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Abstract

We explore practical aspects of two complementary Bayesian method of moments strate-

gies using a macro-finance application. The first, termed here “moment constrained Bayes,”

uses a sieve to represent represent the density of the data. Taking the expectation of the

moment conditions with respect to the sieve generates parametric restrictions on sieve pa-

rameters and introduces additional parameters from the moment conditions. An advantage

of moment constrained Bayes is that it provides both an estimate of the density of the data

as well as estimates of the parameters that appear in the moment conditions. The diffi-

culty with moment constrained Bayes is computational: The parameter space is singular

with respect to Lebesgue measure making Markov Chain Monte Carlo methods difficult to

implement. To circumvent the computational difficulty, we use a penalty function approach,

termed here the “λ-prior method,” to generate draws from a close approximation to the

posterior. The second Bayesian method of moments strategy, termed here “moment induced

Bayes,” uses a semi-pivotal Z constructed from the moment conditions and an assumed dis-

tribution Ψ for Z to infer a likelihood and thereby proceed to Bayesian inference. Moment

induced Bayes provides estimates of the parameters that appear in the moment equations

only. The difficulty with moment induced Bayes is that one must choose Ψ. To circumvent

the difficulty, we use draws of Z from moment constrained Bayes to infer Ψ.
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JEL Classification: C32, C36, E27
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1 Introduction

We explore practical aspects of two complementary Bayesian method of moments strategies

using a macro-finance application, which is

EXAMPLE 1 Let Ct denote the annual consumption endowment. Let Pct denote the price

of an asset that pays the consumption endowment. Let

Rct = (Pct + Ct)/Pc,t−1 (1)

denote the gross return on the consumption endowment. In general, if an asset S pays Dst

per period and has price Pst, then its gross return is Rst = (Pst+Dst)/Ps,t−1. Prices are real.

The Epstein-Zin (1989) and Weil (1990) variant of the Kreps-Porteus (1978) utility func-

tion is

Ut =
[

(1− δ)C
(1−1/ψ)
t + δ (EtU1−γ

t+1 )
1−1/ψ
1−γ

]
1

1−1/ψ

, (2)

where δ is the time preference parameter, γ is the coefficient of risk aversion, and ψ is the

elasticity of intertemporal substitution. Under the budget constraintWt+1 = (Wt−Ct)Rc,t+1,

where Wt is the representative agent’s wealth, the agent’s intertemporal marginal rate of

substitution is

MRSt,t+1 = δβ
(

Ct+1

Ct

)−(β/ψ)
(

Rc,t+1

)(β−1)

. (3)

where

β =
1− γ

1− 1/ψ
.

The gross return of the asset that pays the consumption endowment satisfies the Euler

equation

1 = Et (MRSt,t+1Rc,t+1) (4)

and the gross return on an asset S that pays Dst satisfies

1 = Et (MRSt,t+1Rs,t+1) . (5)

The following data were constructed for the 86 years 1930 to 2015 as described in Sub-

sections 2.1 and 2.2 below.

• st = log real gross stock return (value weighted NYSE/AMEX/NASDAQ).
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• bt = log real gross bond return (30 day T-bill return).

• ct = log real per capita consumption growth (nondurables and services).

• wt = log real gross wealth return, wt = log(Rct) (see (1)).

• mrst−1,t = log marginal rate of substitution, mrst−1,t = log(MRSt−1,t) (see (3)).

Let x denote an array of extent n whose columns are xt = (st, bt, ct, wt)
′. The process

{xt}∞t=−∞ is assumed to be strictly stationary; i.e., the distribution of (xt+1, . . . , xt+L) is the

same as the distribution of (x1, . . . , xL) for any t and any L.

Given the parameters θ(2) = (γ, ψ, δ) and x, one can compute the pricing errors

e1,t,t−1 = 1− exp(mrst−1,t + st)

e2,t,t−1 = 1− exp(mrst−1,t + bt)

and form the following moment equations for the estimation of θ(2) = (γ, ψ, δ)

m1(xt, xt−1, θ(2)) = e1,t,t−1

m2(xt, xt−1, θ(2)) = e2,t,t−1

m3(xt, xt−1, θ(2)) = e1,t,t−1 × st−1

m4(xt, xt−1, θ(2)) = e1,t,t−1 × bt−1

m5(xt, xt−1, θ(2)) = e1,t,t−1 × ct−1

m6(xt, xt−1, θ(2)) = e1,t,t−1 × wt−1

m7(xt, xt−1, θ(2)) = e2,t,t−1 × st−1

m8(xt, xt−1, θ(2)) = e2,t,t−1 × bt−1

m9(xt, xt−1, θ(2)) = e2,t,t−1 × ct−1

m10(xt, xt−1, θ(2)) = e2,t,t−1 × wt−1

Let

m̄(x, θ(2)) =
1

n

n
∑

t=2

m(xt, xt−1, θ(2)). (6)
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where

m(xt, xt−1, θ(2)) =











m1(xt, xt−1, θ(2))
m2(xt, xt−1, θ(2))
...
m10(xt, xt−1, θ(2))











