W.R. Grace Acton Site Clean Up

Report from Lin & Hutton Co.

> Environmental Economics Fall 2011

Background

- To determine the willingness to pay for a cleanup of the Acton site, environmental activists used data collected by David Harrison that consisted of observations on characteristics of 2182 houses and distance from ten hazardous waste sites
- Our first step was to replicate the method the activists used to claim that complete clean up of the Action site would be in excess of \$400 million in 1980 dollars

We agree with the high level methodology used by the Activists, but do not agree with the way certain variables were used in the model. The Activists' approach to assess house prices with or without damages was flawed particularly for the way distance variable was

prices with or without damages was flawed particularly for the way distance variable was used in the estimate. We will explain in more details in the next few slides how we believe the distance variable from Acton should be addressed.

Lin & Hutton Co. Analysis

- To conduct our analysis, we first isolated the 90 observations for which the homes are closer to the Acton site than to other sites
- We believed this data set would allow us to build a stronger model to assess expected price of homes more directly affected by the Acton site and no other site

Quadratic relationship in model for distance variable also ensures that distance variable has largest impact on house prices with or without damages, which are believed to be realistic when holding other attributes constant.

Because we assume that if a house is ten or more miles from Acton, then the pollutant is gone, the expected price of a house calculated from the hedonic regression with distance set to ten miles and all other values set to those in the data gives the expected price of the house were the pollutant gone.

In addition to transforming distance from Acton site, we also transformed Nox content by multiplying by 100 then squared to provide a strong correlation to house prices. Reference: Harrison and Rubinfeld (1978), "Hedonic Housing Prices and the Demand for Clean Air," Journal of Environmental Economic Management 5, 81–102.

Lin & Hutton Co. Analysis

- Similar to the Activists, we assumed that if a house is ten or more miles from Acton, then the pollutant is gone
- The expected price of a house calculated from the hedonic regression with distance set to ten miles and all other values set to those in the data gives the expected price of the house where the pollutant is gone
- When distance is set to 10, our transformed distance term in the model becomes 0, effectively removing the impact of Acton site pollution on house prices

Data Variables for Assessing No Hazard

• Same model as assessing house prices with hazard, except distance term (Acton effect) is 0.

Distance from W.R. Grace Acton Site	Lot size		
Year and month sold	Living area in the house		
Year the house was built	Nitrogen oxide concentration		
Forced air heat	Access to radial highways		
Hot water heat	Pool		
Number of fire places	Full value of property tax rate		
Covered parking	Pupil to teacher ratio		

Total Damage

- With a formula/model to determine expected prices with and without hazard, we then determined the total cost of damage (delta between the two) for homes impacted by the pollutants from the Acton site.
- We used the 182 observations in the Harrison data set that are within ten miles of Acton to calculate expected prices under the assumption that homes within 10 miles of Acton are affected by the pollutants.

Final Remarks/Conclusion

- By using more reasonable approach and data variables, we came up with a better fitted model than the Activists (~ 2.4 times less in total damage).
- Specific comparison:

	Our Analysis	Activist's Analysis
Per house damage in 1980 dollars	\$2,666	\$6,430
Per house damage in 2011 dollars	\$7,325	\$17,668
Total damage in 1980 dollars	\$170,594,385	\$411,520,000
Total damage in 2011 dollars	\$468,763,971	\$1,130,786,040
		Lin & Hutt

Appendix

Variable Definitions/Units:

dista1 : distance to W.R. Grace Acton, miles (transformed to (10-dista1) ²)	nheatf : dummy variable = 1 for forced air heat
In3: lot size (log square feet)	nheath : dummy variable = 1 for hot water heat
In8: living area in house (log square feet)	yrblt: year the house was built
Inoxo : nitrogen oxide concentration, parts per million (transformed to (Inoxo *100)^2)	yrmo : year and month sold
Irad : log of index of access to radial highways	n36: Number of fire places
n35 : dummy variable = 1 if pool; 0 otherwise	n37 : dummy variable = 1 if covered parking
n40: full value property tax rate	n41: pupil to teacher ratio
	Lin & Hutton Co.

