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Assumptions

1. Stationary, multivariate

yt =

0BB@
y1t
y2t
...

yMt

1CCA M � 1

Stationarity is assumed so that densities for a stretch
of data are time invariant. That is, they are of the
form f(yt�L; ::; yt) rather than ft(yt�L; ::; yt).

2. Markovian

The conditional density of yt given the entire past
depends only on a �nite number of lags That is,
f(ytjyt�� ; ::; yt�1) = f(ytjxt�1) for every � � L; where

xt�1 = (yt�L; ::; yt�1)
0 ML� 1

3. Smooth

The density f(yt�L; ::; yt); which is the same as
f(xt�1; yt) in the notation above, must have deriva-
tives to the order ML/2 or higher and have tails that

are bounded above by P(yt�L; ::; yt) exp
�
1
2

PL
�=0 y

2
t�L

�
where P is a polynomial of large but �nite degree.
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Transition Density

The transition density of a Markov process is the con-
ditional density

f(ytjxt�1) = f(ytjyt�L; : : : ; yt�1)

Given the functional form f(x; y) = f(y�L; : : : ; y�1; y0) of
the joint density the transition density can be obtained
from

f(yjx) =
f(y; x)R
f(y; x) dy

:

Conversely, given the functional form of a transition den-
sity f(yjx) = f(y0jy�L; : : : ; y�1) the marginal density can
be recovered by solving the equation

f(x) =

Z
f(yjx)f(x) dy

for f(x) and the joint density can be obtained from this
solution using

f(x; y) = f(y�L; : : : ; y�1; y0) = f(yjx)f(x)

Thus, either f(x; y) or f(yjx) can be regarded as contain-
ing all the probabilistic information about a Markovian
process fytg and either is a proper focus of nonpara-
metric interest. We shall focus on estimation of the
transition density.
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Application

The application used for illustration is the S&P

500 price and volume series from 1928{1987

used in Gallant, Rossi, and Tauchen (1992,

1993). The data are in �le nyse.dat have

been adjusted to remove calendar e�ects as

described in nyse.doc. The multivariate series

used for analysis is

yt =

0@ 100 � [log(Pt)� log(Pt�1)]

log(Vt)

1A
where Pt is the closing Standard and Poors

price index and Vt is the daily volume on the

New York Stock Exchange. We abbreviate as

yt =

0@ �pt

vt

1A
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Interpretation

Using the GRT nonparametric estimate f̂n(yjx)
of the transition density, we will illustrate some

analyses that are possible once a nonparamet-

ric transition density estimate has been ob-

tained because it seems reasonable to be sure

that having an estimate is of some practical

value before going to the bother of derivation

and computation.

The GRT �t to the S&P 500 that we shall

use to illustrate the interpretation of a non-

parametric �t has L = 16 :

f̂(yjx) = f̂n(�p0; v0 j�p�16; v�16; : : : ;�p�1; v�1)

f̂(ytjxt�1) = f̂n(�pt; vt j�pt�16; vt�16; : : : ;�pt�1; vt�1)
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Simulation

One important application is simulation. From

a simulation, one can asses the reasonableness

of a �t by comparing simulated data to actual

data. Also, one can compute both condition-

al and unconditional expectations of nonlinear

functions by simulating and averaging.
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Visualization

A visual impression of the conditional densi-

ty is of interest. Shown next are surface and

contour plots of

f̂n(y; x)

in the variable

y =

 
�p
v

!

with the elements of x set to the unconditional

mean of the data. That is,

x = (y�16; : : : ; y�1)
0 = (�y; � � � ; �y)0 32� 1
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One-step ahead dynamics

Density:

f̂n(�p0; v0j�p�16; v�16; : : : ;�p�1; v�1)

Held �xed:

�pt = sample mean for t = �16; : : : ;�2

vt = sample mean for t=-16,...,-1

Vary:

�p�1 over -15 to +15 sample std. devs. from
the sample mean

Examine:

E(vjx) =
RR

v f̂n(p; vjx) dp dv

Var(vjx) =
RR

[v � E(vjx)]2 f̂n(p; vjx) dp dv

where x = (�p�16; v�16; : : : ;�p�1; v�1)

Conclusion:

Large price movements are followed by high
and volatile volume.