(7)

Abbreviating m(xt, xt−1, θ(2)) by mt and m̄(x, θ(2)) by m̄, define a heteroskedatic autoregres-

sive invariant (HAC) estimate of the variance of m̄(x, θ(2)) by

W
(

x, θ(2)
)

=

[n1/5]
∑

τ=−[n1/5]

w

(

τ

[n1/5]

)

W̄τ (8)

where

w(u) =

{

1− 6|u|2 + 6|u|3 if 0 < u < 1
2

2(1− |u|)3 if 1
2
≤ u < 1

W̄τ =

{

1
n

∑n
t=2+τ (mt − m̄) (mt−τ − m̄)′ τ ≥ 0

W̃ ′
n,−τ τ < 0

(9)

See, e.g., Gallant (1987, p. 446, 533). Define

Z(x, θ(2)) =
√
n
[

W (x, θ(2))
]− 1

2
[

m̄(x, θ(2))
]

. (10)

where
[

W (x, θ(2))
]− 1

2 denotes the inverse of the Cholesky factorization of W (x, θ(2)). ✷

There are two methods that can use m(xt, xt−1, θ(2)) to estimate θ(2) = (γ, ψ, δ) within

the Bayesian paradigm:

The first method, that we shall term “moment constrained Bayes,” uses a likelihood

f(x | θ(1)) to represent the density of the data, which is often a sieve. The parameter vector

θ(1) is determined by whatever likelihood one chooses for x; its definition will vary throughout

as determined by context. Taking the expectation of the moment conditions with respect to

the likelihood generates parametric restrictions

0 = ρ
(

θ(1), θ(2)
)

=

ˆ

m(xt, xt−1, θ(2)) f(x|θ(1)) dx (11)

5



Note, in passing, that for any non-random positive definite matrixW
(

θ(1), θ(2)
)

, an equivalent

expression for the constraint is

0 = ρ′
(

θ(1), θ(2)
)

W−1
(

θ(1), θ(2)
)

ρ
(

θ(1), θ(2)
)

. (12)

The main problem with moment constrained Bayes is that under the constraint (11), the

parameter space

Θ =
{

θ∈Rdim(θ) | θ =
(

θ(1), θ(2)
)

, 0 = ρ
(

θ(1), θ(2)
)}

(13)

has measure zero. This makes estimation of the posterior distribution of θ subject to a prior

p(θ) and constraint (11) by Markov Chain Monte Carlo (MCMC) problematic; see, e.g.,

Gamerman and Lopes (2006) for the practicalities of MCMC. Some proposals for dealing

with the computational problem posed by moment constrained Bayes are the following.

Under the assumption that data are independent draws from a density with finite support,

Bornn, Shephard, and Solgi (2016), develop MCMC methods to draw from the posterior

density f(θ | x) determined by likelihood f
(

x | θ(1)
)

and prior p(θ) on Θ. The main issue they

address is the determination of the correct Jacobian term to account for the singularity of Θ.

Shin’s (2015) proposals can accommodate Markovian data. The likelihood is presumed to

be a mixture of specific parametric distributions with random weights drawn from a discrete

distribution. The constraint (11) becomes a constraint on the discrete distribution of the

random weights. Given a prior, several MCMC samplers are developed to draw from the

posterior determined by this likelihood.

Another proposal for computing moment constrained Bayes, that we term the “λ-prior

method,” is to use a general purpose sieve for f
(

x | θ(1)
)

subject to a prior of the form

pλ(θ) = p(θ)× exp
[

−λn ρ′
(

θ(1), θ(2)
)

W−1
(

θ(1), θ(2)
)

ρ
(

θ(1), θ(2)
)]

. (14)

Here we use the seminonparametric density (SNP) fSNP
(

x | θ(1)
)

proposed by Gallant and

Tauchen (1989) for use in applications similar to Example 1. Its main advantage in the

present context is that well tested code for estimation and simulation is available. The pa-

rameter space for likelihood fSNP
(

x | θ(1)
)

and prior pλ(θ) is not singular so MCMC can pro-

ceed in the usual fashion. For large λ, θ draws become concentrated near the parameter space

Θ thereby providing approximate draws from the posterior with likelihood fSNP
(

x | θ(1)
)

and
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prior p(θ) subject to constraint (11). For λ sufficiently large, MCMC must fail because Θ is

singular. The idea is, by trial and error, to find the largest λ such that MCMC draws mix

and use those draws as the approximation to the posterior on Θ. Given a proposed θ, one

can easily generate a long simulation x̂ from fSNP
(

x | θ(1)
)

. The values for ρ
(

θ(1), θ(2)
)

and

W
(

θ(1), θ(2)
)

that appear in (14) are computed by evaluating (6) and (9), respectively, with

x = x̂.

