UNIVERSITY OF NORTH CAROLINA Department of Economics

Economics 271 Final Exam Dr. Gallant Fall 1997

- (10%) Suppose that one has a positive valued, finitely additive, set function P(·) defined on an algebra A of subsets of Ω that assigns P(Ω) = 1 to Ω. How does one extend the definition of P(·) to the smallest σ-algebra F that contains A? Will P(·) extended to F be countably additive?
- 2. (10%) A pair of dice are thrown and the sum is noted. The throws are repeated until either a sum of 6 or a sum of 7 occurs. What is the probability that the sequence of throws terminates at the 5th roll? What is the expected number of rolls?
- 3. (10%) Show that the random variables $\mathcal{E}(Y|\mathcal{F}_0)$ and $[Y \mathcal{E}(Y|\mathcal{F}_0)]$ are orthogonal in the sense that $\mathcal{E} \{ \mathcal{E}(Y|\mathcal{F}_0) [Y \mathcal{E}(Y|\mathcal{F}_0)] \} = 0.$
- 4. (10%) Let $Y = \beta_0 + \beta_1 X + E$ where X and E are independent random variables that are distributed $N(\mu_x, \sigma_x^2)$ and $N(0, \sigma_e^2)$, respectively. Compute $\mathcal{E}(Y)$, $\mathcal{E}(Y|X)$, and find the density of Y.
- 5. (10%) Find α_0 , α_1 that minimize $MSE(\alpha_0, \alpha_1) = \mathcal{E} (Y \alpha_0 \alpha_1 X)^2$.
- 6. (15%) Consider the jointly distributed random variables X and Y with density

$$f(x,y) = \begin{cases} \frac{6}{5}(x^2+y) & 0 \le x \le 1, \ 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Compute the marginal density f(x).
- (b) Compute the conditional density f(y|x).
- (c) Compute $\mathcal{E}(Y|X)(x)$.
- (d) Compute the covariance between X and Y.
- (e) Are X and Y independent?

- (f) Compute $P(1/2 \le X \le 1, 1/2 \le Y \le 1)$.
- 7. (10%) Suppose $f_X(x)$ is a density with mean μ and standard deviation σ . Find the density $f_Y(y)$ of the random variable $Y = (X \mu)/\sigma$. What is the mean and variance of the random variable Y.
- 8. (10%) Let X_i be independently and identically distributed with finite variance. Show that $S_n^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$, where $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$, converges almost surely to $\operatorname{Var}(X)$.
- 9. (15%) Consider the random variables

$$Y_i = g(X_i, \theta^o) + E_i, \quad i = 1, \dots, n_i$$

where (X_i, E_i) are independent and indentically distributed, $f_{XE}(x, e) = f_X(x)f_E(e)$, $f_X(x)$ is positive only on the bounded interval (a, b), and $f_E(e)$ is everywhere positive with $\mathcal{E}(E) = 0$ and $0 < \operatorname{Var}(E) < \infty$. The functional form of $g(x, \theta)$ is known. The value of θ^o is unknown but is known to lie in the bounded interval [c, d]. Let

$$s_n(\theta) = \frac{1}{n} \sum_{i=1}^n [Y_t - g(X_i, \theta)]^2$$
$$\hat{\theta}_n = \operatorname*{argmin}_{c \le \theta \le d} s_n(\theta).$$

Theorem 4.2 implies that

$$\lim_{n \to \infty} \sup_{c \le \theta \le d} |s_n(\theta) - \bar{s}(\theta)| = 0,$$

almost surely, where

$$\bar{s}(\theta) = \operatorname{Var}(E) + \int_{a}^{b} \left[g(x,\theta) - g(x,\theta^{o})\right]^{2} f_{X}(x) \, dx.$$

- (a) Assuming that $\bar{s}(\theta)$ has a unique minimum at θ^{o} over [c, d], show that $\hat{\theta}_{n}$ converges almost surely to θ^{o} .
- (b) Assuming that

$$\sqrt{n} \frac{d}{d\theta} s_n(\theta^o) = \frac{-2}{\sqrt{n}} \sum_{i=1}^n \frac{d}{d\theta} g(X_i, \theta^o) E_i$$

use the Central Limit Theorem to show that $\sqrt{n(d/d\theta)s_n(\theta^o)}$ is asymptotically normally distributed. Be sure to include an expression for the variance this asymptotic distribution.