UNIVERSITY OF NORTH CAROLINA

Department of Economics

Economics 271 Midterm Exam Dr. Gallant Fall 1995

(25%) 1. Let X(s) be a random variable mapping the sample space $(\mathcal{S}, \mathcal{B}, P)$ onto $(\mathcal{X}, \mathcal{A}, P_X)$.

- a) For $B \in \mathcal{B}$ define the image X(B).
- b) For $A \in \mathcal{A}$ define the preimage $X^{-1}(A)$.
- c) What is the image of \mathcal{S} ?
- d) What is the preimage of \mathcal{X} .
- e) What is the definition of P_X .
- f) What is the definition of the distribution function F_X .

(15%) 2. Let X(s) be a random variable mapping the sample space $(\mathcal{S}, \mathcal{B}, P)$ onto $(\mathcal{X}, \mathcal{A}, P_X)$. Let w = W(x) be a one-to-one, increasing function mapping \mathcal{X} onto \mathcal{W} with inverse $W^{-1}(w)$. Show that $F_W(t) = F_X[W^{-1}(t)]$.

(25%) 3. Let X be a random variable that maps the sample space S onto \mathcal{X} . Let \mathcal{A} be a σ -algebra of subsets of \mathcal{X} . Show that the collection of sets \mathcal{F} that consists of all preimages of sets A from \mathcal{A} is a σ -algebra. That is, show that

$$\mathcal{F} = \{F : F = X^{-1}(A), A \in \mathcal{A}\}$$

is a σ -algebra. Hint: Recall that $\bigcup_{i=k}^{\infty} X^{-1}[A_i] = X^{-1}[\bigcup_{i=k}^{\infty} A_i]$ and that $\widetilde{X^{-1}[A]} = X^{-1}[\tilde{A}]$

(15%) 4. A pair of dice are thrown and the sum is noted. The throws are repeated until either a sum of 5 or a sum of 7 occurs.

a) What is the sample space for this experiment?

b) What is the probability that the sequence of throws terminates in a 7?

Be sure to include an explanation of the logic that you used to reach your answer.

(20%) 5. Compute the first three moments of the normal distribution.