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The State Space Model

e Observed variables: y = (y1,v2, ..., yT)

e Latent variables: =z = (z1,xzo,...,27)

e Parameters 60

e Known transition density p°(x;41 | ¢, 0)

e Prior p°(0)

e Do not know the measurement density p°(ys41 | x¢41,0)

e But do have moment conditions E[g(yt+1,:ct+1,9) |It} =0



Assumptions, 1 of 2

e Sample moment conditions

T
gr(y,x,0) = Z g(yt, 1, 0)

3\

e \Weighting matrixX (May have to use a HAC weighting matrix instead.)

> (y,z,0)

p— Z g(yt7 Lt, 6) g(yta Lt, 9)
t—].

~ 1
g(ytaxtae) — g(ytaxt70> — ﬁgT(ywx)6)

e Assert
Z = [Z(y,,0°] 2 gr(y, z,6°) ~ W(z)

— W(z) usually N(z|0,I) ala Chernozukov and Hong (2003)



Assumptions, 2 of 2

e Semi-pivotal condition: Let Y x X denote the support of
(y,z), © the support of 6, Z the support of 2z, and

C0) = {(y,2) €Y x X : Z(y,x,0) = z}.
We assume that €(9:2) is not empty for any (0,2) € © x Z.

e Sufficient is that each element of gp is continuous with re-
spect to at least one continuous element of (y,x), is neither
bounded from above nor below as that continuous variable
varies over its support, and that the residuals used to com-
pute the weighting matrix are centered as above.



The Enabling Result (Gallant, 2015a&b, JFEC)

T he probability space

X 0 po
with density (V' x X x©,C% )

p’(y,x,0) = p°(y|x,0)p°(x|0)p°(0),
where C° the Borel subsets of YV x X x ©, can be replaced by the
probability space

X x ©,.C* P*
with density (VXX xS, P
p*(y|lz,0) = adj(y,z,0)Y[Z(y,z,0)]
p (y,z,0) = p“(y|z,0)p°(x|0)p°(H)
for the purposes of Bayesian inference, where C* C C°, which

implies a loss of information.
¢ Usually set adj(y,z,0) = 1 (Gallant, 2015b).



Estimation Strategy

e Sample {Q(i), x(i)} from the density

p(0,219) ox (20) /2 exp{ - Zor (o ,0) (G, 00) 01 Cy..0) L2 1 0)°0)

e Particle Gibbs algorithm

— Sample (9 given z(=1) and #0¢—1) using Metropolis
x last draw of MCMC chain of length K.

— Sample z(® given 09 and z(—1) using a conditional PF
x |ast particle of a modified particle filter of size N.

— Iterate back and forth. (can view it as an approximate EM algorithm.)

e Estimate and scale are mean and standard deviation of {9(@')}.



Next:
Two Examples

e A Dynamic Stochastic General Equilibrium Model
— Description

— Estimates

e A Stochastic Volatility Model
— Description

— Estimates



A DSGE Model — 1 of 4

From Del Negro and Schorfheide (2008) simplified to permit an
analytic solution by removing rigidities, investment, etc.

T hree shocks:

2t = pz24—1 + 026, ¢  Factor productivity
Gt = PypPt—1 T Tp€p ¢ Consumption/leisure preference
At = paxAt—1 T oxex Price elasticity of intermediate goods

T hree outputs:

wy Wages
yr Output
m¢ Inflation



A DSGE Model — 2 of 4

First order conditions

1
0 = yr+ —m — E (Y1 + mep1 + 2e4-1)

B
0 = wt+ M
0 = w— (A +v)yr — ¢

where v is a labor supply elasticity and g is the discount rate.

The true values of the parameters are

0 = (pz,p¢,,0)\,0‘z,0¢,0‘)\,l/,5)
= (0.15,0.68,0.56,0.71,2.93,0.11,0.96,0.996)

We take wy, y¢, and m as measured and z; and ¢+ as latent.



