Deterministic Chaos
and Neural Nets

by

A. Ronald Gallant
Fuqua School of Business
Duke University
Durham NC 27708-0120 USA

© 2000, 2004 by A. Ronald Gallant

References

Nychka, Douglas W., Stephen P. Ellner, Daniel F. Mc-
Caffrey, and A. Ronald Gallant (1990), “Statistics
for Chaos,” Statistical Computing and Statistical
Graphics Newsletter 1, 4—11.

Gallant, A. Ronald and Halbert L. White Jr. (1992)
“On Learning the Derivatives of an Unknown Map-
ping with Multilayer Feedforward Networks,” Neu-
ral Networks 5, 129—138. Revised and reprinted in
White Jr., Halbert L. (1992), Artificial Neural Net-
works, Blackwell, Oxford UK, 206—223.

McCaffrey, Daniel F., Stephen P. Ellner, A. Ronald
Gallant, and Douglas W. Nychka (1992), “Esti-
mating the Lyapunov Exponent of a Chaotic Sys-
tem with Nonparametric Regression,” Journal of
the American Statistical Association 87, 682—695.

Topics

Chaos looks random

Caused by stretching and folding

Lives on an attractor

Exhibits sensitive dependence on initial con-
ditions

Generates a natural invariant ergodic mea-
sure on the attractor

Taken's theorem justifies state space re-
construction

Reconstruction using neural nets

Detection of chaos

Chaos is generated by a nonlinear dynamical
system in either discrete or continuous time.

Not all nonlinear systems exhibit chaotic dy-
namics, but a linear system cannot.

A discrete time dynamical system (or nonlinear
autoregression) is written

i1 = f(xt, 2p—1, " T4_g+1)

An example is the Henon map

Tgp1 =1— a:ctz + bxy_q

a=14

b=0.3

Its output looks random (next figure)




Figure 1: Time series generated from the Henon Map with parameters (1.4,.3)
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Figure 2: Sample Periodogram for the Henon times series

Henon map:

241 =1— 1427 + 0.3, 1

State Space Form

Tt

Tt
Xt= t.l

Tt—d+1

Xi41 = F(Xp)

F: X —XcCRe

Example: Henon Map

Tepr |\ _ ( 1- aact2 + bxp_q
Tt Tt

Attractor ZCXC §Rd (next figure for Henon)

Stretching and folding (next figure for Henon)

Figure 3a: Attracting Set for
Henon Map (1.4,.3)

Figure 3b: Magnification of the Attractor
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e X =(-1.5,1.5) C ®2, Z is indicated by the set in 3a

e Stretching: Close points X, Z sent to distant points A, C.
e Folding: Distant points X,Y sent to close points A, B.

Sensitive Dependence on Initial Conditions

Points initially close together get dispersed
throughout the attractor.

Example: Henon Map  (next figure)

Tey1 (1 axtQ + bxyq
Tt Tt




Figure 4: Trajectories of 50 poinis

for the Henon System
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~ Discretized Mackey-Glass

More interesting than the Henon map because
it exhibits some features of data from financial
markets.

vy = f(x4_1,7-5)
0.22;_
z; 1+ 10.5 T1-5

TH (o Ot

Transformed Mackey-Glass

yr = Qr(xy)

e t-density on six degrees of freedom
r(7/2)
Vérl(3)

e t-distribution on six degrees of freedom

Fr(e) = (1+a%2)""

Fr(z) = / (e

e quantile function

Qr(p) = F;'(p)

Discretized Mackey-Glass Discretized Mackey-Glass YO vs y(-1) ¥ vs y(-2)

time ° 0 w0 w0

¥ vs y(t:5)

Six Degree Freedom t Quantiles of Discretized Mackey-Glass 90 v y(:3) YO vSy(t4)

Discretized Mackey-Glass: z: = 1-1+10.5 [235 5w — 0.1z1] The attractor of the discretized Mackey-

Transformed Mackey-Glass: y; = Qr(z:) Glass equation.




Six Degree Freedom t Quantiles of Discretized Mackey-Glass YO vs y(-1) ¥t vs y(-2)

y(t) vs y(t:3) Y0 vs y(t-4) ¥ vs y(t:5)
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The attractor of the transformed Mackey-
Glass equation.

