Topic 3

- Welfare theorems
- Dead Weight Loss for externalities
- Dead Weight Loss for public goods
- Dead Weight Loss for tragedy of the commons
- Basic policy alternatives

Welfare Theorems

- In a perfectly competitive market, the market equilibrium outcome is efficient
 - Pareto optimal cannot make anyone better off without making someone worse off
 - Maximizes total social surplus (i.e. maximizes the sum of producer and consumer surplus)
- Known as the "First Theorem of Welfare Economics"

Consumer and Producer Surplus

Competitive equilibrium makes the sum of CS and PS as big as possible.

Normative Implication

- When markets are perfectly competitive, the market mechanism allocates scarce resources as well as anything could.
- When there are perfectly competitive markets, pursuit of individual self interest is socially optimal.

Market Failure

- Market Failure: When conditions of perfect competition do not exist
 - ▷ Market power
 - ◊ monopoly, oligopoly, monopsony, oligopsony
 - Asymmetric information
 - ♦ used cars, REPOs, collateralized debt obligations
 - ▷ Externalities
 - ▷ Public goods
 - ▷ Tragedy of the commons

Market Failures in Environmental Economics

- Externalities
- Public goods
- Tragedy of the commons

Definition of Externality

- "An externality results when the actions of one individual (or firm) have a direct, unintentional, and uncompensated effect on the well-being of other individuals or the profits of other firms." (KO, p.66)
- Could be positive, e.g. your neighbor has a pretty garden
- Could be negative, e.g. your neighbor has smelly garbage

Examples of Externalities

- Two students share a dormitory room one smokes and the other has asthma
- A coal-fired power plant in Michigan produces sulfur dioxide, which in turn causes acid rain in Canada and damages Canadian wheat.
- A pulp mill dumps its effluent into a river. A manufacturing facility downstream from the pulp mill draws water from the river.

Appears to be a "competitive" equilibrium

• Social costs are ignored

- Marginal private cost vs. marginal social cost
- Difference is marginal external cost
- Unregulated market produces too much output and too much pollution

- $(\mathbf{Q}_1, \mathbf{P}_1)$ is the socially optimal outcome.
- The sum of A, B, and C is the social cost from the externality
- \bullet Producers and consumers expropriate B and C as surplus for themselves.
- A is pure deadweight loss.
- At social optimum, producers and consumers lose B, society gains A.
- What happens to C depends on how it is done.
- \diamond If a tax, society gets C and is compensated for damage.

- Illustrate computation on board
- With externality (damage) proportional to output
- In which case deadweight loss exceeds lost consumer and producer surplus

Marginal External Costs of Automobiles

Source of Cost	Cents/Gallon ¹	Cents/Mile ¹	
Greenhouse gas emissions	6	0.3	
Local air pollution	42	2.0	
Congestion	105	5.0	
Accidents	63	3.0	
Oil dependency	12	0.6	
Total	228	10.9	

¹ Costs converted assuming fuel economy of 21 miles/gallon.

Source: Ian W. H. Parry, Margaret Walls, and Winston Harrington, "Automobile Externalities and Policies," *Journal of Economic Literature*, Vol. XLV, No. 2, June 2007, p. 384.

Social Benefits of the Clean Air Act

	MONETIZED BENEFITS (MILLION 2006\$) BY TARGET YEAR				
BENEFIT CATEGORY	2000	2010	2020	NOTES	
Health Effects					
PM Mortality PM Morbidity Ozone Mortality Ozone Morbidity	\$710,000 \$27,000 \$10,000 \$420	\$1,200,000 \$46,000 \$33,000 \$1,300	\$1,700,000 \$68,000 \$55,000 \$2,100	 PM mortality estimates based on Weibull distribution derived from Pope et. al (2002) and Laden et al., 2006. Ozone mortality estimates based on pooled function 	
Subtotal Health Effects	\$750,000	\$1,300,000	\$1,900,000		
Visibility					
Recreational Residential	\$4,100 \$13,000	\$9,000 \$27,000	\$18,000 \$49,000	Recreational visibility only includes benefits in the regions analyzed in Chestnut and Rowe, 1990 (i.e., California, the Southwest, and the Southeast).	
Subtotal Visibility	\$17,000	\$36,000	\$67,000		
Agricultural and Forest Productivity	\$1,000	\$5,500	\$11,000		
Materials Damage	\$58	\$93	\$110		
Ecological	\$6.9	\$7.5	\$8.2	Reduced lake acidification benefits to recreational fishing assuming effect threshold of 50 microequivalents per liter.	
Total: all categories	\$770,000	\$1,300,000	\$2,000,000		
Note: See Chapters 5 and 6 of this report for detailed results summaries. Values presented are means from results reported as distributions. Estimates presented with two significant figures.					

