UNIVERSITY OF NORTH CAROLINA
 Department of Economics

Economics 271
Dr. Gallant
Final Exam

1. (10%) Suppose that one has a positive valued, finitely additive, set function $P(\cdot)$ defined on an algebra \mathcal{A} of subsets of Ω that assigns $P(\Omega)=1$ to Ω. How does one extend the definition of $P(\cdot)$ to the smallest σ-algebra \mathcal{F} that contains \mathcal{A} ? Will $P(\cdot)$ extended to \mathcal{F} be countably additive?
2. (10%) A pair of dice are thrown and the sum is noted. The throws are repeated until either a sum of 6 or a sum of 7 occurs. What is the probability that the sequence of throws terminates at the 5th roll? What is the expected number of rolls?
3. (10%) Show that the random variables $\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)$ and $\left[Y-\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\right]$ are orthogonal in the sense that $\mathcal{E}\left\{\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\left[Y-\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\right]\right\}=0$.
4. (10%) Let $Y=\beta_{0}+\beta_{1} X+E$ where X and E are independent random variables that are distributed $N\left(\mu_{x}, \sigma_{x}^{2}\right)$ and $N\left(0, \sigma_{e}^{2}\right)$, respectively. Compute $\mathcal{E}(Y), \mathcal{E}(Y \mid X)$, and find the density of Y.
5. (10%) Find α_{0}, α_{1} that minimize $\operatorname{MSE}\left(\alpha_{0}, \alpha_{1}\right)=\mathcal{E}\left(Y-\alpha_{0}-\alpha_{1} X\right)^{2}$.
6. (15\%) Consider the jointly distributed random variables X and Y with density

$$
f(x, y)= \begin{cases}\frac{6}{5}\left(x^{2}+y\right) & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the marginal density $f(x)$.
(b) Compute the conditional density $f(y \mid x)$.
(c) Compute $\mathcal{E}(Y \mid X)(x)$.
(d) Compute the covariance between X and Y.
(e) Are X and Y independent?
(f) Compute $P(1 / 2 \leq X \leq 1,1 / 2 \leq Y \leq 1)$.
7. (10%) Suppose $f_{X}(x)$ is a density with mean μ and standard deviation σ. Find the density $f_{Y}(y)$ of the random variable $Y=(X-\mu) / \sigma$. What is the mean and variance of the random variable Y.
8. (10%) Let X_{i} be independently and identically distributed with finite variance. Show that $S_{n}^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$, where $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$, converges almost surely to $\operatorname{Var}(X)$.
9. (15%) Consider the random variables

$$
Y_{i}=g\left(X_{i}, \theta^{o}\right)+E_{i}, \quad i=1, \ldots, n
$$

where $\left(X_{i}, E_{i}\right)$ are independent and indentically distributed, $f_{X E}(x, e)=f_{X}(x) f_{E}(e)$, $f_{X}(x)$ is positive only on the bounded interval (a, b), and $f_{E}(e)$ is everywhere positive with $\mathcal{E}(E)=0$ and $0<\operatorname{Var}(E)<\infty$. The functional form of $g(x, \theta)$ is known. The value of θ° is unknown but is known to lie in the bounded interval $[c, d]$. Let

$$
\begin{gathered}
s_{n}(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left[Y_{t}-g\left(X_{i}, \theta\right)\right]^{2} \\
\hat{\theta}_{n}=\underset{c \leq \theta \leq d}{\operatorname{argmin}} s_{n}(\theta) .
\end{gathered}
$$

Theorem 4.2 implies that

$$
\lim _{n \rightarrow \infty} \sup _{c \leq \theta \leq d}\left|s_{n}(\theta)-\bar{s}(\theta)\right|=0,
$$

almost surely, where

$$
\bar{s}(\theta)=\operatorname{Var}(E)+\int_{a}^{b}\left[g(x, \theta)-g\left(x, \theta^{o}\right)\right]^{2} f_{X}(x) d x
$$

(a) Assuming that $\bar{s}(\theta)$ has a unique minimum at θ^{o} over $[c, d]$, show that $\hat{\theta}_{n}$ converges almost surely to θ°.
(b) Assuming that

$$
\sqrt{ } n \frac{d}{d \theta} s_{n}\left(\theta^{o}\right)=\frac{-2}{\sqrt{ } n} \sum_{i=1}^{n} \frac{d}{d \theta} g\left(X_{i}, \theta^{o}\right) E_{i},
$$

use the Central Limit Theorem to show that $\sqrt{ } n(d / d \theta) s_{n}\left(\theta^{\circ}\right)$ is asymptotically normally distributed. Be sure to include an expression for the variance this asymptotic distribution.