A DSGE Model — 3 of 4

A set of conditions that identify the model are

g1 = (wr—prwi_1)® — o3

g2 = wp_1(wg — prwi_1)

93 = (w1 — A +v)y—1]lwe — (1 + )y — pp(wi—1 — (1 +v)yp—1)]

ga = |wi—1 — (L +v)y—1](dt — pydr—1)

gs = [wy— (1+v)yl” — o3

g6 = wi—1(yr—1 +%7Tt—1 — Yt — Tt — Pz2t—1)
1

97 = Y-1(y—1 ‘I'Eﬂ't—l — Yt — Tt — PzZt—1)
1

g8 = m_1(ys—1+ g1 T YT T P22t—1)

g9 = (y—1+ 17Tt—1 — gy — )2 — pEo:

3 1 —pz



DSGE Model — 4 of 4

An analytic expression for the likelihood L(0) = p(y|0) is avail-
able for this model

Analysis of the likelihood shows that only one of the four
parameters o, 04,v, 8 Can be identified

Three will have to be calibrated in order to apply frequentist
methods and either calibrated or specified by a tight prior to
apply Bayesian methods

We calibrate o, o4, and leave § as the free parameter.



Table 1. Parameter Estimates, DSGE Model

Parameter True Value Mean Mode Standard Dev.
Particle Gibbs
o 0.15 0.21887 0.23069 0.09179
Po 0.68 0.59967 0.60750 0.04988
P 0.56 0.50884 0.31473 0.28981
o) 0.11 0.10797 0.11613 0.06896
I} 0.996 0.98201 0.99634 0.01834
Maximum Likelihood
o8 0.15 0.15165 0.15087 0.00583
Pe 0.68 0.59185 0.59419 0.05044
P 0.56 0.56207 0.56549 0.05229
o) 0.11 0.11225 0.11189 0.00508
I} 0.996 0.99640 0.99643 0.00186

Data with T'= 250 simulated at true values. N = 1000 particles; K = 50 Metropolis
draws. GMM mean, mode, and standard deviation are from MCMC chains of length
R = 9637 with stride of 1; for MLE chain R = 500000, stride is 5.



Figure 1. PF Estimate of x, DSGE Model
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Figure 2. PF Estimate of x, DSGE Model
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T he Choice of Moments Does Matter 1 of 2

e It is possible to perform counter-factual (e.g. impulse-response)
analysis using moment conditions alone.

e However, for it to work, one must do a much better job of
estimating the history of the latent variables.

e [0 estimate latent variables, it is not necessary to identify
model parameters.

e Only the latent variables need to be identified.



T he Choice of Moments Does Matter 2 of 2

Moment conditions for counter-factual analysis
1

h1 = y—1 ‘|‘E7Tt—1 — Yt — Tt — Pz2t—1
ho = wi_1h1

hy = y—1ha

hg = m_1h

hs = wi— (1 +v)y — ¢y

he = wi_1hs

h7 = y—1hs

hg = m_1hs



Figure 3. PF Estimate of x, DSGE Model
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Figure 4. PF Estimate of x, DSGE Model
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PF and Metropolis Moments Can Differ

If we use the moments that identify the model used for Table 1
for the Metropolis step and the moments designed for a counter-
factual analysis used for Figures 3 through 4 for the PF step, we
get slightly better results in the following Table 2.



Table 2. Alternative Parameter Estimates, DSGE Model

Parameter True Value Mean Mode Standard Dev.
Particle Gibbs
o 0.15 0.23508 0.15007 0.08975
Po 0.68 0.69870 0.58945 0.06127
P 0.56 0.49904 0.46443 0.28418
o) 0.11 0.11292 0.08924 0.06559
I} 0.996 0.97465 0.99604 0.02479
Maximum Likelihood
o8 0.15 0.15165 0.15087 0.00583
Pe 0.68 0.59185 0.59419 0.05044
P 0.56 0.56207 0.56549 0.05229
o) 0.11 0.11225 0.11189 0.00508
I} 0.996 0.99640 0.99643 0.00186

Data with T'= 250 simulated at true values. N = 1000 particles; K = 50 Metropolis
draws. GMM mean, mode, and standard deviation are from MCMC chains of length
R = 9637 with stride of 1; for MLE chain R = 500000, stride is 5.