GRT (1992) demonstrated that the condition-
al variance of �p and the conditional mean of
v are nearly the same thing. Thus, the conclu-
sion applies to price volatility as well.
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Multi-step ahead dynamics

Density:

f̂n(yjjxj�1) Ê; dVar computed wrt this density

yj = (�pj; vj)0 xj�1 = (�pj�16; vj�16; : : : ;�pj�1; vj�1)0

A Mean Pro�le:

ŷj(x) = Ê[ Ê(yjjxj�1) jx0 = x]

j = 0;1;2; : : : ; J

A Volatility Pro�le:

V̂j(x) = Ê[dVar(yjjxj�1) jx0 = x]

j = 1;2; : : : ; J

A Shock:

x+

x0

x�

�
� � � � � � � � � �

�| {z }
x

positive shock
sample mean
negative shock

A Di�erential Response:

Mean: ŷj(x+)� ŷj(xo) j = 0;1; : : : ; J

Volatility: V̂j(x+)� V̂j(xo) j = 1; : : : ; J
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Sup-Norm Bands

The sup-norm bands shown in the previous

plots were constructed as follows:

Bootstrap:

Using the initial conditions from the data and

the estimated density, generate 500 simulated

data sets. Estimate a density and compute a

pro�le for each of the simulated data sets.

Sup-norm con�dence bands:

�-bands are plotted about the pro�le computed

from the data that are just wide enough to

contain 95% of the pro�les computed from the

simulated data sets.
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Pro�le Bundles

A visual method for assessing persistence. One

can �t an exponential curve to the bundles and

compute a half-life to get a quantitative mea-

sure.

Price Pro�le:

d�pj(x) = E
h
E(�pjjxj�1)

���x i j = 1; : : : ;100

Volume Pro�le:

v̂j(x) = E
h
E(vjjxj�1)

���x i j = 1; : : : ;100

Price Volatility Pro�le:

V̂j(x) = E
h
Var(�pjjxj�1)

���x i j = 1; : : : ;100

Pro�le Bundles: Evaluate at the data points

x= xs; s = 28;156;258; : : : ;16028

every 128th, 125 pro�les in total.
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(a) Price pro�le bundle, (b) Volume pro�le

bundle, (c) Price volatility pro�le bundle.
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Notation for a Multivariate Polynomial

Degree K, dimension M

P(z) =
KX

j�j=0

a�z
�

where

z� = (z1)
�1 � (z2)�2 � � � (zM)�M

j�j= j�1j+ j�2j+ : : :+ j�M j

Example, K=2, M=2

P(z) = a(0;0)+ a(1;0)z1+ a(0;1)z2| {z }
linear terms

+ a(1;1)z1z2+ a(2;0)z
2
1 + a(0;2)z

2
2| {z }

quadratic terms
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Hermite Expansions: Rationale (1)

An unnormalized Hermite polynomial has the

form

P(z)
q
�(z)

where

�(z) = NM(0; I) = (2�)�
1
2Me�

1
2z
0z

A function g(z) that satis�es

kgk2 =
Z 1
�1

� � �
Z 1
�1

g2(z) dz1 � � � dzM <1
is called an L2 function and the collection of

such functions is denoted by L2(�1;1).

The Hermite polynomials are dense in L2(�1;1)

which means that

lim
K!1





g(z)� P(z)
q
�(z)






2
= 0

where the coeÆcients fa�gj�j�K of P(z) are

those that minimize the approximation error

kg(z)�P(z)p�(z)k2.
23

Hermite Expansions: Rationale (2)

Let h(z) be a density function. BecauseZ
h(z) dz =

Z 1
�1

� � �
Z 1
�1

h(z) dz1 � � � dzM = 1;q
h(z) is in L2(�1;1) and can therefore be

approximated by P(z)
q
�(z) as accurately as

desired by taking K large enough.

This fact motivates using

hK(z) =
P2(z)�(z)R P2(s)�(s) ds

to approximate h(z); where the division is to

guarantee that hK(z) integrates to one.
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The Main Idea

Take hK(z) as the parent density and use a

location-scale transform

y = Rz+ �

to generate a location-scale family of densities

f(yj�) =
n
P
h
R�1(y � �)

io2
�
h
R�1(y � �)

i
jdet(R)j R P2(s)�(s) ds

which can be estimated from data fytgnt=1 by

quasi maximum likelihood

�̂ =
�

argmax
nY

t=1

f(ytj�)

The density estimate is

f̂(y) = f(yj�̂)

The consistency of the estimator was estab-

lished by Gallant, A. Ronald, and Douglas W.