Source: EPA, The Benefits and Costs of the Clean Air Act: 1990 to 2020. Estimated 2020 benefits are \$2 trillion and costs are \$65 billion.

Taxonomy of Pollutants

- Cumulative vs. noncumulative
 plastics vs. noise
- Local vs. regional vs. global
 ▷ noise vs. acid rain vs. CFCs
- Point-source vs. non-point-source pollutants
 > wastewater vs. agricultural runoff
- Continuous vs. episodic emissions
 ▷ electric power, waste treatment vs. oil or chemical spills
- Damage not related to emissions
 - ▷ conversion of land, logging, mining

Conclusion with Externalities

- Markets are not efficient when there are externalities
- There is overprovision of goods generating externalities in a competitive market
 - ▷ modified if market power or other countervailing effects

Corrective Measures

- Command and control policies
 - > Technology standards (catalytic converters)
 - > Absolute source-based emission or effluent standards
 - \diamond input based
 - \diamond output based
- Policies based on economic incentives
 - ▷ Effluent fees (Pigouvian taxes)
 - > Abatement subsidies
 - ▷ Tradable permits

Viewpoint of "The Corporation"

- Clip from the interview of Ray Anderson
- http://www.aronaldg.org/courses/econ428/RayAndersonTheCorporation.mp4
- https://www.youtube.com/watch?v=buqy32v7OV0
- www.interfaceflooring.com

Viewpoint of the Corporation – Clips

- "The Invisible Hand Is Blind"
 - ▷ Externalities
 - ▷ Role for government
 - ▷ Innovation incentives
- "Leading by Example"
 - ⊳ Greenwash
- "As Bad As the Law Allows"
 ▷ Corporate responsibility
- "Real World Strategies"
 - ▷ Property rights

Definition of Public Goods

- A pure public good is a nonexcludable and nonrival good.
- Nonexcludability: It is not feasible to allow consumers to use the good selectively.
- Nonrivalry: Consumption of one individual does not reduce the amount of the good available to others.

Examples of Public Goods

- Clean air outside
- Public TV
- Public parks
- Biodiversity
 - ▷ for its own sake
 - ▷ for development of new pharmaceuticals
- Avoiding climate change
- National defense

The Public Goods Box

	Excludable	Non-Excludable	
Rival	Pure	Open Access	
	Private	(Common Property)	
	Goods	Resources	
Non-Rival	Club	Pure	
	Club	Public	
	GUUUS	Goods	

Demand Aggregation

- Blackboard illustration
- Rival goods \implies horizontal sum
- Non-rival goods \implies vertical sum

Inefficiency Asociated with Public Goods – 1 \$/unit

- Private provision of a public good by 2 firms A and B
- Example: B produces Q_B and A produces $Q_A Q_B$

Inefficiency Asociated with Public Goods – 2

- At Q_A the combined marginal benefit from the public good exceeds the marginal cost
- What is the deadweight loss associated with Q_A ? Like monopoly, board presentation.

Conclusion with Public Goods

- Markets for public goods are not efficient
- There is underprovision of public goods by the market

Corrective Measures

- government provision
- voluntary contributions
- private action homeowners' association
- moral pressure
- matching contributions (promise of future contributions, threat of shutting off future contributions)

Missing Markets

- There is a missing market if some good that individuals value is not bought and sold in the marketplace.
 - Generation of air pollution uses clean air as an "input" in production, but there is no market for this clean air.
 - ▷ Access rights to groundwater
- "Green Goods" create some otherwise missing markets
 - ▷ Organic produce v. pesticides in the waterways
 - NC Green Power allows the purchase of electricity generated using renewable energy
- Government-created markets
 - FCC allocation of spectrum rights, access to "white spaces"

Green Goods

- Competitive firms
 - ▷ View green and normal goods as close substitutes.
 - ▷ The demand curves will have large elasticities.
- Firms with market power
 - ▷ Review standard theory, blackboard
 - Point out the flaw in that approach for green goods with diapers, blackboard.
 - ▷ Illustrate willingness to pay approach with paint, website.

Environmental Policy

- Website Major U.S. legislation (Field and Field, 2009)
- Website Summary of international treaties (Field and Field, 2009)