THE PENNSYLVANIA STATE UNIVERSITY Department of Economics

Economics 501 Midterm Exam October 22, 2013 Gallant Fall 2013

- (15%) For each of the following, if the statement is true, then prove it, if the statement is false, then give a counter example.
 - (a) The collection $\mathcal{A} = \{\emptyset, \Omega, A, \tilde{A}\}$ a σ -algebra.
 - (b) The union of two σ -algebras a σ -algebra.
 - (c) The intersection of two σ -algebras a σ -algebra.
- 2. (15%) Let A and B be subsets of \mathcal{X} . Show that the inverse image satisfies:
 - (a) If $A \subset B$, then $X^{-1}(A) \subset X^{-1}(B)$.
 - (b) If $h(\omega) = g[X(\omega)]$, then $h^{-1}(B) = X^{-1}[g^{-1}(B)]$
- 3. (15%) The conditional expectation of Y given X, where Y maps (Ω, \mathcal{F}) into $(\mathcal{Y}, \mathcal{B})$ and X maps (Ω, \mathcal{F}) into $(\mathcal{X}, \mathcal{A})$, is a function $\mathcal{E}(Y|X)(x)$, which maps $(\mathcal{X}, \mathcal{A})$ into $(\mathcal{Y}, \mathcal{B})$, that satisfies the equation

$$\int_{F} Y(\omega) \, dP(\omega) = \int_{F} \mathcal{E}(Y|X) \left[X(\omega) \right] \, dP(\omega)$$

for every F of the form $F = X^{-1}(A)$ with $A \in \mathcal{A}$.

Give the computational formula for $\mathcal{E}(Y|X)(x)$ in these three cases:

- (a) $X(\omega) = \sum_{i=0}^{N} x_i I_{F_i}(\omega); x_i \text{ distinct}, P(F_0) = 0 \text{ and } P(F_i) > 0 \text{ for } i = 1, \dots, N.$
- (b) X and Y are continuous random variables with density $f_{X,Y}(x,y)$.
- (c) X and Y are discrete random variables with density $f_{X,Y}(x_i, y_j)$
- 4. (20%) The coin tossing probability space is (Ω, \mathcal{F}, P) , where $\Omega = (0, 1]$, \mathcal{F} is the smallest σ -algebra containing all intervals of the form (a, b], where $0 \le a \le b \le 1$, and $P(F) = \int I_F(\omega) d\omega$. Consider the following events

$$\begin{split} F_1 &= \left(\frac{1}{2}, \ 1\right] & \text{heads on the first toss} \\ F_2 &= \left(\frac{1}{4}, \ \frac{1}{2}\right] \cup \left(\frac{3}{4}, \ 1\right] & \text{heads on the second toss} \\ F_3 &= \left(\frac{1}{8}, \ \frac{1}{4}\right] \cup \left(\frac{3}{8}, \ \frac{1}{2}\right] \cup \left(\frac{5}{8}, \ \frac{3}{4}\right] \cup \left(\frac{7}{8}, \ 1\right] & \text{heads on the third toss} \end{split}$$

Let $X(\omega) = \frac{1}{3}\omega^3$.

- (a) Show that F_1 and F_2 are independent events.
- (b) Show that F_1 , F_2 , and F_3 are independent events.
- (c) Derive the density function $f_X(x)$ of X.
- (d) Derive the distribution function $F_X(x)$ of X.
- 5. (15%) Complete the following table

f(x,y)			y					
x	1	2	3	4	5	f(x)	F(x)	$\mathcal{E}(Y X)(x)$
1	.02	.02	.03	.05	.04			
2	.05	.04	.04	.04	.05			
3	.02	.01	.03	.06	.03			
4	.03	.03	.06	.05	.05			
5	.05	.04	.05	.06	.05			

6. (20%) Let X and Y be continuous random variables with joint density

$$f_{X,Y}(x,y) = \begin{cases} x+y & 0 < x < 1, \ 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Compute

- (a) $f_X(x)$
- (b) $\mathcal{E}(X)$
- (c) $\mathcal{E}(Y|X)(x)$
- (d) $F_{X,Y}(x,y)$