THE PENNSYLVANIA STATE UNIVERSITY
 Department of Economics

Economics 501
Gallant
Midterm Exam
Fall 2013
October 22, 2013

1. (15%) For each of the following, if the statement is true, then prove it, if the statement is false, then give a counter example.
(a) The collection $\mathcal{A}=\{\emptyset, \Omega, A, \tilde{A}\}$ a σ-algebra.
(b) The union of two σ-algebras a σ-algebra.
(c) The intersection of two σ-algebras a σ-algebra.
2. (15\%) Let A and B be subsets of \mathcal{X}. Show that the inverse image satisfies:
(a) If $A \subset B$, then $X^{-1}(A) \subset X^{-1}(B)$.
(b) If $h(\omega)=g[X(\omega)]$, then $h^{-1}(B)=X^{-1}\left[g^{-1}(B)\right]$
3. (15%) The conditional expectation of Y given X, where Y maps (Ω, \mathcal{F}) into $(\mathcal{Y}, \mathcal{B})$ and X maps (Ω, \mathcal{F}) into $(\mathcal{X}, \mathcal{A})$, is a function $\mathcal{E}(Y \mid X)(x)$, which maps $(\mathcal{X}, \mathcal{A})$ into $(\mathcal{Y}, \mathcal{B})$, that satisfies the equation

$$
\int_{F} Y(\omega) d P(\omega)=\int_{F} \mathcal{E}(Y \mid X)[X(\omega)] d P(\omega)
$$

for every F of the form $F=X^{-1}(A)$ with $A \in \mathcal{A}$.
Give the computational formula for $\mathcal{E}(Y \mid X)(x)$ in these three cases:
(a) $X(\omega)=\sum_{i=0}^{N} x_{i} I_{F_{i}}(\omega) ; x_{i}$ distinct, $P\left(F_{0}\right)=0$ and $P\left(F_{i}\right)>0$ for $i=1, \ldots, N$.
(b) X and Y are continuous random variables with density $f_{X, Y}(x, y)$.
(c) X and Y are discrete random variables with density $f_{X, Y}\left(x_{i}, y_{j}\right)$
4. (20\%) The coin tossing probability space is (Ω, \mathcal{F}, P), where $\Omega=(0,1], \mathcal{F}$ is the smallest σ-algebra containing all intervals of the form $(a, b]$, where $0 \leq a \leq b \leq 1$, and $P(F)=\int I_{F}(\omega) d \omega$. Consider the following events

$$
\begin{array}{ll}
F_{1}=\left(\frac{1}{2}, 1\right] & \text { heads on the first toss } \\
F_{2}=\left(\frac{1}{4}, \frac{1}{2}\right] \cup\left(\frac{3}{4}, 1\right] & \text { heads on the second toss } \\
F_{3}=\left(\frac{1}{8}, \frac{1}{4}\right] \cup\left(\frac{3}{8}, \frac{1}{2}\right] \cup\left(\frac{5}{8}, \frac{3}{4}\right] \cup\left(\frac{7}{8}, 1\right] & \text { heads on the third toss }
\end{array}
$$

Let $X(\omega)=\frac{1}{3} \omega^{3}$.
(a) Show that F_{1} and F_{2} are independent events.
(b) Show that F_{1}, F_{2}, and F_{3} are independent events.
(c) Derive the density function $f_{X}(x)$ of X.
(d) Derive the distribution function $F_{X}(x)$ of X.
5. (15%) Complete the following table

$f(x, y)$	y							
x	1	2	3	4	5	$f(x)$	$F(x)$	$\mathcal{E}(Y \mid X)(x)$
1	.02	.02	.03	.05	.04			
2	.05	.04	.04	.04	.05			
3	.02	.01	.03	.06	.03			
4	.03	.03	.06	.05	.05			
5	.05	.04	.05	.06	.05			

6. (20\%) Let X and Y be continuous random variables with joint density

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
x+y & 0<x<1,0<y<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Compute

(a) $f_{X}(x)$
(b) $\mathcal{E}(X)$
(c) $\mathcal{E}(Y \mid X)(x)$
(d) $F_{X, Y}(x, y)$

