers

to coordinates of the natural parameter space.

Panel (c). Rectangular Credibility Region. Shown is the intersection of the 95% rectangular credibility

region Rr given by (11) with the regression surface shown in panel (b).

Panel (d). Elliptical Credibility Region. Shown is the intersection of the 95% elliptical credibility region

Re given by (12) with the regression surface shown in panel (b).
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Figure 3. A Point Cloud on a Curved Manifold. An independent and identically distributed

sample supported on a one dimensional sphere embedded in a three dimensional parameter space. The

data are 20,000 iid (u1, u2, u3), ui ∼ U(0, 1) normalized to have length one.

24



0 200 400 600 800 1000

0.
48

0.
50

0.
52

0.
54

(a)

di
st

an
ce

geodesic

Euclidean

var_x = 3 va
r_

y 
= 1

var_z = 2

(b)

var_x = 3 va
r_

y 
= 1

var_z = 2

(c)

var_x = 3 va
r_

y 
= 1

var_z = 2

(d)

Figure 4. Curvature Indicators for the Curved Manifold Example.

Panel (a). Geodesic and Euclidean Distance. As for Figure 2 except that the two plots are separated

by a modest distance that indicates mild curvature.

Panel (b). Regression Surface. As for Figure 2 except that the regression is a quadratic.

Panel (c). Rectangular Credibility Region. As for Figure 2.

Panel (d). Elliptical Credibility Region. As for Figure 2.
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Figure 5. Curvature Indicators for the Demand and Supply Example.

Panel (a). Geodesic and Euclidean Distance. As for Figure 2 except that the two plots are separated

by a distance that indicates large curvature.

Panel (b). Regression Surface. As for Figure 2 except that the regression is a degree four poly-

nomial with interactions to degree three. The x-axis is location of which all are on the chart,

var x = (µ1, µ2, µ3), moved as a group. The y-axis is heteroskedasticity that is on the chart,

var y = (P1,1, P2,2), moved as a group. The z-axis is a2, which is price elasticity and is not a chart

variable. The scale variables R1,1 through R3,3 are chart variables that are held fixed at the the intrinsic

mean x̄, which plots as zero on the chart.

Panel (c). Rectangular Credibility Region. As for Figure 2.

Panel (d). Elliptical Credibility Region. As for Figure 2.
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Figure 6. Curvature Indicators for the Hansen and Singleton (1982) Example.

Panel (a). Geodesic and Euclidean Distance. As for Figure 2 except that the two plots are separated

by a distance that indicates large curvature.

Panel (b). Regression Surface. As for Figure 2 except that the regression is a degree four poly-

nomial with interactions to degree three. The x-axis is scale that is on the chart, var x =

(R1,1, R1,2, R2,2, P1,1, P2,2, Q1,1), moved as a group. The y-axis is location that is on the chart,

var y = (b1, b2, B2,1, B1,2, B2,2), moved as a group. The z-axis is γ, which is not a chart variable.

Panel (c). Rectangular Credibility Region. As for Figure 2.

Panel (d). Elliptical Credibility Region. As for Figure 2.
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Table 1. Estimates for the Curved Manifold Example

Credibility Intervals

Parameter Estimate Cloud Chart

x 0.57675 0.01608, 1.13742 -0.06157, 1.21507

y 0.57883 0.01830, 1.13937

z 0.57647 0.01994, 1.13299 -0.05858, 1.21152

The parameter estimate is the intrinsic mean computed using (14). Credibility
intervals at 95% were computed using (11), (10), and (7) for the column labeled
Cloud and (21), (20), and (15) for the column labeled Chart.
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Table 2. Estimates for the Demand and Supply Example