Nychka (1987), \Semi-Nonparametric Maxi-

mum Likelihood Estimation," Econometrica

55, 363{390.
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Some Remarks

f(yj�) =
n
P
h
R�1(y � �)

io2
�
h
R�1(y � �)

i
jdet(R)j R P2(s)�(s) ds

Note that P2(z)= R P2(s)�(s) ds is homogeneous
of degree zero in the coeÆcients fa�gK�=0. To

achieve identi�cation set a0 = 1.

Note also that

NM(yj�;�) =
�
h
R�1(y � �)

i
jdet(R)j R P2(s)�(s) ds

where � = RR0 so that

f(yj�) / P2
h
R�1(y � �)

i
N(yj�;�)

Therefore, f(yj�) with K = 0 is the normal

density.

The constant of proportionality is 1=
R
P2(s)�(s) ds

above.
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SNP Density: IID Data

Location-scale transform:

y = Rz+ � R upper triangular

Density:

f(yj�) / P2
h
R�1(y � �)

i
N(yj�;RR0)

K = 0) y � NM(�;RR0)

Example: K = 2; M = 2

R =

 
R11 R12
0 R22

!

� = (a(0;0); a(1;0); a(0;1);

a(1;1); a(2;0); a(0;2);

�1; �2; R11; R12; R22)
0

a(0;0) = 1
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How well does SNP do?

Rate results:

Fenton, Victor M., and A. Ronald Gallant

(1996), \Convergence Rates of SNP Density

Estimators," Econometrica 64, 719{727.

Qualitative comparison:

Fenton, Victor M., and A. Ronald Gallant

(1996), \Qualitative and Asymptotic Perfor-

mance of SNP Density Estimators," Journal

of Econometrics 74, 77{118.
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Theoretical, Kernel, and SNP L1(�1;1) Error Rates. The �gure

shows Monte Carlo estimates of
R
1

�1

jf̂n � foj dx based on ten rep-

etitions. In each of the three panels, in the curve marked k f̂n is
a normal kernel estimator with bandwidth Bn�1=5 where B is opti-
mal for fo with respect to E

R
1

�1

(f̂n � fo)2 dx; in the curve marked

h f̂n is an SNP estimator with pn = n1=5 and � and � estimated,
and in the curve marked r the theoretical rate An�2=5 is plotted
with A chosen to give the best least squares �t to the average of
the curves marked h and k. In the panel marked Normal, the data
are simulated from a standard normal distribution. In the panel
marked Mixture the data are simulated from a mixture of a N(-3,1)
with probability 0.3 and a N(4,1) with probability 0.7. In the panel
marked Gamma, the data are simulated from a gamma distribution
with parameters � = 7 and � = 1.
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at the top of each panel are as in Marron and Wand.
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Plots of SNP Estimates, n=400, Marron-Wand Test Suite. In each
panel the SNP estimate is plotted as a solid line and the density
that was sampled is plotted as a dotted line. For each density,

the degree p that gives the smallest value for
pR 3

�3
(f̂p � fo)2 dx is

selected.
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Plots of Kernel Estimates, n=400, Marron-Wand Test Suite. In
each panel the kernel estimate is plotted as a solid line and the
density that was sampled is plotted as a dotted line. Bandwidth
selection is by least-squares cross-validation within the limits of 0.25
to 1.5 times Silverman's rule-of-thumb bandwidth.
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Plots of SNP Estimates, n=1600, Marron-Wand Test Suite. In
each panel the SNP estimate is plotted as a solid line and the density
that was sampled is plotted as a dotted line. For each density, the

degree p that gives the smallest value for
pR 3

�3
(f̂p � fo)2 dx is

selected.
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Plots of Kernel Estimates, n=1600, Marron-Wand Test Suite. In
each panel the kernel estimate is plotted as a solid line and the
density that was sampled is plotted as a dotted line. Bandwidth
selection is by least-squares cross-validation within the limits of 0.25
to 1.5 times Silverman's rule-of-thumb bandwidth.
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Plots of SNP Estimates, n=5625, Marron-Wand Test Suite. In
each panel the SNP estimate is plotted as a solid line and the density
that was sampled is plotted as a dotted line. For each density, the

degree p that gives the smallest value for
pR 3

�3
(f̂p � fo)2 dx is

selected.
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Plots of Kernel Estimates, n=5625, Marron-Wand Test Suite. In
each panel the kernel estimate is plotted as a solid line and the
density that was sampled is plotted as a dotted line. Bandwidth
selection is by least-squares cross-validation within the limits of 0.25
to 1.5 times Silverman's rule-of-thumb bandwidth.
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Choice of K

Coppejans, Mark, and A. Ronald Gallant (2000),

\Cross Validated SNP Density Estimates," Work-

ing paper. Duke University, Durham NC. File:

an.ps, an.pdf.