The second method, that we shall term “moment induced Bayes,” assumes that z =

Z
(

x, θ(2)
)

given by (10) follows a distribution Ψ(z) with density ψ(z). From this distri-

bution, one can infer a probability space upon which Bayesian inference can be conducted

(Gallant, 2016a). The main regularity condition is the semi-pivotal condition that the set
{

x : Z(x, θ(2)) = z
}

not be empty for any choice of (z, θ(2)) in the permissible parameter

space Θ(2) and range Z of Z. Often Ψ is taken to be the normal distribution Φ with density

φ in which case one uses

p(x | θ(2)) = φ(z) = (2π)−
M
2 exp

{

−n
2
m̄′(x, θ(2))[W (x, θ(2))]

−1m̄(x, θ(2))
}

, (15)

as the likelihood and proceeds directly to Bayesian inference using a prior p(θ(2)). This is

usually justified by claiming that Z is asymptotically normal. Actually, it is the density of

Z not the distribution that needs to converge. Necessary and sufficient conditions that the

density of Z converges to φ(z) uniformly in n and θ(2), are given by Sweeting (1986).

Regardless of regularity conditions, ψ can be quite different from φ in finite samples. The

purpose of this paper is to determine ψ for a practical application, namely Example 1, and

investigate the consequences of using φ instead of ψ. We find that φ differs markedly from

ψ, being concentrated at zero and having extremely long exponential tails. This departure

turns out to have important consequences. Details follow.

2 Data

Collection of the data on st, bt, and ct is straightforward and discussed in the first subsection

below. Construction of wt is somewhat elaborate and discussed in the second subsection.

Summary statistics are presented in the third. All data are annual for the years 1930 through

2015.
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2.1 Stocks, Bonds, and Consumption

The raw data for stock returns are value weighted returns including dividends for NYSE,

AMEX, and NASDAQ from the Center for Research in Security Prices data at the Wharton

Research Data Services web site (http://wrds.wharton.upenn.edu).

The raw data for returns on U.S. Treasury 30 day debt are from the Center for Research

in Security Prices data at the Wharton Research Data Services web site.

The raw consumption data are personal consumption expenditures on nondurables

and services obtained from Table 2.3.5 at the Bureau of Economic Analysis web site

(http://www.bea.gov).

Raw data are converted from nominal to real using the annual consumer price index

obtained from Table 2.3.4 at the Bureau of Economic Analysis web site. Conversion of

consumption to per capita is by means of the mid-year population data from Table 7.1 at

the Bureau of Economic Analysis web site.

2.2 The Return to Wealth

In addition to the data described above, the construction of the return to wealth, Rc,t requires

additional data:

Raw labor income data is “compensation of employees received” from Table 2.2 at the

Bureau of Economic Analysis web site.

Raw annual returns including dividends on the twenty-five Fama-French (1993) portfo-

lios were obtained from Kenneth French’s web site, http://mba.tuck.dartmouth.edu/pages

/faculty/ken.french. The portfolios are the intersections of five portfolios formed on market

equity and five portfolios formed on the ratio of book equity to market equity. The portfolios

are for all NYSE, AMEX, and NASDAQ stocks for which equity data are not missing and

book equity data are positive. The portfolios are constructed at the end of each June with

breakpoints determined by the NYSE quintiles at the end of June. Complete details are at

Kenneth French’s web site. The advantage of the Fama-French portfolios here is that they

appear to isolate and exhaust the risk factors for holding equities (Fama and French, 1992,

1993).

Raw returns are converted from nominal to real using the annual consumer price index
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obtained from Table 2.3.4 at the Bureau of Economic Analysis web site. Conversion of labor

income to per capita is by means of the mid-year population data from Table 7.1 at the

Bureau of Economic Analysis web site.

In this subsection only, the data are real gross returns Rst on the Fama-French portfolios,

a vector of length 25, the real gross return on the thirty day T-bill Rbt, real per capita

consumption growth Ct
Ct−1

, and real per capita labor income growth Lt
Lt−1

; xt is a vector of

length 28 containing these variables and x has dimension 28 by n = 86. Also, in this

subsection only, the definitions of θ, m(xt, xt−1, θ), m̄(x, θ), W (x, θ), and Z(x, θ) will differ

from those of Example 1 although they are similar entities for a similar problem.