A Stochastic Volatility Model

Yt
T = Q41+ o€y
ee ~ N(O,1)
ur ~ N(0,1)

The true values of the parameters are
0o = (po, ¢0,00) = (0.9,0.9,0.5)

0o = (po, ¢0,00) = (0.25,0.8,0.1)

— 1 of 2

pyi—1 + exp(xt) uy

(plots)

(estimation)

(1)
(2)
(3)
(4)



A Stochastic Volatility Model — 2 of 2

Moment Conditions

hi

ho

hr+1
hr+42
hr43
hi+a

(gt — pyi—1)? — [exp(a)]?
2
vt — pyr—1||lye—1 — pyr—2| — (;

vt — pyr—1llye—1 — PY+—1—1] — (W

yi—1(yt — pY¢+—1)
xy_1(xs — dx_1)
(zt — pxt_1)% — 0°

2

2
) exp(ay) exp(z_1)

2
) exp(xs) exp(xi_g)



Table 3. Parameter Estimates, SV Model

Parameter True Value Mean Mode Standard Dev.
Particle Gibbs
P 0.25 0.30271 0.30939 0.076758
o 0.8 0.15348 0.85765 0.643400
o 0.1 0.11400 0.08435 0.070081
Flury and Shephard Estimator
P 0.25 0.30278 0.28555 0.059320
0 0.8 0.17599 0.89189 0.509780
o 0.1 0.09737 0.07839 0.064661

Data of length T' = 200 was generated from the SV model at true
values. In both panels the number of particles is N = 1000. For particle
Gibbs, there are K = 50 Metropolis draws. For FS an unbiased estimate
of the likelihood is computed from and unconditional PF and used for
one Metropolis draw. The columns labeled mean, mode, and standard
deviation are the mean, mode, and standard deviations of an MCMC
chain of length 200000.



Figure 5. PF Estimate of z, SV Model
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Figure 6. Flury-Shephard Estimate of x, SV Model
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Figure 7. PF Estimate of xz, SV Model




Figure 8. Flury-Shephard Estimate of x, SV Model




Next:
Application

e Extract the latent endowment (= consumption) process from
a panel of assets in a Lucas (1978) economy

e Assuming that the latent endowment process is ARCH
e Using only the agents first order conditions
e And the scores of an ARCH process

e T hus avoiding payoff distribution assumptions and model so-
lution



Lucas (1978) Economy

e Agent’s first order conditions 1 = E(M;41Ry41 | Ft)

. L Ciy1)’
e Marginal rate of substitution M;1; = 8 (-

e ¢ is time in annual increments

e 5 =0.98 is the discount factor

e v =2 is the risk aversion parameter,

e (; is the endowment process,

® Riy1 = (Pg1+ Dyy1)/ Py is the gross return

e F;: is the agent’'s information set at time ¢.



ARCH Process

o xy =109(C/Cy_1)

® i = [l + pTi—1 T /U1t

o v;_1=0%+ [T(w4_1 — p— pxi_n)]°

e z; IS a standard normal



Implementation
e Data, from Gallant and Hong (2007), 1930—2004, annual

e Moments for conditional particle filter (dimension 700)

FOCs for returns on Fama-French portfolios, 30 day T-
bills

LLagged returns on Fama-French portfolios, 30 day T-bills,
instruments

LLagged consumption growth, labor income growth, instru-
ments

Factor structure, known eigen vectors — diagonal variance
matrix

e Moments for Metropolis step (dimension 4)
— Scores of an ARCH process

e Endowment process z; enters both, latent (dimension 75)



Differences Between GH and GGR

e GH posterior:
Pgh(y 10(1)) Pgn(0(1) 10(2)) Pgn(0(2))

e GGR posterior:

pgriy | Blexp(x)]"} pggr(x|6(3)) Pggr(6(3)),
e 0(1),0(2),0(3) are different sets of parameters
® pyp(-|-) is the same in both
e GH have no latent variables: Inference by MCMC

e GGR model depends on the latent variables x



Prior

e Prior for (u,p,o,7) is a product of truncated normal densities
— Location: (u,p,0,7) = (0.015,0.35,0.015,0.01)

— Scale: Marginal probability of within S x 100 % of location
is 95%

— Truncation: —100 < p < 100, —.999 < p < .999, 0 < 0 <
100, and 0 < 7 < 100,

e Prior for (B8,v) is (B,v) = (0.98,2) with probability one.



