UNIVERSITY OF NORTH CAROLINA
 Department of Economics

Economics 271
Dr. Gallant
Final Exam
Fall 1995
(25%) 1. Let X_{1}, \ldots, X_{n} be iid $\mathcal{U}(0, \theta)$. The $\mathcal{U}(0, \theta)$ density is $f_{X}(x)=\theta^{-1} I_{[0, \theta]}(x)$ and the $\mathcal{U}(0, \theta)$ distribution function is

$$
F_{X}(x)= \begin{cases}0 & -\infty<x<0 \\ x / \theta & 0 \leq x<\theta \\ 1 & \theta \leq x<\infty\end{cases}
$$

a. Show that $P\left(\max _{1 \leq i \leq n} X_{i} \leq t\right)=\left[F_{X}(t)\right]^{n}$.
b. Compute the mean and variance of $\tilde{\theta}_{n}=[(n+1) / n] \max _{1 \leq i \leq n} X_{i}$.
c. Show that $\tilde{\theta}_{n}=[(n+1) / n] \max _{1 \leq i \leq n} X_{i}$ converges in probablility to θ.
d. Compute the mean and variance of $\hat{\theta}_{n}=(2 / n) \sum_{t=1}^{n} X_{i}$.
e. Show that $\hat{\theta}_{n}=(2 / n) \sum_{t=1}^{n} X_{i}$ converges in probablility to θ.
f. Which of the two is the better estimator and why.
(15%) 2. Let $X(s)$ be a random variable mapping the sample space $(\mathcal{S}, \mathcal{B}, P)$ onto $\left(\mathcal{X}, \mathcal{A}, P_{X}\right)$.
a. For $B \in \mathcal{B}$ define the image $X(B)$.
b. For $A \in \mathcal{A}$ define the preimage $X^{-1}(A)$.
c. What is the image of \mathcal{S} ?
d. What is the preimage of \mathcal{X}.
e. What is the definition of P_{X}.
f. What is the definition of the distribution function F_{X}.
$(10 \%) 3$. Let $X(s)$ be a random variable mapping the sample space $(\mathcal{S}, \mathcal{B}, P)$ onto $\left(\mathcal{X}, \mathcal{A}, P_{X}\right)$. Let $\mathrm{W}=\mathrm{g}(\mathrm{X})$ where $g(x)$ is a one-to-one, increasing function mapping \mathcal{X} onto \mathcal{W} with inverse $x=g^{-1}(w)$. Show that $F_{W}(t)=F_{X}\left[g^{-1}(t)\right]$.
(15\%) 4. Consider the random variable X with density

$$
f(x)= \begin{cases}A\left(1-x^{2}\right) & -1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

a. Compute A.
b. Compute the mean of X.
c. Compute $P(1 / 2 \leq X \leq 1)$.
d. Compute the variance of X.
e. Find the density of the random variable $Y=X^{3}$.
(20\%) 5. Consider the jointly distributed random variables X and Y with density

$$
f(x, y)= \begin{cases}A\left(x^{2}+y\right) & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

a. Compute A.
b. Compute the marginal density $f(x)$.
c. Compute the conditional density $f(y \mid x)$.
d. Compute the covariance between X and Y.
e. Are X and Y independent?
f. Compute $P(1 / 2 \leq X \leq 1,1 / 2 \leq Y \leq 1)$.
$(15 \%) 6$. Let X be a random variable with distribution function $F_{X}(x)$ and let Y be a random variable with distribution $F_{Y}(y)$.
a. What is the transformation $\mathrm{g}(\mathrm{x})$ such that the random variable $\mathrm{W}=\mathrm{g}(\mathrm{X})$ has the uniform distribution.
b. What is the transformation $g(x)$ such that the random variable $W=g(X)$ is distributed as the normal.
c. What is the transformation $\mathrm{g}(\mathrm{x})$ such that the random variable $\mathrm{W}=\mathrm{g}(\mathrm{X})$ is distributed as F_{Y}.