The first step is to determine the distribution of the process Ct
Ct−1

MRSt−1,t. This is done

by nonparametrically determining the ex-post realized values of MRSt−1,t over the period

spanned by the data, multiplying by the observed Ct
Ct−1

, and fitting an SNP conditional

density function fSNP (
Ct
Ct−1

MRSt−1,t | Ct−1

Ct−2
MRSt−2,t−1, . . .) to

Ct
Ct−1

MRSt−1,t. Then, we use

Pct = Et
∞
∑

j=1

Ct+jMt,t+j = C0

(

t
∏

k=1

Ck
Ck−1

)

∞
∑

j=1

Et
j
∏

k=1

(

Ct+k
Ct+k−1

Mt−1+k,t+k

)

(16)

to express the gross return to consumption as

Rct =
Pct + Ct
Pc,t−1

=

Ct−1

Ct−2

∑∞
j=1 Et

∏j
k=1

(

Ct+k
Ct+k−1

Mt+k−1,t+k

)

+ Ct
Ct−1

Ct−1

Ct−2

∑∞
j=1 Et−1

∏j
k=1

(

Ct+k−1

Ct+k−2
Mt+k−2,t+k−1

) (17)

and use simulation from fSNP (
Ct
Ct−1

MRSt−1,t | Ct−1

Ct−2
MRSt−2,t−1, . . .) to compute the expecta-

tions in (17). It remains to discuss the computation of the ex-post realized values of MRSt−1,t.

To compute the ex-post realized values of MRSt−1,t nonparametrically we follow Gallant

and Hong (2007). The differences are that the data set is longer due to the passage of time

and that all of the Fama-French portfolios can be used because a missing data problem

has been resolved. We shall be brief; see Gallant and Hong (2007) for a more extensive

exposition.
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Define the instruments

Vt =























Rst − 1

Rbt − 1

Ct/Ct−1 − 1

Lt/Lt−1 − 1

1























,

where Rst − 1 denotes 1 subtracted from each element of Rst. Let the parameter θ =

(θ1, . . . , θ86) denote the ex-post values of the pricing kernel. If Example 1 is misspecified, θt

could differ from the marginal rate of substitution MRSt−1,t determined by (3). Denote the

vector of Euler equation errors by

et,t−1(θt) = 1 − θt





Rs,t

Rb,t



 , (18)

where 1 denotes a vector of 1’s of length twenty-six. The moment function that determines

m̄(x, θ) =
1

n

n
∑

t=2

m(xt, xt−1, θt) (19)

for our estimator is

m(xt, xt−1, θt) = Vt−1⊗ et,t−1(θ), (20)

where ⊗ denotes Kronecker product. The length of the vector m(xt, xt−1, θt) is K = 754 so

that the number of overidentifying restrictions on θ2, . . . , θ86 is 669. Note that θ1 is not yet

identified because θ1 does not appear in (19); it is identified by the prior as discussed later

in this subsection.

We assume that (θtRst, θtRbt) has a factor structure. There is one error common to all

elements of θtst, and twenty-six idiosyncratic errors, one for each element of (θtRst, θtRbt).

Denote this matrix by Σe (or by Σe,t if one wants to allow for heterogeneity, which makes no

difference in what follows). A set of orthogonal eigen vectors Ue for Σe are easy to construct

and can be used to diagonalize Σe. Similarly Uv and Σv for Vt.

Let Ht(θ) = (Uz⊗Ue) ′m(xt, xt−1θ) with elements hi,t(θ). Diagonalization implies that we

can estimate the variance of Ht(θ) by a diagonal matrix Sn(θ) with elements

si(θ) =
1

n

n
∑

t=2

(

ht,i(θ)−
1

n

n
∑

t=2

ht,i(θ)

)2

.
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Following Gallant (2016a), a likelihood for x is, then,

p(x | θ) ∝ exp
{

−n
2
m̄(x, θ) ′(Uz⊗Ue)S−1

n (θ)(Uz⊗Ue) ′m̄(x, θ)
}

; (21)

Next we describe the prior.

The prior for θ has the form fSNP (θ | η)φ(η |µ, σ), where µ is the is the location of the SNP

parameter η and σ is its scale. The location parameter µ is determined by fitting fSNP (θ |µ)
to a long simulation (1665 years) of the {MRSt−1,t} in a Bansal and Yaron (2004) long-run

risks economy. The values of σ are set to the values shown as the loose prior in Table 5

of Gallant and Hong (2007). There are a few additional tweaks to the prior that insure

the stationarity of the process {θt} that we have glossed over, which see Gallant and Hong

(2007). The prior nudges the seminonparametic density fSNP (MRSt−1,t |MRSt−2,t−1, . . .)

toward what would be seen in a stationary Bansal-Yaron (2004) economy. With likelihood

and prior specified, MCMC draws from the posterior for θ are generated in the usual fashion.