Table 4. Estimates for MRS Model

Parameter Mean Standard Deviation
Prior Scale Factor = 50

L 0.18203 0.13172

o) 0.56149 0.28256

o 0.48836 0.0.2004

T 0.23083 0.28940

I} 0.98 0.0

v 2.0 0.0
Prior Scale Factor = 500

L 0.22091 0.19625

Jo) 0.51358 0.40154

o 0.36577 0.34499

T 1.68040 1.37980

I} 0.98 0.0

vy 2.0 0.0
Prior Scale Factor = 1000

n 0.18904 0.25181

Jo) 0.33079 0.56017

o 0.29808 0.36470

T 2.17500 1.75620

B 0.98 0.0

vy 2.0 0.0

Particles N = 500, Metropolis K = 50, chain R = 9610
Compare: consumption (u,p,o0,7) = (0.015,0.35,0.015,0)



Figure 9. PF MRS Model
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Figure 10. PF Estimate of MRS
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Figure 11. PF Estimate of MRS
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Next:
The Three Algorithms

e A particle filter algorithm
— Input: 6

N R

— Qutput: Draws {a:m}.

_, from p(z|y,0)
e Conditional particle filter algorithm
— Input: Draws 60—1) and (—1)

— Output: A draw z() from p(z|y,0)

e Metropolis algorithm
— Input: Draws 6G—1) and z(®
— Output: A draw 6(9) from p(0 |y, x)



Notation

o y1:+ = (y1,-.-, Yt)
® r1.+ = (x1,...,%¢)

® p(y1:t,T1:4,0)

= (2m)~M/2 eXD{—%gt(yl:t, 21:4,0) [Z(y1:t, ©1:4,0)] " ge(yi:e, 101, 9)}



Particle Filter Algorithm, 1 of 3

1. Initialization.
e Input 6 (and vy )

e Set Ty to the minimum sample size required to compute
gt(Y1:4,x1:4,0).

e Fori=1,...,N sample (xgz),xg>,...,m§33) from p(x¢|ri—1,0).

e Set t to 1p + 1.

e Set xgzt | = (wgz),xg), . ,:ngg)



Particle Filter Algorithm, 2 of 3

2. Importance sampling step.

e Fori=1,..., N sample x() from p(wt|x§?1) and set
P = (o105,

e Fori=1,..., N compute weights w( D — = p(y1-¢ ,5‘:%, 0).

e Scale the weights to sum to one.



Particle Filter Algorithm, 3 of 3

3. Selection step.

e For s+ =1,..., N sample with replacement particles a:% from
the set {é‘:%} according to the weights.

4. Repeat

o If t < T, increment ¢t and go to Importance Sampling Step;

| tout Lz 1Y
e else output {z;7 L



Conditional Particle Filter Algorithm, 1 of 3

1. Initialization.
1
e Input wg:%, 0 (and y )

e Set Ty to the minimum sample size required to compute
gt(Y1:4,x1:4,0).

e Fori=2,..., N sample (a:gi),a:g), . ,CE%O)) from p(x¢|ri—1,0).

e Set t to 1p + 1.

e Set xgz)t_l = (CE:(li), xg), . ,x%?)



Conditional Particle Filter Algorithm, 2 of 3

2. Importance sampling step.

e Fori=2,..., N sample :L»§> from p(a:t|a: 1) and set

By = (ab-1. 81 ).
()

e Fori=1,...,N compute weights 'w( D — = p(Y1:4, 713, 0).

e Scale the weights to sum to one.



Conditional Particle Filter Algorithm, 3 of 3

3. Selection step.

e For + = 2,..., N sample with replacement particles x% from
the set {%g’% NV | according to the weights.

4. Repeat
e If t < T, increment ¢ and go to Importance Sampling Step;

e clse output the particle ngT)



Metropolis Algorithm

Proposal density: T(Qherea ethe’re) (e.g., move one-at-time random walk)
e Input: =, 6,4 (and vy )

e Accept-Reject: Put 0(9) to 6,0, With probability

p(ya X, Qprop)T(epmpa Qold)

a=min |1,
p(y, X, Qold)T(eolda HPTOP)

else put 69 to 6,,,.
e Repeat: If i < K put 6,,; = 0 and go to Propose;

e clse output (%),



