UNIVERSITY OF NORTH CAROLINA Department of Economics

Economics 271 Midterm Exam Oct. 5, 1998 Dr. Gallant Fall 1998

- 1. (20%) Let X be a random variable that is neither discrete nor continuous.
 - (a) Describe how $\mathcal{E}X$ is defined.
 - (b) Compute $\mathcal{E}X$ for

$$X(w) = \begin{cases} \omega & 0 < \omega \le \frac{1}{3} \\ \omega^2 & \frac{1}{3} < \omega \le \frac{2}{3} \\ \omega^3 & \frac{2}{3} < \omega \le 1 \end{cases}$$

defined on the coin tossing sample space (Ω, \mathcal{F}, P) , where $\Omega = (0, 1]$.

2. (30%) The conditional expectation of Y given X, where Y maps (Ω, \mathcal{F}) into $(\mathcal{Y}, \mathcal{B})$ and X maps (Ω, \mathcal{F}) into $(\mathcal{X}, \mathcal{A})$, is a function $\mathcal{E}(Y|X)(x)$, which maps $(\mathcal{X}, \mathcal{A})$ into $(\mathcal{Y}, \mathcal{B})$, that satisfies the equation

$$\int_{F} Y(\omega) \, dP(\omega) = \int_{F} \, \mathcal{E}(Y|X) \left[X(\omega) \right] \, dP(\omega)$$

for every F of the form $F = X^{-1}(A)$ with $A \in \mathcal{A}$.

(a) Give the computational formula for $\mathcal{E}(Y|X)(x)$ in these three cases:

i.
$$X(\omega) = \sum_{i=0}^{N} x_i I_{F_i}(\omega)$$
, where $P(F_0) = 0$ and $P(F_i) > 0$ for $i = 1, ..., N$.

- ii. X and Y are continuous random variables with density $f_{X,Y}(x,y)$.
- iii. X and Y are discrete random variables with density $f_{X,Y}(x_i, y_j)$.
- (b) Compute $\mathcal{E}(Y|X)(x)$ in the case that X and Y are continuous random variables with density

$$f_{X,Y}(x,y) = (x+y) I_{(0,1]\times(0,1]}(x,y).$$

3. (20%) Let (Ω, F, P) be the coin tossing probability space; i.e., Ω = (0,1], F is the smallest σ-algebra that contains all finite unions of sets of the form (a, b], and P(a, b] = b - a. Consider the random variable

$$X(\omega) = e^{2\omega},$$

which maps (Ω, \mathcal{F}, P) into a new probability space $(\mathcal{X}, \mathcal{A}, P_X)$.

- (a) What is \mathcal{X} in this new probability space?
- (b) What is \mathcal{A} in this new probability space?
- (c) If $(c,d] \subset \mathcal{X}$, what is the value of $P_X(c,d]$?
- (d) What is the density $f_X(x)$ of the random variable X?
- (e) What is the value of $\mathcal{E}X$?
- 4. (20%) A pair of dice are thrown and the value $\omega = (n_1, n_2)$ is observed where n_1 is the number of spots showing on the first die and n_2 is the number of spots showing on the second.
 - (a) What is the joint probability density function $f_{X,Y}(x,y)$ of the random variables $X(\omega) = (n_1 + n_2)/2, Y(\omega) = n_2/2?$
 - (b) What is the value of $\mathcal{E}X$?
- 5. (10%) Show that the intersection of two σ -algebras is a σ -algebra.