Bottom line: BIC seems to work well.

Estimation: Equivalent to maximum likelihood,

but more stable numerically is to minimize the

negative of the average log likelihood.

�̂ =
�

argmin sn(�)

sn(�) = �1
n

nX
t=1

log [f(ytj�)]

Schwarz criterion: Choose K to minimize

BIC(K) = sn(�̂) +
p

2n
log(n)

where p is the number of free parameters in �.
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Densities considered. The plot labeled sv is the density of a scale
mixture of normals with parameters chosen such that the density
has mean 0, variance 1/4, and raw kurtosis 8; orln is the density of
the second largest order statistic in a sample of size 100 from the
log normal with location parameter -3 and scale parameter 1. The
densities trimodal, gaussian, and smooth comb are densities from
the Marron-Wand test suite.

39

0 10 20 30 40 50 60 70 80 90

−0.05

0

0.05

0.1

cvh

cvl
bic n =0400

0 10 20 30 40 50 60 70 80 90

−0.05

0

0.05

0.1

cvh

cvl
bic n =0900

0 10 20 30 40 50 60 70 80 90

−0.05

0

0.05

0.1

cvh

cvl
bic n =1600

0 10 20 30 40 50 60 70 80 90

−0.05

0

0.05

0.1

cvh

cvl
bic n =2500

Scale Mixture of Normals. Plotted is the mean squared er-
ror (MSE) and its cross validated estimate (CV) for a realiza-
tion of size n; as shown in each plot, from the density p(yj�) =R
1

�1

n(yj�1; e2u)n(uj�2; �23) du with � chosen so that the density has

mean 0, variance 1/4, and raw kurtosis 8. Solid line is MSE, dashed
line is its leave-one-out CV estimate (CVL), and dashed and dot-
ted line is the average of ten, 10% hold-out-sample CV estimates
(CVH). Upper dotted horizontal line is MSE achieved by a cross-
validated kernel estimate and lower dotted line is best kernel MSE
for this realization. Vertical lines indicate BIC, CVL, and CVH
choices of K; as marked.
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Second Largest Order Statistic of the Lognormal. Plotted
is the mean squared error (MSE) and its cross validated estimate
(CV) for a realization of size n; as shown in each plot, from the

density p(yj�) = N(N�1)
y

�
�
�
logy��2

�3

��N�2 �
1��

�
logy��2

�3

��
�
�
log y��2

�3

�
where y > 0; � and � denote the standard normal density and
distribution functions, respectively, and (N; �2; �3) = (100;�3;1).
Solid line is MSE, dashed line is its leave-one-out CV estimate
(CVL), and dashed and dotted line is the average of ten, 10%
hold-out-sample CV estimates (CVH). Upper dotted horizontal line
is MSE achieved by a cross-validated kernel estimate and lower
dotted line is best kernel MSE for this realization. Vertical lines
indicate BIC, CVL, and CVH choices of K; as marked.
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Trimodal. Plotted is the mean squared error (MSE) and its cross
validated estimate (CV) for a realization of size n; as shown in each
plot, from the trimodal density of the Marron-Wand test suite.
Solid line is MSE, dashed line is its leave-one-out CV estimate
(CVL), and dashed and dotted line is the average of ten, 10%
hold-out-sample CV estimates (CVH). Upper dotted horizontal line
is MSE achieved by a cross-validated kernel estimate and lower
dotted line is best kernel MSE for this realization. Vertical lines
indicate BIC, CVL, and CVH choices of K; as marked.
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Trimodal. Plotted are SNP density estimates a realization of size
900 and values of K as shown in each plot, from the trimodal
density of the Marron-Wand test suite. Solid line is the estimate,
dashed line is true density.
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Gaussian. Plotted is the mean squared error (MSE) and its cross
validated estimate (CV) for a realization of size n; as shown in each
plot, from the gaussian density of the Marron-Wand test suite.
Solid line is MSE, dashed line is its leave-one-out CV estimate
(CVL), and dashed and dotted line is the average of ten, 10%
hold-out-sample CV estimates (CVH). Vertical lines indicate BIC,
CVL, and CVH choices of K; as marked.
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Smooth Comb. Plotted is the mean squared error (MSE) and
its cross validated estimate (CV) for a realization of size n; as
shown in each plot, from the smooth comb density of the Marron-
Wand test suite. Solid line is MSE, dashed line is its leave-one-out
CV estimate (CVL), and dashed and dotted line is the average
of ten, 10% hold-out-sample CV estimates (CVH). Upper dotted
horizontal line is MSE achieved by a cross-validated kernel estimate
and lower dotted line is best kernel MSE for this realization. Vertical
lines indicate BIC, CVL, and CVH choices of K; as marked.
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Topics

