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Climate Change Policy Analysis
Question: What can and should be the policy response to rising CO2
concentrations in the face of uncertainty?

I Create dynamic and stochastic integrated models of climate and
economy (DSICE)

I Economic risk:
I uncertain economic growth with persistence in growth rates,

calibrated to consumption data
I flexible preferences compatible with data on asset pricing:

Epstein–Zin preferences

I Climate risk
I damages interact with economic shocks
I climate events are stochastic; e.g., glaciers melting, THC collapse

I Parameter uncertainty

I Results
I SCC (Social Cost of Carbon) today is higher, ~double the $35/tC

“consensus”
I SCC is a stochastic process:

I policies aimed at reducing emissions (e.g., carbon tax) could hit their
maximum effectiveness in this century

I carbon sequestration and geoengineering may be cost-effective



DSICE Framework
DSICE: Dynamic Stochastic Integration of Climate and the Economy
Extension of Nordhaus’ DICE to economic and climate riskiness
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Economic System in DSICE
I Production function without climate effects:

f (Kt , Lt , Ãt) = ÃtK
α
t L

1−α
t

I Kt : capital;
I Lt : world population
I Ãt : stochastic productivity, Ãt ≡ ζtAt

I At : deterministic trend
I ζt : productivity shock with long-run risk

log (ζt+1) = log (ζt) + χt + %ωζ,t

χt+1 = rχt + ςωχ,t

I Output:
Yt = Ω (TAT,t , Jt) f (Kt , Lt , ζtAt)

I TAT,t : atmospheric temperature; Ω: damage factor
I Jt : climate state



Economic System in DSICE

I Capital accumulation:

Kt+1 = (1− δ)Kt + Yt − Ct −Ψt (1)

I Ct : consumption;
I µt : emission control rate
I Ψt : mitigation expenditure, Ψt = θ1,tµ

θ2
t Yt

I Epstein–Zin Preferences:
I ψ: inter temporal elasticity of substitution
I γ: risk aversion parameter
I parameters chosen to imply plausible risk premia in asset markets

and IES for consumption



Climate System in DSICE – Heat and GHG Diffusions

I Carbon concentration: M = (MAT,MUO,MLO)

Mt+1 = ΦMMt + (Et , 0, 0)>

I Et : emission depending on production and emission control rate µt

I ΦM : transition matrix of carbon cycle

I Temperature: T = (TAT,TOC)

Tt+1 = ΦTTt + (ξ1Ft (MAT,t) , 0)> (2)

I Ft : radiative forcing
I ΦT : transition matrix of temperature system

I Tipping Element: Jt
I Damage in output:

Ω (TAT,t , Jt) =
1− Jt

1 + π1TAT,t + π2(TAT,t)2



Climate System in DSICE – Accumulated Damage State

I Climate state: Jt
I Represents past, permanent harm
I Markov chain, transition probabilities depends on the

contemporaneous temperature TAT
I multi-stage process of uncertain duration

I Examples of tipping elements
I ice sheet melting (West Antarctic, Greenland)
I collapse of Atlantic themohaline circulation



Bellman Equation

I Nine-dimensional state vector: S = (K ,M,T, ζ, χ, J)

I Bellman equation for the dynamic stochastic problem:

Vt(S) = max
C ,µ

ut(Ct , Lt) + β

[
Et

{(
Vt+1

(
S+
)) 1−γ

1− 1
ψ

}] 1− 1
ψ

1−γ

,

s.t. K+ = (1− δ)Kt + Yt − Ct −Ψt ,

M+ = ΦMM + (Et , 0, 0)> ,

T+ = ΦTT +
(
ξ1Ft

(
MAT

)
, 0
)>
,

ζ+ = gζ(ζ, χ, ωζ),

χ+ = gχ(χ, ωχ),

J+ = gJ(J,T, ωJ)

I 600 years horizon in annual time steps



Social Cost of Carbon and Carbon Tax

I SCC (the 1000 factor corrects for difference in units):

Γt = −1000 (∂Vt/∂MAT,t) / (∂Vt/∂Kt) . (3)