The mean of these MCMC draws is plotted in Figure 1. That is the estimated ex post

realization of MRSt−1,t. These are then multipled by Ct
Ct−1

and used as data to estimate the

SNP density fSNP (
Ct
Ct−1

MRSt−1,t | Ct−1

Ct−2
MRSt−2,t−1, . . .). Simulations from this density are

used to compute the expectations that appear in (17).

Figure 1 about here

2.3 Simple Statistics

Simple statistics for these data are shown in Table 1.

Table 1 about here

3 The Distribution of Z

In this section, for Example 1, we determine a distribution Ψ for Z given by (10) using

moment constrained Bayes computed with the λ-prior method. For this, we need a likelihood

f
(

x | θ(1)
)

for x = (x1, . . . , xn), xt = (st, bt, ct, wt)
′, n = 98. As we shall compute the integral

that appears in the expression for ρ
(

θ(1), θ(2)
)

given by (11) by averaging over a simulation

from f
(

x | θ(1)
)

, the likelihood density must be easy to simulate. We compute W
(

θ(1), θ(2)
)
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that appears in (12) using (8) with (9) computed from a simulation. ([n
1

5 ] that appears in

(8) is evaluated at the sample size n = 86, not the simulation size N = 1000; for Example 1,

[n
1

5 ] = 1.) The SNP density can accurately approximate a stationary, Markovian process

and is easy to draw from (Gallant and Tauchen, 1992); SNP is our choice.

The SNP density fSNP
(

x | θ(1)
)

is determined using BIC following the protocol stated

in (Gallant and Tauchen, 1990) using code at www.aronaldg.org/webfiles/snp. That

determined has transition density

fSNP
(

xt | xt−1, θ(1)
)

= n(xt |µt−1,Σt−1) (22)

where

µt−1 = b0 + Bxt−1

Σt−1 = Σ0 + q2Σt−2 + [diag(p1, p2, p3, p4)](xt−2 − µt−2)(xt−2 − µt−2)
′[diag(p1, p2, p3, p4)]

The prior is

p(θ) = p
(

θ(1), θ(2)
)

= p
(

θ(1)
)

p
(

θ(2)
)

. (23)

The prior on θ(1) is

p
(

θ(1)
)

= p1
(

θ(1)
)

p2
(

θ(1)
)

, (24)

where p1
(

θ(1)
)

is determined from a simulation of a Bansal and Yaron (2004) economy at the

annual frequency of 1665 years and p2
(

θ(1)
)

is an indicator for a support condition on θ(1)

that insures that simulations from (22) are stationary and mean reverting by requiring that

the largest eigen values of the companion matrices of the mean µt−1 and variance function

Σt−1 are less than one. As to p1
(

θ(1)
)

, the SNP density (22) was fitted to the simulation by

maximum likelihood to determine an estimate αi and variance β2
i for the parameters θ(1),i

for the SNP density; then p1
(

θ(1)
)

=
∏

n(θ(1),i |αi, 100× β2
i ).

The substantive prior on θ(2) = (γ, ψ, δ) is

p
(

θ(2)
)

= p(γ)p(ψ)p(δ) (25)
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where

p(γ) = I{γ>0|}(γ)n[γ | 10.0, (100)2]

p(ψ) = I{1.2<ψ<1.8}(ψ)

[

1 + cos

(

π + 2π
ψ − 1.1

2.0− 1.1

)]

p(δ) = I{0.981354269<δ<0.999000999}(δ)

[

1 + cos

(

π + 2π
δ − 0.0.981354269

0.999000999− 0.981354269

)]

where 0.981354269 corresponds to 1.9 per cent per annum and 0.999000999 to 0.1 per cent.

The substantive prior tightly constrains ψ and δ to the standard values of a Bansal and

Yaron (2004) economy, leaving the risk aversion parameter relatively unconstrained.

If we accept (22) as an adequate representation of the likelihood, then z = Z(x, θ(2)) is

determined by

(x, θ(1), θ(2)) ∼ fSNP
(

x | θ(1)
)

p(θ) pλ(θ) (26)

given by (22), (23), and (14), respectively (Gallant, 2016a). The sampling procedure is to

draw θ =
(

θ(1), θ(2)
)

from p(θ) pλ(θ), draw x from fSNP
(

x | θ(1)
)

, and set z = Z(x, θ(2)). We

consider λ that are powers of 10. The largest order λ for which draws of θ from p(θ) pλ(θ)

will mix is λ = 102. After transients died off, a θ-chain of length R = 200000 was retained.

For every tenth θ in the chain a sample x from fSNP
(

x | θ(1)
)

of size n = 86 was generated

and z = Z
(

x, θ(2)
)

evaluated to form a z-chain of length 20000.