� Application

� Hermite Expansions

� SNP Density

{ Performance

{ Model Selection

� Extension to Time Series

{ VAR-type Location Function

{ ARCH- or GARCH-type Scale Function

{ Non-homogeneous Innovations

{ Miscellany
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SNP Density: IID Data

Location-scale transform:

y = Rz+ � R upper triangular

Density:

f(yj�) / P2
h
R�1(y � �)

i
N(yj�;RR0)

Kz = 0 ) Gaussian, homogeneous z

Kz > 0 ) non-Gaussian, homogeneous z

Extension to Time Series

The idea is to modify the location and scale

transforms of the SNP density for iid data to

be functions of the past, which is the standard

method of modifying a model for iid data for

application to time series data. Lastly, the S-

NP density itself is modi�ed to accommodate

non-homogeneous innovations. We shall pro-

ceed step-by-step.
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SNP Transition Density for Time Series Data (1)

VAR location function:

y = Rz+ �xt�1
R upper triangular

�xt�1
= b0+Bxt�1 linear in the past

xt�1 = (yt�Lu
; : : : ; yt�1)

0

b0 is M � 1; B is M � Lu;

Density:

f(yj�) / P2
�
R�1(y � �xt�1

)
�
N(yj�xt�1

; RR0)

Kz = 0 ) Gaussian VAR, homogeneous z
Kz > 0 ) non-Gaussian VAR, homogeneous z

Example: K = 2; M = 2; Lu = 1

� = (a(0;0); a(1;0); a(0;1); a(1;1); a(2;0); a(0;2);

b01; b02; B11; B21; B12; B22;

R11; R12; R22)
0
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SNP Transition Density for Time Series Data (2)

ARCH-type scale function:

y = Rxt�1
z+ �xt�1

Rxt�1
upper triangular

�xt�1
= b0+Bxt�1

xt�1 = (yt�Lu
; : : : ; yt�1)

0

vech(Rxt�1
) = �0+

LrX
i=1

P(i)jyt�1�Lr+i � �xt�2�Lr+i
j

St�1 = (yt�Lu�Lr
; : : : ; yt�1)

0 state vector

vech(R) means columnwise storage of the nonzero ele-
ments of an upper triangular matrix, St�1 is the informa-
tion required to move the system forward one step, �0 is
M(M+1)=2�1; P =

�
P(1)j � � � jP(Lr)

�
is M(M+1)=2�Lr;

Density:

f(yj�) / P2
�
R�1
xt�1
(y � �xt�1

)
�
N(yj�xt�1

; Rxt�1
R0
xt�1
)

Kz = 0 ) Gaussian ARCH, homogeneous z
Kz > 0 ) non-Gaussian ARCH, homogeneous z

Example: K = 2; M = 2; Lu = 1; Lr = 2

vech(R) = (R11; R21; R22)
0

� = (a(0;0); a(1;0); a(0;1); a(1;1); a(2;0); a(0;2);

b01; b02; B11; B21; B12; B22;

�01; �02; �03; P11; P21; P31; P12; P22; P32)
0
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SNP Transition Density for Time Series Data (3)

GARCH-type scale function:

y = Rxt�1
z+ �xt�1

�xt�1
= b0+Bxt�1

vechRxt�1
= �0+

LrX
i=1

P(i)jyt�1�Lr+i � �xt�2�Lr+i
j

+

LgX
i=1

diag(G(i))Rxt�2�Lg+i

St�1 = (yt�Lu�Lr
; : : : ; yt�1; vechRxt�2�Lg

; : : : ; vechRxt�2
)0

�0 is M(M + 1)=2 � 1; P =
�
P(1)j � � � jP(Lr)