I Relation of SCC and carbon tax:
I if µt < 1, SCC = Carbon tax
I if µt = 1 (i.e., no industrial emission), SCC > Carbon tax, implying

that mitigation policies reach their limit of effectiveness

I When SCC is high, alternative policies may be efficient (e.g., carbon
removal and storage, solar geoengineering)



Calibration - Benchmark Case

I Preferences: ψ = 1.5, γ = 10 (plausible case)
I Productivity: Calibrate three parameters (%, r , ς) in exogenous

stochastic productivity process:
I Solve DSICE and compute consumption assuming no climate

damages
I Compare the moments of per-capita consumption growth with

empirical data:

I Climate tipping processes: Use expert elicitation studies (Kriegler et
al. 2009; Lenton 2010)



Numerical Dynamic Programming
I DSICE:

I six-dimensional continuous state variables x ≡ (K ,M,T)
I three discrete state variables θ ≡ (ζ, χ, J) with 91× 19× 16

time-dependent values

I Numerical Dynamic Programming Algorithm:
I Initialization. Choose the approximation nodes, Xt = {xi,t :

1 ≤ i ≤ mt} for every t < T , and choose a functional form for
V̂ (x , θ; b), where θ ∈ Θt . Let V̂ (x , θ; bT ) ≡ VT (x , θ). Then for
t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.

I Step 1. Maximization step. Compute

vi,j = max
a∈D(xi ,θj ,t)

ut(xi , a) + βHt

(
V̂
(
x+, θ+j ; bt+1

))
s.t. x+ = F (xi , θj , a),

θ+j = G(xi , θj , ω),

for each θj ∈ Θt , xi ∈ Xt , 1 ≤ i ≤ mt .
I Step 2. Fitting step. Using an appropriate approximation method,

compute the bt such that V̂ (x , θj ; bt) approximates (xi , vi,j) data for
each θj ∈ Θt .



LRR Benchmark - GWP, K, C
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Figure : Simulation results of the stochastic growth benchmark



LRR Benchmark – Emission Control, Carbon, Temperature
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Figure : Simulation results of the stochastic growth benchmark



SCC and Carbon Tax
A: Social Cost of Carbon
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I Optimal Initial carbon tax: $125 (deterministic model: $37)



Parallelization of DSICE – LRR+Tipping

I Discretized dimensions (ζ, χ, J): 91× 19× 16 = 27, 664 points
I Six-dimensional continuous states (k ,M,T):

I 56K approximation nodes per discrete point
I 261 coefficients in polynomial approximation at each discrete

(ζ, χ, J) point
I massive overidentification is needed to get good approximation of

value function and the decision rules (which are essentially the
gradients)

I Value function iteration method
I Total number of Bellman optimization problems: 372 billion

Num of Cores Wall Clock Time Total CPU Time
69,184 11.2 hours 88 years



Parallelization of Uncertainty Quantification – Tipping

I Six uncertain parameter values
I intertemporal elasticity of substitution
I risk aversion parameter
I hazard rate of tipping
I expected damages
I variance of damages
I expected duration of the tipping process

I Solve on grids in parameter space (2,430 cases)
I Use approximation to express SCC now as a function of six

parameters to at least three-digit accuracy
I Computational resources.

Num of Cores Wall Clock Time Total CPU Time
8,160 1.04 hour 0.97 year



Summary

I We construct a DSICE model with economic and climate uncertainty
I We use good mathematical methods; will use better in the future
I We use standard scientific computer hardware
I DSICE shows that mild tipping specifications can lead to very high

SCC; disaster scenarios are not needed to justify high SCC
I DSICE shows that parameter uncertainty implies even more

uncertainty
I DSICE shows that SCC is a stochastic process with wide ranges over

time
I It is quite plausible that in this century optimal policy would not only

eliminate CO2 emissions,
I but also employ far more costly measures aimed at removing CO2

from the atmosphere
I DSICE could be used for cost-benefit analysis of scientific studies

reducing uncertainty, carbon removal and storage, geoengineering,
and other possibilities