Natural invariant measure

(A) = limpoo 1 {2y in A: 1<t <n}

Z is the attractor

Ergodic

n—~o0

N L _
lim 5; g9(z) = /Zg@c) dp(z)

Kernel Estimate of the Mackey-Glass Marginal Density

Kernel Estimate of the Transformed Mackey-Glass Marginal Density

-2 0 2
Solid line is the kernel estimate; dashed line is a reference normal.

Kernel estimate of the natural invariant
measure of the discretized Mackey-Glass
equation.

-2 0
Solid line is the kernel estimate; dashed line is a reference normal.

Kernel estimate of the natural invariant
measure of the transformed Mackey-Glass
equation.




Comparisons with some random processes

e Daily returns on the S&P 500, 1983—1986

e Daily returns on the British pound to U.S.

dollar exchange rate, 1980—1983

Differenced Log Daily S&P 500, 1983-1986

time

Six Degree Freedom t Quantiles of Discretized Mackey-Glass

Differenced Log Daily S&P 500, 1983-1986

Y vsyit-1)

y(t) vs y(t2)

Kernel Estimate of the NYSE Marginal Density

i) vs y(t-3)

w0

y(t) vs y(t-4)

¥ vs y(t-5)

0
Solid line is the kernel estimate; dashed line is a reference normal.



. . Differenced Log Daily Pound/Dollar Rate, 1980-1983 () vs y(-1) () vs y(1-2)
Differenced Log Daily Pound/Dollar Rate, 1980-1983 eroncedogDaly PouratbelrFate e o

time o m Py w0

. N . . (1) vs 3) (1) vs y(t-4) (1) vs y(t-5)
Six Degree Freedom t Quantiles of Discretized Mackey-Glass Yo Yo Yo

Taken's Theorem

If 2; is an element of the state vector of a dis-

Kernel Estimate of the Pound/Dollar Marginal Density crete or continuous time chaotic process then
x¢ has the representation

w1 =g(xt, o, Ty_g41)
for some d and some g; equivalently,

X1 = G(Xy)
for some d and some G, where
Tt
X; = SCt_—l

Tt—d+1
Importance

This result justifies the use of nonparametric
methods to recover g. Neural nets are partic-
ularly useful in this connection because, unlike
most nonparametric methods, they can inter-
polate as well as smooth.

-2 0 2
Solid line is the kernel estimate; dashed line is a reference normal.




Discretized Mackey-Glass

True relation

zy = f(xy—1,74—5)

Tt—1 + 10.5

O.th_5
14 (24-5)10

- 0.1£l7t_1
We shall attempt to recover f by fitting func-
tions of the form

Tt = g(xt—lw . -7xt7d);

specifically, by fitting neural nets.

Single Hidden Layer Feedforward Neural Net

gK(xt—].? e ,$t_5)
K
Bo+>_ B;G(voj+1jTi—1+ - +5521—5)
j=1
G(u) = exp(u)/[1 + exp(u)]

Learning rule

Choose the 3’s and +'s to minimize

12 2
- [xt_gK(xt—5a"'a$t—l)}
=1

Single Hidden Layer Feedforward Neural Net

Double Hidden Layer Feedforward Neural Net




Using a Single Hidden Layer Feedforward Neural Net

gr(@—1,- -+, T4-5)

K
= Bo+Y_BiG(voj+vijme-1+ -+ +757i-5)

Jj=1

G(u) exp(u)/[1 + exp(u)]

to Recover Mackey-Glass Dynamics

fzio1,26-5)
O.th_s

_ 105 | ——————= — 0.1z
-1+ 1+(a§t75)10 Tt—1

Performance

Measures of performance (following tables and figures)

TABLE 1

Predictor Error and Eror in Sobolev Norm of an Estimate of the Noniinear Map of a
Chaotic Process by a Neural Net

PredErr(g.)

