UNIVERSITY OF NORTH CAROLINA
 Department of Economics

Economics 271
Dr. Gallant
Midterm Exam
Fall 1995
(25%) 1. Let $X(s)$ be a random variable mapping the sample space $(\mathcal{S}, \mathcal{B}, P)$ onto $\left(\mathcal{X}, \mathcal{A}, P_{X}\right)$.
a) For $B \in \mathcal{B}$ define the image $X(B)$.
b) For $A \in \mathcal{A}$ define the preimage $X^{-1}(A)$.
c) What is the image of \mathcal{S} ?
d) What is the preimage of \mathcal{X}.
e) What is the definition of P_{X}.
f) What is the definition of the distribution function F_{X}.
(15%) 2. Let $X(s)$ be a random variable mapping the sample space $(\mathcal{S}, \mathcal{B}, P)$ onto $\left(\mathcal{X}, \mathcal{A}, P_{X}\right)$. Let $w=W(x)$ be a one-to-one, increasing function mapping \mathcal{X} onto \mathcal{W} with inverse $W^{-1}(w)$. Show that $F_{W}(t)=F_{X}\left[W^{-1}(t)\right]$.
(25\%) 3. Let X be a random variable that maps the sample space \mathcal{S} onto \mathcal{X}. Let \mathcal{A} be a σ-algebra of subsets of \mathcal{X}. Show that the collection of sets \mathcal{F} that consists of all preimages of sets A from \mathcal{A} is a σ-algebra. That is, show that

$$
\mathcal{F}=\left\{F: F=X^{-1}(A), A \in \mathcal{A}\right\}
$$

is a σ-algebra. Hint: Recall that $\bigcup_{i=k}^{\infty} X^{-1}\left[A_{i}\right]=X^{-1}\left[\bigcup_{i=k}^{\infty} A_{i}\right]$ and that $\widetilde{X^{-1}}[A]=X^{-1}[\tilde{A}]$
(15%) 4. A pair of dice are thrown and the sum is noted. The throws are repeated until either a sum of 5 or a sum of 7 occurs.
a) What is the sample space for this experiment?
b) What is the probability that the sequence of throws terminates in a 7 ?

Be sure to include an explanation of the logic that you used to reach your answer.
(20\%) 5. Compute the first three moments of the normal distribution.