Marginal histograms from the z-chain are shown in Figure 2. What is immediately

apparent from Figure 2 is that a using a density ψ(z) determined from the z-chain instead of

φ(z) in (15) to implement moment induced Bayes by MCMC will have the effect of reducing

the number of θ(2) draws from the θ(2)-chain that have large values of z.

(Figure 2 about here)

(Figure 3 about here)

The moment constrained estimates of the substantive parameters θ(2) = (γ, ψ, δ) obtained

via the λ-prior method are of some interest. These are presented in Table 2. The chain for

the prior for λ = 103 will not mix, so these values are missing.

(Table 2 about here)
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We now proceed to the determination of ψ from the z-chain. Our intention is not to

match the distribution exactly but rather come reasonably close with a distribution that

has elliptical contours with mean and mode of zero. These seem to be reasonable a priori

considerations. A mean of zero is dictated by the scientific theory. A mode of zero and

elliptical contours are motivated by a desire to treat euler equation errors symmetrically.

Figure 4 plots the left-most quantiles of the z-chain against the corresponding quantiles

of a 2 d.f. t-distribution; the details of the construction are in the figure legend. Figure 5

plots the left-most quantiles of the z-chain against the corresponding quantiles of a 30 d.f.

t-distribution. Comparing the two figures, it would seem that a conclusion that the left tails

of z are exponential is warranted. One reaches the same conclusion regarding the right tails

from similar plots (not shown).

Figure 2 suggests a classic “witches hat” distribution that can represented as a mixture

of two multivariate normal distributions with zero mean and variance-covariance matrices

that are proportional, viz.,

ψ(z) = p nM(z | 0, αΣ) + (1− p)nM(z | 0,Σ), (27)

where nM(z | 0,Σ) = (2π)−
M
2 [det(Σ)]−

1

2 exp(−1
2
z′Σ−1z). The result of a fit of this density to

the z-chain yields visual results that are qualitatively similar to Figures 2 and 4 whereas the

equivalent of Figure 3 differs dramatically, having the classic normal symmetric shape about

zero rather then the decentered, asymmetric shapes seen it Figure 3.

(Figure 4 about here)

(Figure 5 about here)

4 Moment Induced Bayesian Estimates

Conceptually a likelihood f
(

x | θ(1)
)

, a prior p(θ) = p
(

θ(1)
)

p
(

θ(2)
)

, and a restriction 0 =
´

m(xt, xt−1, θ(2)) f(x|θ(1)) dx determine a joint probability space (X ×Θ, Co, P o). The prior

is the marginal distribution of θ on this probability space. Marginalizing gives a space

(X × Θ(2), Co(2), P o
(2)) with prior p

(

θ(2)
)

as the marginal distribution of θ(2). Both the joint
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and marginal probability spaces determine the same same density ψ(z) for the random

variable Z(x, θ(2)) given by (10).

Conversely, an assumption that Z(x, θ(2)) has density ψ(z) together with an assumption

that θ(2) has density p(θ(2)) induces a probability space (X×Θ(2), C∗
(2), P

∗
(2)). The details of its

construction are in Gallant (2016a). The two probability spaces are equivalent in the sense

that P o
(2)(C) = P ∗

(2)(C) for every C ∈ C∗
(2). Therefore the probability space (X×Θ(2), C∗

(2), P
∗
(2))

can be used as a substitute for (X×Θ, Co, P o) for the purpose of Bayesian inference regarding

θ(2). The semi-pivotal condition that the set
{

x : Z(x, θ(2)) = z
}

not be empty for any choice

of (z, θ(2)) in the parameter space Θ(2) and range Z of Z implies that the likelihood f
(

x | θ(2)
)

on (X × Θ(2), C∗, P ∗) is f
(

x | θ(2)
)

= ψ[Z(x, θ(2))]. Therefore, one can use the likelihood

f
(

x | θ(2)
)

and prior p(θ(2)) to generate a MCMC chain for θ(2). See the discussion of this

claim in Gallant (2016b, 2016c). Briefly, there is a missing adjustment term that has the

effect of making the effective prior different from p(θ(2)). The adjustment depends only on

Z(x, θ(2)) and has no effect on the determination of ψ(z), which is the focus of this paper.

The adjustment term is usually disregarded in applications as we do here. Indeed, Gallant

(2016b) argues that it should be disregarded.

To summarize, the moment induced Bayes method assumes that z = Z
(

x, θ(2)
)

given by

(10) follows a distribution Ψ(z) with density ψ(z). One uses

p(x | θ(2)) = ψ(z) (28)

as the likelihood and proceeds directly to Bayesian inference using a prior p(θ(2)).

