UNIVERSITY OF NORTH CAROLINA
 Department of Economics

Economics 271
Dr. Gallant
Midterm Exam
Fall 1996
Oct. 15, 1996

1. (25%) Shown in the upper panels of Figure 1 is a plot of the domain $\Omega=(0,1) \times(0,1)$ and range $R=(X, Y)(\Omega)$ for the random variables

$$
\begin{aligned}
& X=\omega_{1}+\omega_{2} \\
& Y=\omega_{1}-\omega_{2}
\end{aligned}
$$

Find the density $f_{X, Y}(x, y)$ of (X, Y). Find the inverse image of the set A shown in the lower left panel of Figure 1 and draw it in the lower right panel. Compute the probability of A.
2. (15%) A pair of dice are thrown and the sum is noted. The throws are repeated until either a sum of 6 or a sum of 7 occurs. What is the sample space for this experiment? What is the probability that the sequence of throws terminates in a 7? Be sure to include an explanation of the logic that you used to reach your answer.
3. (15%) Show that the intersection of two σ-algebras is a σ-algebra.
4. (15%) In a shipment of 1,000 transistors, 100 are defective. If 50 transistors are inspected, what is the probability that 5 of them will be defective. Be sure to include an explanation of the logic that you used to reach your answer.
5. (15\%) Prove that if $P(B)=1$, then $P(A \mid B)=P(A)$ for any A. Prove that if $A \subset B$, then $P(B \mid A)=1$.
6. (15\%) If A and B are subsets of \mathcal{X}, and A_{1}, A_{2}, \ldots is a sequence of subsets from \mathcal{X}, show that the inverse image satisfies these properties: (i) If $A \subset B$, then $X^{-1}(A) \subset X^{-1}(B)$. (vi) If $h(\omega)=g[X(\omega)]$, then $h^{-1}(B)=X^{-1}\left[g^{-1}(B)\right]$

Figure 1. A Bivariate Random Variable Defined on the Double Coin Toss Probability Space. The sample space is $\Omega=(0,1) \times(0,1)$, shown in the upper right panel on which is defined the random variable $(X, Y)\left(\omega_{1}, \omega_{2}\right)=\left(\omega_{1}+\omega_{2}, \omega_{1}-\omega_{2}\right)$. Its range $R=(X, Y)(\Omega)$ is shown in the upper left panel.

