UNIVERSITY OF NORTH CAROLINA
 Department of Economics

Economics 271
Dr. Gallant
Midterm Exam
Fall 1997
Oct. 8, 1997

Answer any five questions. Do not turn in answers to more than five questions.

1. (20%) If A and B are subsets of \mathcal{X}, and A_{1}, A_{2}, \ldots is a sequence of subsets from \mathcal{X}, show that the inverse image satisfies these properties:
(4) $X^{-1}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\bigcup_{i=1}^{\infty} X^{-1}\left(A_{i}\right)$
(7) $X^{-1}(\sim A)=\sim X^{-1}(A)$

You may use these facts without proof in your answer:
(1) If $A \subset B$, then $X^{-1}(A) \subset X^{-1}(B)$
(2) $X^{-1}(A \cup B)=X^{-1}(A) \cup X^{-1}(B)$
(3) $X^{-1}(A \cap B)=X^{-1}(A) \cap X^{-1}(B)$
(5) $X^{-1}\left(\bigcap_{i=1}^{\infty} A_{i}\right)=\bigcap_{i=1}^{\infty} X^{-1}\left(A_{i}\right)$
(6) If $h(\omega)=g[X(\omega)]$, then $h^{-1}(B)=X^{-1}\left[g^{-1}(B)\right]$
2. (20%) Let X be a random variable mapping the measurable space (Ω, \mathcal{F}) onto the measurable space $(\mathcal{X}, \mathcal{A})$. Use the properties stated in Question 1 to show that the collection of sets

$$
\mathcal{F}_{0}=\left\{F \in \mathcal{F}: F=X^{-1}(A), A \in \mathcal{A}\right\}
$$

is a σ-algebra.
3. (20%) Let (Ω, \mathcal{F}, P) be the coin tossing probability space; i.e., $\Omega=(0,1], \mathcal{F}$ is the smallest σ-algebra that contains all finite unions of sets of the form $(a, b]$, and $P(a, b]=$ $b-a$. Consider the random variable

$$
X(\omega)=\frac{1}{3} \omega^{3},
$$

which maps (Ω, \mathcal{F}, P) into a new probability space $\left(\mathcal{X}, \mathcal{A}, P_{X}\right)$.
What is \mathcal{X} in this new probability space?

What is \mathcal{A} in this new probability space?
If $(c, d] \subset \mathcal{X}$, what is the value of $P_{X}(c, d]$?
What is the density $f_{X}(x)$ of the random variable X ?
What is the value of $\mathcal{E} X$?
4. (20%) A pair of dice are thrown and the value $\omega=\left(n_{1}, n_{2}\right)$ is observed where n_{1} is the number of spots showing on the first die and n_{2} is the number of spots showing on the second. What is the joint probability density function $f_{X, Y}(x, y)$ of the random variables $X(\omega)=n_{1}+n_{2}, Y(\omega)=n_{2}$? What is the value of $\mathcal{E} X$?
5. (20%) Show that the intersection of two σ-algebras is a σ-algebra.
6. (20\%) Let the random variable Y be defined by

$$
Y=\beta_{0}+\beta_{1} x+\omega
$$

where ω is gotten by coin tossing as in Question 3 and the value of x is known. Find the density $f_{Y}(y)$ of the random variable Y. What is the value of $\mathcal{E} Y$?
7. (20%) Suppose that one has a positive valued, finitely additive, set function $P(\cdot)$ defined on an algebra \mathcal{A} of subsets of Ω that assigns $P(\Omega)=1$ to Ω. How does one extend the definition of $P(\cdot)$ to the smallest σ-algebra \mathcal{F} that contains \mathcal{A} ? Will $P(\cdot)$ extended to \mathcal{F} be countably additive?

