UNIVERSITY OF NORTH CAROLINA
 Department of Economics

Economics 271
Dr. Gallant
Midterm Exam
Fall 1998
Oct. 5, 1998

1. (20%) Let X be a random variable that is neither discrete nor continuous.
(a) Describe how $\mathcal{E} X$ is defined.
(b) Compute $\mathcal{E} X$ for

$$
X(w)= \begin{cases}\omega & 0<\omega \leq \frac{1}{3} \\ \omega^{2} & \frac{1}{3}<\omega \leq \frac{2}{3} \\ \omega^{3} & \frac{2}{3}<\omega \leq 1\end{cases}
$$

defined on the coin tossing sample space (Ω, \mathcal{F}, P), where $\Omega=(0,1]$.
2. (30%) The conditional expectation of Y given X, where Y maps (Ω, \mathcal{F}) into $(\mathcal{Y}, \mathcal{B})$ and X maps (Ω, \mathcal{F}) into $(\mathcal{X}, \mathcal{A})$, is a function $\mathcal{E}(Y \mid X)(x)$, which maps $(\mathcal{X}, \mathcal{A})$ into $(\mathcal{Y}, \mathcal{B})$, that satisfies the equation

$$
\int_{F} Y(\omega) d P(\omega)=\int_{F} \mathcal{E}(Y \mid X)[X(\omega)] d P(\omega)
$$

for every F of the form $F=X^{-1}(A)$ with $A \in \mathcal{A}$.
(a) Give the computational formula for $\mathcal{E}(Y \mid X)(x)$ in these three cases:
i. $X(\omega)=\sum_{i=0}^{N} x_{i} I_{F_{i}}(\omega)$, where $P\left(F_{0}\right)=0$ and $P\left(F_{i}\right)>0$ for $i=1, \ldots, N$.
ii. X and Y are continuous random variables with density $f_{X, Y}(x, y)$.
iii. X and Y are discrete random variables with density $f_{X, Y}\left(x_{i}, y_{j}\right)$.
(b) Compute $\mathcal{E}(Y \mid X)(x)$ in the case that X and Y are continuous random variables with density

$$
f_{X, Y}(x, y)=(x+y) I_{(0,1] \times(0,1]}(x, y) .
$$

3. (20%) Let (Ω, \mathcal{F}, P) be the coin tossing probability space; i.e., $\Omega=(0,1], \mathcal{F}$ is the smallest σ-algebra that contains all finite unions of sets of the form $(a, b]$, and $P(a, b]=$ $b-a$. Consider the random variable

$$
X(\omega)=e^{2 \omega}
$$

which maps (Ω, \mathcal{F}, P) into a new probability space $\left(\mathcal{X}, \mathcal{A}, P_{X}\right)$.
(a) What is \mathcal{X} in this new probability space?
(b) What is \mathcal{A} in this new probability space?
(c) If $(c, d] \subset \mathcal{X}$, what is the value of $P_{X}(c, d]$?
(d) What is the density $f_{X}(x)$ of the random variable X ?
(e) What is the value of $\mathcal{E} X$?
4. (20%) A pair of dice are thrown and the value $\omega=\left(n_{1}, n_{2}\right)$ is observed where n_{1} is the number of spots showing on the first die and n_{2} is the number of spots showing on the second.
(a) What is the joint probability density function $f_{X, Y}(x, y)$ of the random variables

$$
X(\omega)=\left(n_{1}+n_{2}\right) / 2, Y(\omega)=n_{2} / 2 ?
$$

(b) What is the value of $\mathcal{E} X$?
5. (10%) Show that the intersection of two σ-algebras is a σ-algebra.