Appendix Regression analysis criteria The following criteria were used to determine the best regression models: P Value: In general, you want p-values less than 0.05 since 1-P value is confidence ٠ that slope is not 0 T-stat: In general, you want t-stats greater than 2 in absolute value since this represents how many standard errors away from 0 R^2: A higher R^2 means a lower fraction of variance; R^2 goes up when standard error goes down Correlation: Values close to -1 or 1 indicate high correlation Multicollinearity: Values away from 0 may indicate multicollinearity or that you . may be using more variables than necessary; redundancy Residual Stats: Autocorrelations should be close to 0 Residual Plot: Histogram of residuals should look like a normal distribution, bell curve

Appendix Hedonic regression equation for expected price with hazard: Price = exp (1.2219 - 0.0015 _10_dista1_2 + 0.0478 ln3_ + 0.5671 ln8_ + 0.4788 lrad - 0.1135 n35_ + 0.0592 n36_ + 0.1322 n37_ + 0.0124 n40_ - 0.0233 n41_ - 0.1724 nheatf - 0.1514 nheath + 0.6811 NOx2_ + 0.0055 yrblt - 0.0007 yrmo)

Lin & Hutton Co.

_10_dista1_2 = (10-dista1)^2 NOx2 = (Inoxo*100)^2

Most variables along with coefficients make sense (positive or negative relationships match intuition and common beliefs). An unusual relationship is NOx level, where the coefficient indicates higher Nox correlates to higher house prices which is counter-intuitive. However, taking a closer look at data reveals that most houses with higher NOx happen to be located further from Acton, therefore resulting in the positive correlation. This confirms that Acton site effect outweighs other factors and possibly indicate that Acton site is located in comparably lower NOx concentration region.

Appendix

Hedonic regression equation for expected price without hazard:

Price = exp (1.2219 + 0.0478 ln3_ + 0.5671 ln8_ + 0.4788 lrad - 0.1135 n35_ + 0.0592 n36_ + 0.1322 n37_ + 0.0124 n40_ - 0.0233 n41_ -0.1724 nheatf - 0.1514 nheath + 0.6811 NOx2_ + 0.0055 yrblt - 0.0007 yrmo)

FSBstats Regression Statistics

	R Square	Adj.RSqr	Std.Err.Reg.	# Cases	# Missing	t(2.5%,75)
	0.893	0.873	0.122	90	0	1.992
Summary Table						
Variable	Coeff	Std.Err.	t-Stat.	P-value	Lower95%	Upper95%
Intercept	1.222	2.805	0.436	0.664	-4.366	6.809
_10_dista1_2	-0.001	0.001	-2.036	0.045	-0.003	0.000
ln3_	0.048	0.017	2.791	0.007	0.014	0.082
In8_	0.567	0.045	12.619	0.000	0.478	0.657
Irad	0.479	0.132	3.619	0.001	0.215	0.742
n35_	-0.114	0.053	-2.148	0.035	-0.219	-0.008
n36_	0.059	0.026	2.284	0.025	0.008	0.111
n37_	0.132	0.039	3.381	0.001	0.054	0.210
n40_	0.012	0.002	5.439	0.000	0.008	0.017
n41_	-0.023	0.006	-3.774	0.000	-0.036	-0.011
nheatf	-0.172	0.054	-3.194	0.002	-0.280	-0.065
nheath	-0.151	0.054	-2.808	0.006	-0.259	-0.044
NOx2_	0.681	0.120	5.679	0.000	0.442	0.920
yrblt	0.006	0.001	5.588	0.000	0.004	0.007
yrmo	-0.001	0.000	-2.903	0.005	-0.001	0.000

Good p-values, better R2.

Activ	vist's N	/lodel St	FSBsta atistics	ats Re S	egress	ion
Regression St	tatistics					
	R Square	Adj.RSqr	Std.Err.Reg.	# Cases	# Missing	t(2.5%,81
	0.832	0.815	0.148	90	0	1.990
Summary Tak	ole					
Variable	Coeff	Std.Err.	t-Stat.	P-value	Lower95%	Upper95%
Intercept	-16.301	4.023	-4.052	0.000	-24.306	-8.296
dista1	0.020	0.010	1.984	0.051	0.000	0.040
ln3_	0.035	0.020	1.770	0.080	-0.004	0.075
ln8_	0.661	0.050	13.319	0.000	0.563	0.760
Inoxo	548.228	105.019	5.220	0.000	339.274	757.183
Irad	0.625	0.146	4.296	0.000	0.336	0.915
n40_	0.013	0.003	5.015	0.000	0.008	0.019
n41_	-0.023	0.007	-3.132	0.002	-0.037	-0.008
vrblt	0.006	0.001	6.345	0.000	0.004	0.008

Not so good p-values for dista1 (further proves weak fit), and In3. R square not as good as ours.