�
is M(M +

1)=2� Lr; G=
�
G(1)j � � � jG(Lg)

�
is M(M +1)=2� Lg

Density:

f(yj�) / P2
�
R�1
xt�1
(y � �xt�1

)
�
N(yj�xt�1

; Rxt�1
R0
xt�1
)

Kz = 0 ) Gaussian GARCH, homogeneous z
Kz > 0 ) non-Gaussian GARCH, homogeneous z

Example: K = 2; M = 2; Lu = 1; Lr = 1; Lg = 1

vech(R) = (R11; R21; R22)
0

� = (a(0;0); a(1;0); a(0;1); a(1;1); a(2;0); a(0;2);

b01; b02; B11; B21; B12; B22;

�01; �02; �03; P11; P21; P31;

G11; G21; G31; )
0
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SNP for Non-homogeneous Innovations (1)

The Past:

x= (xt�Lp; : : : ; xt�1)
0

Polynomial Part:

Non-homogeneous innovations are accommo-

dated by letting the polynomial part of the S-

NP model

P(z) =
KzX

j�j=0

a�z
�

have coeÆcients a� that are polynomials in x

a�(x) =
KxX

j�j=0

a��x
�

It is denoted by P(z; x).

51

SNP for Non-homogeneous Innovations (2)

The SNP density for non-homogeneous inno-

vations is Hermite polynomial in z whose coef-

�cients are polynomials in x

Polynomial Part:

P(z; x) =
KzX

j�j=0

KxX
j�j=0

a��x
�z�

SNP density:

hK(zjx) =
P(z; x)�(z)R P(s; x)�(s) ds

Remarks:
Here K = (Kz;Kx). P(z; x) is a polynomial in (z; x) of
degree jKj= Kz +Kx of a type known as a rectangular
expansion. A radial expansion of degree K has the form

jKjX
j
j=0

a
(z; x)

 =

Kz+KxX
j�j+j�j=0

a��x
�z�
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SNP Transition Density for Time Series Data (4)

Non-homogeneous innovations:

�xt�1
= b0+Bxt�1

vechRxt�1
= �0+

LrX
i=1

P(i)jyt�1�Lr+i � �xt�2�Lr+i
j

+

LgX
i=1

diag(G(i))Rxt�2�Lg+i

St�1 = (yt�max(Lu+Lr;Lp); : : : ; yt�1; vechRxt�2�Lg
; : : : ; vechRxt�2

)0

Density:

f(yj�) / P2
�
R�1
xt�1
(y � �xt�1

; xt�1)
�
N(yj�xt�1

; Rxt�1
R0
xt�1
)

x = (xt�Lp
; : : : ; xt�1)

0

Example: K = 2; M = 2; Lu = 1; Lr = 1; Lg = 1; Lp = 1

vech(R) = (R11; R21; R22)
0

� = (a(0;0);(0;0); a(1;0);(0;0); a(0;1);(0;0);

a(1;1);(0;0); a(2;0);(0;0); a(0;2);(0;0);

a(0;0);(1;0); a(1;0);(1;0); a(0;1);(1;0);

a(1;1);(1;0); a(2;0);(1;0); a(0;2);(1;0);

a(0;0);(0;1); a(1;0);(0;1); a(0;1);(0;1);

a(1;1);(0;1); a(2;0);(0;1); a(0;2);(0;1);

b01; b02; B11; B21; B12; B22;

�01; �02; �03; P11; P21; P31;

G11; G21; G31; )
0
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Consistency

If the parameters of f(yjx; �) are estimated by

quasi maximum likelihood, viz.

�̂n =
�

argmin sn(�)

sn(�) = �1
n

nX
t=1

log f(ytjxt�1; �);

and K = (Kz;Kx) grows with sample size, then

the estimator

f̂n(yjx) = f(yjx; �̂n)
converges almost surely to the true transition

density f(yjx) in Sobolev norm as sample size

increases. Moreover, K can depend on the

data.