For Example 1 and prior p
(

θ(2)
)

= p(γ)p(ψ)p(δ) given by (25) we constructed ψ(z) as

described in Section 3 and used it to compute the posterior distribution of θ(2) under the

likelihood (28); the exercise was repeated with φ replacing ψ. The results are shown in

Table 3.

(Table 3 about here)

The results shown in Table 3 are unsatisfactory because the prior is so influential that it

makes little difference whether one uses Ψ or Φ to implement moment induced Bayes. We

shall need to consider another example where the data are more influential.
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In an earlier version of this paper, Ψ was determined to closely mimic Figures 2 and 3.

This did have a dramatic influence on estimates that we attribute to the asymmetric, de-

centered Ψ that obtained. A decentered Ψ contradicts the assumptions of the moment in-

duced Bayesian estimation strategy. Imposing symmetry is less defensible although intuition

strongly suggests that symmetry is desirable.

Oddly enough, it is not volatility in W
(

x, θ(2)
)

given by (8) that causes z = Z(x, θ(2) to

be volatile as one might expect but rather volatility in MRSt,t+1 given by (3) that causes

m̄(x, θ(2)) given by (6) to be volatile; the marginal rate of substitution under Epstein-Zin-Weil

utility is an extremely unstable function.

5 Conclusion

We explored the practical aspects of two complementary Bayesian method of moments strate-

gies using a macro-finance application. The first, moment constrained Bayes, uses a sieve to

represent represent the density of the data. Taking the expectation of the moment conditions

with respect to the sieve generates parametric restrictions on sieve parameters and introduces

additional parameters from the moment conditions. An advantage of moment constrained

Bayes is that it provides both an estimate of the density of the data as well as estimates

of the parameters that appear in the moment conditions. The difficulty with moment con-

strained Bayes is computational: The parameter space is singular with respect to Lebesgue

measure making Markov Chain Monte Carlo methods difficult to implement. To circumvent

the computational difficulty, we used a penalty function approach, the λ-prior method, to

generate draws from a close approximation to the posterior. The second Bayesian method

of moments strategy, moment induced Bayes, uses a semi-pivotal Z constructed from the

moment conditions and an assumed distribution Ψ for Z to infer a likelihood and thereby

proceed to Bayesian inference. Moment induced Bayes provides estimates of the parameters

that appear in the moment equations only. The difficulty with moment induced Bayes is

that one must choose Ψ. To circumvent the difficulty, we use draws of Z from moment

constrained Bayes to infer Ψ.
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Table 1. Simple Statistics for the Data

Standard Excess
Series Mean Deviation Skewness Kurtosis

st 0.08609 0.19501 -1.16717 2.14135
bt 0.03211 0.02880 0.85028 0.25196
ct 0.01996 0.02198 -1.40754 5.06603
wt 0.01617 0.29628 0.40303 1.17462

The data are annual for the years 1930 through 2015; the sample size is

n = 86. st is log real gross stock return. bt is log real gross bond return. ct

is log real per capita consumption growth. wt is log real gross wealth return.
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Table 2. Moment Constrained Estimates

Estimates Prior

Parameter Mean Mode Std. Dev. Mean Mode Std. Dev.

λ = 101

γ 56.838 49.494 27.830 53.353 61.89 35.835

ψ 1.5019 1.4244 0.1121 1.5140 1.5247 0.1061

δ 0.9902 0.9867 0.0032 0.9902 0.9927 0.0033

λ = 102

γ 60.158 104.97 29.811 55.767 24.270 37.490

ψ 1.5104 1.6201 0.1055 1.5162 1.3945 0.1084

δ 0.9902 0.9908 0.0032 0.9902 0.9876 0.0032

λ = 103

γ 65.909 75.632 28.393 NA NA NA

ψ 1.5001 1.4800 0.1090 NA NA NA

δ 0.9902 0.9868 0.0032 NA NA NA

The estimation method is moment constrained Bayes using the lambda prior computational method
with λ as shown as described in Section 1. Data are real, annual, per capital consumption for the
years 1930–2015 and real, annual stock, bond, and wealth returns for the same years from BEA
(2016) and CRSP (2016) that are used to form the moment functions (6) through (6). The prior
is p(θ(1))p(γ, ψ, δ)pλ(θ) where p(θ(1)) is given by (24), pλ(θ) is given by (14), and p(γ, ψ, δ) is an inde-
pendence prior with γ normal with mean 10 and standard deviation 100 constrained to have positive
support, ψ with a cosine density with support (1.2,1.8); and δ a cosine density with support 0.1% to
1.9% per annum; see (25). The columns labeled mean, mode, and standard deviation are the mean
and standard deviations of an MCMC chain (Gamerman and Lopes (2006) of length 200,000 collected
past the point where transients have dissipated. The proposal is move-one-at-a-time random walk. The
prior chain for λ = 103 will not mix.
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Table 3. Moment Induced Estimates

Z Normal Z Empirical Z Prior

Parameter Mean Mode Std. Dev. Mean Mode Std. Dev. Mean Mode Std. Dev.