Bayesian

Max Likelihood Cred Intervals

Parm Estimate Conf Interval Estimate Cloud Chart

µ1 0.00527 -0.08473, 0.09527 -0.00003 -0.09392, 0.09386 -1.71786, 1.71781

µ2 -0.00363 -0.09265, 0.08539 -0.00079 -0.10119, 0.09962 -1.58011, 1.57854

µ3 0.00074 -0.08773, 0.08921 0.01134 -0.09589, 0.11857 -1.59993, 1.62260

R1,1 0.98124 0.90443, 1.05805 0.97910 0.88043, 1.07778

R1,2 -0.00117 -0.04797, 0.04563 -0.00555 -0.06276, 0.05165 -0.86920, 0.85809

R2,2 0.99011 0.91490, 1.06532 0.96984 0.84134, 1.09835 -1.10177, 3.04146

R1,3 -0.00263 -0.04516, 0.03990 -0.00934 -0.06515, 0.04646 -0.88379, 0.86510

R2,3 -0.00300 -0.05129, 0.04529 -0.00224 -0.05528, 0.05081 -0.85203, 0.84756

R3,3 0.98842 0.92027, 1.05657 1.00550 0.91594, 1.09506 -0.31672, 2.32771

P1,1 0.18437 -0.07006, 0.43880 0.16312 -0.07847, 0.40470 -3.77625, 4.10248

P2,2 0.15678 -0.12264, 0.43620 0.03334 -0.28706, 0.35375 -3.85954, 3.92623

P3,3 -0.14894 -0.38551, 0.08763 -0.00741 -0.39943, 0.38461 -5.19730, 5.18248

a1 11.98399 11.95268, 12.01531

a2 -1.99489 -2.01493, -1.97486

Maximum likelihood estimates are unconstrained. Confidence intervals are the estimate plus and
minus 1.96 the standard error. Bayesian MCMC draws were computed using Gallant (2020). The
Bayesian parameter estimate is the intrinsic mean computed using (14). Credibility intervals at 95%
were computed using (11), (10), and (7) for the column labeled Cloud and (21), (20), and (15) for the
column labeled Chart.

29



Table 3. Prior for the Hansen
and Singleton Example.

Parameter mean std. dev.

b1 0.03933 1.00000

b2 -0.06346 1.00000

B1,1 0.00988 1.00000

B2,1 -0.10529 1.00000

B1,2 0.01288 1.00000

B2,2 -0.18929 1.00000

R1,1 0.24539 1.00000

R1,2 0.00626 1.00000

R2,2 0.24970 1.00000

P1,1 0.30396 1.00000

P2,2 0.22018 1.00000

Q1,1 0.93808 1.00000

β 0.99786 0.01000

γ 1.03705 10.00000

The values shown for the mean are those in the
λ-prior method’s MCMC chain that were closest
to the manifold. They were also used as start val-
ues for the NPB iterations. See Gallant (2022a,
Section 2.2).
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Table 4. Estimates for the Hansen and Singleton Example

Bayesian

Hansen and Singleton Max Likelihood Cred Intervals

Parm Estimate Conf Interval Estimate Conf Interval Estimate Cloud Chart

b1 0.02294 -0.108, 0.155 0.08931 -0.045, 0.223 -6.905, 7.084

b2 -0.00924 -0.137, 0.118 -0.00308 -0.129, 0.123 -6.316, 6.310

B1,1 0.08608 -0.069, 0.241 0.00685 -0.001, 0.015

B2,1 -0.05166 -0.179, 0.076 -0.05009 -0.122, 0.021 -3.488, 3.388

B1,2 -0.00005 -0.122, 0.122 0.03808 0.021, 0.055 -0.931, 1.007

B2,2 -0.25700 -0.389,-0.125 -0.29676 -0.410, -0.184 -6.944, 6.350

R1,1 0.31081 0.131, 0.491 0.28310 0.162, 0.404 -5.835, 6.401

R1,2 0.00186 -0.036, 0.040 0.01012 -0.023, 0.043 -1.636, 1.656

R2,2 0.45081 0.273, 0.629 0.30858 0.185, 0.432 -6.097, 6.714

P1,1 0.37613 0.208, 0.544 0.29878 0.148, 0.450 -6.675, 7.273

P2,2 0.06396 -0.148, 0.275 0.21700 0.104, 0.330 -5.459, 5.893

Q1,1 0.87799 0.781, 0.975 0.91154 0.872, 0.951 -1.236, 3.059

β 0.9979 0.993, 1.00 0.99562 0.989, 1.002

γ 0.9001 0.287, 1.51 0.97476 0.792, 1.158

Hansen and Singleton estimates are from Hansen and Singleton (1982, Table I, Line 5). Maximum likelihood
estimates are unconstrained. Confidence intervals are the estimate plus and minus 1.96 the standard error.
Bayesian MCMC draws were computed using Gallant (2020). The Bayesian parameter estimate is the
intrinsic mean computed using (14). Credibility intervals at 95% were computed using (11), (10), and (7)
for the column labeled Cloud and (21), (20), and (15) for the column labeled Chart.
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Table 5. Marginal Credibility Intervals for the
Hansen and Singleton Example.

Parameter Cred Interval Rel Length

b1 0.00475, 0.17388 1.58

b2 -0.08689, 0.08073 1.51

B1,1 0.00133, 0.01236 1.45

B2,1 -0.10059, 0.00041 1.42

B1,2 0.02304, 0.05312 1.12

B2,2 -0.40017,-0.19336 1.10

R1,1 0.19965, 0.36654 1.45

R1,2 -0.01561, 0.03585 1.29

R2,2 0.22180, 0.39537 1.41

P1,1 0.20267, 0.39490 1.57

P2,2 0.11731, 0.31669 1.13

Q1,1 0.88369, 0.93939 1.42

β 0.99181, 0.99942 1.65

γ 0.85985, 1.08968 1.59

Marginal credibility intervals are Ik =
[

x̄k − τk
√
vkk, x̄i + τk

√
vkk

]

,
where k denotes an element of the intrinsic mean x̄, and the vkk are the
diagonal elements of V given by (10). The critical value τk is chosen
such that PD(Ik |x, y) = 0.95. Shown in the Relative Length column
is the ratio of the critical value for the joint credibility region shown in
Table 4, 2.5260, divided by τk.
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