Reference:

Gallant, A. Ronald, and Douglas W. Nychka

(1987), \Seminonparametric Maximum Like-

lihood Estimation," Econometrica 55, 363{

390.
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Restrictions Implied by Settings of the Tuning Parameters

Parameter setting Characterization of fytg
Lu=0; Lg=0; Lr=0; Lp� 0; Kz=0; Kx=0 iid Gaussian

Lu> 0; Lg=0; Lr=0; Lp� 0; Kz=0; Kx=0 Gaussian VAR

Lu> 0; Lg=0; Lr=0; Lp� 0; Kz> 0; Kx=0 semiparametric VAR

Lu� 0; Lg=0; Lr> 0; Lp� 0; Kz=0; Kx=0 Gaussian ARCH

Lu� 0; Lg=0; Lr> 0; Lp� 0; Kz> 0; Kx=0 semiparametric ARCH

Lu� 0; Lg> 0; Lr> 0; Lp� 0; Kz=0; Kx=0 Gaussian GARCH

Lu� 0; Lg> 0; Lr> 0; Lp� 0; Kz> 0; Kx=0 semiparametric GARCH

Lu� 0; Lg� 0; Lr� 0; Lp> 0; Kz> 0; Kx> 0 nonlinear nonparametric
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Standard Data Transformation

Sample mean and variance

�y =
1

n

nX
t=1

~yt

S =
1

n

nX
t=1

(~yt � �y)(~yt � �y)0

~yt denotes the raw data

Apply the methods above to

yt = S�1=2(~yt � �y)

where S�1=2 denotes the Cholesky factor of

the inverse of S.

Suggest taking S diagonal.

56

Problem

If the true density f(yjx) is heavy tailed, then

xt�1 will contain extreme observations which

have a strong and undesirable in
uence on es-

timates when Lr > 0.

Cure

Replace each component of x by its log spline

transform

x̂i =

�
(1=2)[xi � �tr � log(1� xi � �tr)] xi < ��tr
xi ��tr < xi < �tr
(1=2)[xi + �tr + log(1� xi � �tr)] �tr < xi:

The consistency result is not a�ected by this

transform.

A logistic transform can also be used for this

purpose. It is a more aggressive solution to

the problem but has poor properties with per-

sistent data such as interest rates. It does work

well with strongly mean reverting data such as

stock returns.
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-stran stran

The logistic and logarithmic spline transforms. The
dashed line shows the logistic transform. The dotted
line shows the logarithmic spline transformation. The
solid line is a 45 degree line, which represents no trans-
formation. The two vertical lines are at x = ��tr and
x = �tr; respectively.
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Order in Which Transformations are Applied

~yt ! yt ! xt�1 ! x̂t�1 ! �x; Rx
ra w centered, lagged logistic location,
data scaled data data data scale
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Problem

The SNP density f(yjx; �); or any density for

that matter, can become very small at ex-

treme values of y or x. This can be a nui-

sance in some applications such as EMM that

require taking logarithms of the SNP density

when evaluated over data generated by struc-

tural models at trial values of structural pa-

rameters. The simulated data can be absurd

relative to the actual data, but the computa-

tions must be performed nonetheless.

Cure

Replace the SNP density throughout all the

discussion above by

f�(yjx; �) =

�
P2
�
R�1
x (y � �x); x

�
+ �0

	
nM(yj�x; RxR0

x)R
[P(s; x)]2�(s) ds+ �0

where �0 is some small value such as 10�3.

The consistency result is not a�ected.
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Problem

Large M or large Lp can generate a large num-

ber of interactions for even modest settings of

Kz or Kx :

Cure

Filters with parameters Iz and Ix that auto-

matically delete high order interactions from

P(zjx). Iz = 0 means no interactions are sup-

pressed, Iz = 1 means the highest order inter-

actions are suppressed, namely those of degree

Kz. In general, a positive Iz means all inter-

actions of order larger than Kz � Iz are sup-

pressed; similarly for Kx � Ix.

Example:

Kz = 4 and Iz = 2 imply all interaction terms

of degree 3 and higher are deleted. For M = 2;

These would be

� = (3;1); (1;3); (2;2); (2;1); (1;2)
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Tuning Parameters

Major:

(Lu; Lg; Lr; Lp;Kz; Iz;Kx; Ix)

Recommended Minor:

Diagonal S; diagonal GARCH, logarithmic s-

pline transform with �tr = 2; �0 = 10�3.
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Availability

Fortran code and a User's Guide are available

by anonymous ftp at host ftp.econ.duke.edu in

directory pub/arg/snp or click on \browse ftp

site" at http:/www.unc.edu/�arg.
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