Ig® = &l n:

Ig® = Gz

Saturation
Ratio

0.3482777075
0.0191675679
0.0177867857
0.0134447868
0.0012308988

3.6001114788
0.5522597668
0.4145203548
0.2586038122
0.1263063691

13252165780
0.1604392912
0.1141557050
0.0719887443
0.0196351730

17.9
28.6
408
635
103.9

TABLE 2
Sensitivity of Neural Net Estimates:

P"NE"'@;I' ﬂg' =1 Q's||-.- 3 llﬂ' - O-U-s.z

0.0184102390 0.1325439320
0.0177867857 . 0.1141557050
0.0076063363 . 0.1115357981
00015057013 0858882780  0.0210710677
0.0012308988 % 0.0198351730
0.0020548210 i 0.0336124596

Note: Extimafe is doahed line, x = (xa, 0, 0, 0, 0)

FIGURE 1. Superimposed nonlinear map and neural net estimate; XK = 3, n = 500.
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FIGURE 2. Superimpased derivative and neural net estimate; K = 3,n = 500. FIGURE 3. Superimposed noniinear map and neural net estimate; K = 7, n = 2,000.
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FIGURE 4. Superimposed derivative and neural net estimate; K = 7, n = 2,000. FIGURE 5. Superimposed nonlinear map and neural net estimate; X = 11, n = 8,000
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Hote: Estimate is doshed line, x = (x, 0, 0, 0, @)

FIGURE 6. Superimposed derivative and neural net estimate; K = 11, n = 8,000.

Detection of Chaos

Lyapunov exponents

A measure of senstitivity to initial condi-
tions

Fit neural net.

If Lyapunov exponent larger than zero,
then chaos.

Dominant Lyapunov Exponent

. 1
A lim =log||Ji—1 Je—o - .. Jol|
t—oo t

Jy (0/02")F(Xy)

e F(X;) is the dynamical system in state
space form.

e ||A]] is the Euclidean norm of Ay where y is
chosen to make the Euclidean norm of Ay
as large as possible.

e For t large enough, any y #= 0 will work.

Interpretation
Two initially close points: Xél) and XSQ)
Iterate them t steps ahead: Xt(l) and Xt(Q)

First order approximation:

xP® - xD = g, 10 5 JlxP - x§)
o1
A ? log ”Jt—lJt—Q A JO[X(()Q) o Xc()l)]”

1
S log X2 — XV

If A > 0 then Xt(l) and Xt(z) diverge exponen-
tially fast

“sensitive dependence on initial conditions”




Table 1. Estimated Lyapunov Exponents for the Hénon and Rossfer Systems Without Noise

Hénon system®

Map estimate 1 2

Local spline® 57602 .4188°
(.042) (.005)

Neural net 1147 .4106

Projection pursuit — 4163

Estimating the Lyapunov Exponent

Rossler system®

d
When F(X;) is estimated from data {X;},, iianione 8t B __ A s 5 g

. Local spline® 2500 7.1229 10992 0461° 1.7099 1.567 —_
one averages blocks of size M (055) (004) (002  (011)  (21)
Radial basis 2,000 —_ 0629 7778 10.24 10.26

Neural net 2000 — 0010 1272 6940 0482 0414
1 Projection
M Iog ”JiM—l . JiM—2 R JiM—MH pursuit 2,000 - — 0966° 0146 -2792  -.0640 —

NOTE: The value of m for the local spiine estimates was the smallest integer such that 2m > ¢ For the radial basis function estimates
200 basis functions were used. N is the length of the data series, and d is the dimension of the modet

* Average of five estimates with standard deviation

® Average of ten estimates with standard deviation.

¢ Corect vaiue of ) is approximately 418 (Wolf et al. 1985, p. 289).

¢ Correct vaiue of A is approximately .04505 (Woif et al. 1985, p. 289)

* Estimate of )\, that commesponds to the minimum expected prediction emor, &7

where M = log(n)

Table 2. Estimated Lyapunov Exponents as a Function of Block Size M
for the Hénon Map With Noise

Map estimate 50 100

Local spline® 421 A28
(.015)  (.014)
Neural net® 416 412
{020)  (020)
Exact map°® 415 414
(.010)  (.009)
Local spiine A7 431
(.009)  (.009)
Neural net 417 411 g
(.007) (009) (.009)

NOTE: Each Lyapunov exponent estimate is the average of the exponents obtained from NjM
disjoint blocks of the data series. The data series consisted of N = 2.000 values for M = 2,000,
and N = 20,000 for M = 20,000; d is the dimension of the model.

* Average of 14 estimates with standard deviation.

® Average of 16 estimates with standard deviation.

< Average of 200 estimates using the true Jacobian matrix. The standard deviation has been
adjusted 10 be with the other est {reported 5.0. = sampie 5.0./¥8 where B
= NjM.) The correct value of ) is approximatety 408.




