These pages are a direct copy of a Zoom lecture on $10 / 28 / 20$. They first show how to solve the permit trading problem for the case where the cost function is $C(Q)=Q$ and output is bounded by 20 . They next show how to solve the permit trading problem when $C(Q)=Q^{\wedge} 2$ and output is not bounded.

$$
\begin{aligned}
& P=40 \\
& C(Q)=Q \\
& n A C_{1}\left(A_{1}\right)=6 A_{1} \\
& n A C_{2}\left(A_{2}\right)=2 A_{2} \\
& A=Q_{1}+Q_{2}-20 \\
& P_{x}=6 A_{1}=2 A_{2} \Rightarrow A_{2}=3 A_{1} \\
& A=A_{1}+A_{2}=A_{1}+3 A_{1}=A A_{1} \\
& A_{1}=\frac{1}{4} A \quad A_{2}=\frac{3}{4} A \\
& P_{x}=\frac{6}{4} A=\frac{3}{2} A=\frac{3}{2}\left(Q_{1}+G_{2}-20\right)
\end{aligned}
$$

Shat cent method Incs $Q_{1} Q_{2}$ Compute permit price Check if ratal maximal cost

$$
1+P_{x} \partial=\angle 20
$$

We know ells $Q_{1}=Q_{2}$
because the marginal condition $1+\mathrm{Px}$ is the same for both firms.

$$
\begin{aligned}
& Q_{1}=19 \quad Q_{2}=19 \\
& P_{x}=\frac{3}{2}\left(Q_{1}+Q_{2}-20\right)=\frac{3}{2} 19=28.5 \\
& P_{x}+1=28,5+1=29,5<440
\end{aligned}
$$

so firing want to increase

$$
\begin{aligned}
& Q_{1}=Q_{2}=20 \\
& A=\left(Q_{1}+Q_{2}-20\right)=20 \\
& P_{x}=\frac{3}{2} \times 20=30 \mathrm{~V} \\
& 1+P_{x}=1+30=31<40
\end{aligned}
$$

frimit want to increate but caunot due to 20 hinit on oxtpat

$$
A_{1}=\frac{1}{4} A=\frac{1}{4} 20=5
$$

Tum 1: $a_{1}=20 \quad A_{1}=5$ Totel pormuts $10+5=15$ 20 Tpura 1 buge $x=5$ pescinte, frow 2

Change problem, idea shat $C(Q)=Q$ and $Q \leq 20$ comes from Volstead Mare realistic

$$
\begin{aligned}
& C(Q)=Q^{2} \\
& A C(Q)=2 Q \\
& Q_{1}=Q_{2}=14
\end{aligned}
$$

$$
\begin{aligned}
& A=Q_{1}+Q_{2}-20=28-20=8 \\
& P_{x}=\frac{3}{2} A=\frac{3}{2} 8=12
\end{aligned}
$$

Mayguial condition mayuis cost + permit pice

$$
\begin{aligned}
& 2 \theta+12 \\
& 2.14+12 \\
& 28+12=40
\end{aligned}
$$

Do $Q_{1}=Q_{2}=14$ is she cancer

$$
\begin{aligned}
& A_{1}=\frac{1}{4} A=\frac{1}{4} 8=2 \\
& Q_{1}=14 \\
& Q_{1}-10-2^{A}=14-12=2
\end{aligned}
$$

Timi 1 shost 2 pesmits, l.e $x=2$, which it buys farm ferm 2 .

What if permet market collapsed? Weid qet compatition

$$
\begin{aligned}
& P>N C(Q) \\
& 40=2 Q_{1} \\
& Q_{1}=20 \text { and } \\
& Q_{2}=20
\end{aligned}
$$