γ 97.439 72.765 50.216 117.98 14.777 69.183 85.166 9.0768 61.906

ψ 1.5006 1.4937 0.1057 1.4956 1.4867 0.1053 1.5011 1.4997 0.1088

δ 0.9902 0.9901 0.0032 0.9903 0.9898 0.0032 0.9902 0.9901 0.0032

The estimation method is moment induced Bayes as described in Section 4. Data are real, annual, per
capital consumption for the years 1930–2016 and real, annual stock, bond, and wealth returns for the
same years from BEA (2016) and CRSP (2016) that are used to form the moment functions (6) through
(6). In the columns labeled Z Normal the distribution of Z given by (10) is presumed to be Normal. In
the columns labeled Z Empirical the distribution of Z given by (10) is presumed to be the distribution
(27) derived in Section 3. The prior is an independence prior with γ normal with mean 10 and standard
deviation 100 constrained to have positive support, ψ with a cosine density with support (1.2,1.8); and
δ a cosine density with support 0.1% to 1.9% per annum; see (25). The columns labeled mean, mode,
and standard deviation are the mean and standard deviations of an MCMC chain (Gamerman and
Lopes (2006) of length 200,000 collected past the point where transients have dissipated. The proposal
is move-one-at-a-time random walk.
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Figure 1. The Posterior Mean of the Marginal Rate of Substitution. Plotted

is the posterior mean of θ2 = MRS1931,1932 through θ86 = MRS2014,2015.
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Figure 2. The Distribution of Z. For Example 1, draws from the prior distribution

p(θ)pλ(θ) for θ =
(

θ(1), θ(2)
)

of the moment constrained Bayes estimator were generated

method with λ = 102. For each θ draw, a sample x of size n = 86 for (st, bt, ct, wt) was

generated from fSNP

(

x | θ(1)
)

and used to compute z = Z
(

x, θ(2)
)

. Shown in Figure 2

are the histograms of the coordinates z1, . . . , z10 of z computed from every tenth draw

of N = 200, 000 total draws for θ.
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Figure 3. The Trimmed Distribution of Z. For Example 1, draws from the prior

distribution p(θ)pλ(θ) for θ =
(

θ(1), θ(2)
)

of the moment constrained Bayes estimator

were generated method with λ = 102. For each θ draw, a sample x of size n = 86 for

(st, bt, ct, wt) was generated from fSNP

(

x | θ(1)
)

and used to compute z = Z
(

x, θ(2)
)

.

Shown in Figure 2 are trimmed histograms of the coordinates z1, . . . , z10 of z computed

from every tenth draw of N = 200, 000 total draws for θ.
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Figure 4. Left Q-Q Plots, Z vs. 2 d.f. t. For Example 1, N = 20, 000 draws

from z = Z
(

x, θ(2)
)

were generated as described in the legend of Figure 2. For each zi,

quantiles at probabilities 2/2000 through 60/2000 with increment 1/2000 were com-

puted from these draws. Quantiles for the t-distribution with 2 degrees freedom were

computed for probabilities 2/2000 through 60/2000 with increment 1/2000. Shown in

Figure 4 are plots of the z quantiles against the t quantiles with the t quantiles on the

horizontal axis.

25



−3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3.0

−
4.

0
−

3.
0

−
2.

0

Z_1

−3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3.0

−
2.

8
−

2.
4

−
2.

0

Z_2

−3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3.0

−
16

−
12

−
8

Z_3

−3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3.0

−
8

−
6

−
4

−
2

Z_4

−3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3.0

−
3.

5
−

3.
0

−
2.

5
−

2.
0

Z_5

−3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3.0

−
4.

5
−

3.
5

−
2.

5
−

1.
5

Z_6

−3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3.0

−
25

−
20

−
15

−
10

Z_7

−3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3.0

−
8

−
6

−
4

−
2

Z_8

−3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3.0

−
2.

3
−

2.
1

−
1.

9

Z_9

−3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3.0

−
1.

50
−

1.
40

−
1.

30

Z_10

Figure 5. Left Q-Q Plots, Z vs. 30 d.f. t. For Example 1, N = 20, 000 draws

from z = Z
(

x, θ(2)
)

were generated as described in the legend of Figure 2. For each zi,

quantiles at probabilities 2/2000 through 60/2000 with increment 1/2000 were com-

puted from these draws. Quantiles for the t-distribution with 30 degrees freedom were

computed for probabilities 2/2000 through 60/2000 with increment 1/2000. Shown in

Figure 4 are plots of the z quantiles against the t quantiles with the t quantiles on the

horizontal axis.
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