Topic 8. Classification

Case 5: Intrusion Detection

using TCP dump data from a local area network



The Plan

e Describe the project.

e Review previous classification tools: nearest neighbor, clas-
sification trees

e Discuss limits of prediction tools when used with three or
more categories: regression, neural nets

e Introduce new tools that have a probabilistic foundation: lin-
ear discriminant analysis, quadratic discriminant analysis, lo-
gistic regression.



Intrusion Detection

The intrusion detector learning task is to build a predictive model
(a classifier) capable of distinguishing between connections that
are intrusions (attacks) and normal connections.

MIT’s Lincoln Labs acquired nine weeks of raw TCP dump data
for a local-area network (LAN) simulating a typical U.S. Air Force
LAN. They operated the LAN as if it were a true Air Force
environment but peppered it with multiple attacks. The data
here is a version of this dataset.

The raw data was about four gigabytes of compressed binary
TCP dump data from seven weeks of network traffic. This was
processed into about five million connection records of which 1
have a half million collected under an early protocol and another
half million under a later protocol with more attack types.



Intrusion Detection (continued)

A connection is a sequence of T CP packets, starting and ending
at some well defined times, between which data flows to and
from a source IP address to a target IP address under some well
defined protocol.

There are 42 features in the data set, which were generated
partially by domain knowledge and partly through automated
procedures.

The last feature, connection.type, is the target wherein each
connection is labeled as either normal or by the name of one
specific attack type. There are 24 training attack types in the
early data, which is the data we shall use.



Attack Types

Attacks fall into four main categories:

e DOS: denial-of-service, e.g. SYN flood (aka Neptune);

e R2L: unauthorized access from a remote machine, e.g. guess-
ing password;

e U2R: unauthorized access to local superuser (root) privileges,
e.g., various “buffer overflow” attacks:

e Probing: surveillance and other probing, e.g., port scanning.



A Haphazard Sampling of the Features

Field Feature

1
2
9
11
12
17
23

24

25

26

29

30

42

duration
protocol.type
urgent
num.failed.logins
logged.in
num.file.creations
count

Srv.count

serror.rate
srv.serror.rate
same.srv.rate
diff.srv.rate

connection.type

Type
continuous
discrete
continuous
continuous
discrete
continuous
continuous

continuous

continuous

continuous

continuous

continuous

discrete

Definition

connect time in seconds

type of protocol, e.g. tcp, udp
number of urgent packets
number of failed login attempts
login success (=1) or failure (=0)
number of file creation operations

number of connections to the
same host as the current
connection in the past two seconds

number of connections to the
same service as the current
connection in the past two seconds

fraction of same-host connections
that have “SYN" errors

fraction of same-service connections
that have “SYN" errors

fraction of same-host connections to
the same service in past two seconds
fraction of same-host connections to
different services in past two seconds

target, coded: normal, neptune (dos),
smurf (dos), portsweep (probe), etc.



Project Description

e A complete description of the project is file ntw_doc.html

e A complete listing of features is in ntw_Ist.txt and, for at-
tacks, in ntw_atk.txt

e YOU can access these files by entering
ftp://ftp.econ.duke.edu/pub/arg/datamine/cases/network/

in the netsite address dialog box of a browser (e.g. Netscape,
Mozilla, Internet Explorer)



Previous Work

Some previous work on these data, as well as a description of
the logic behind feature construction is in

Stolfo, Salvatore J., Wei Fan, Wenke Lee, Andreas Pro-
dromidis, and Philip K. Chan (1999) Cost-based Model-
ing and Evaluation for Data Mining With Application to

Fraud and Intrusion Detection: Results from the JAM
Project

This article is in directory (folder) cases/network/articles as file
wenke-discex00.pdf or wenke-discex00.ps together with the more
important cited articles and websites for additional articles and
the RIPPER software described in the article.



Previous Work (continued)

The slides from a seminar presentation from Stolfo, Fan, Lee,
Prodromidis, and Chan (1999) are at

http://www.cs.columbia.edu/~sal/JAM/PROJECT /MIT /mit-index.html

The RIPPER software they use is a sort of decision tree classifier
that produces Prologue type rules that can be used to implement
the tree in applications. It was developed at AT& T Research
LLaboratories. I have a copy of RIPPER, which is C code, which
you can use to explore the use of this tool for a class project. The
tool comes with a few test data sets that are of some interest.

They apply RIPPER to classification sub-tasks and build a com-
plete classifier using a boosting technique they call a meta-
classifier. We shall study boosting later in the course.



Data for Analysis

Of the 494,020 cases 19% are classified normal connections,
22% are neptune attacks, and 57% are smurf attacks for a total
of 98%; smurf and neptune attacks are described next. We shall
only consider these three categories. Also, we will only use a
10% fraction to keep the sample size small enough that we do
not have to resort to memory management methods.

Notice that these percentages are not realistic. This is because
the data is experimental data, it is not on-line observational data.
This fact will need to be taken account in our analysis.



Smurf Attacks

An Internet Control Message Protocol (ICMP) message requests
a reply from its recipient; the message sent by the ping com-
mand is an example. In a smurf attack an ICMP message with
a falsified IP return address is sent to a broadcast address (e.g.
152.3.250.1). When an ICMP command is sent to a broadcast
address, it is broadcast to all machines on the targeted network.
Each machine on the network receives this broadcast ICMP mes-
sage and responds with a reply to the false IP address thereby
swamping the machine whose true IP address is the same as the
false address. The cure is to configure all routers on the network
to not to broadcast ICMP messages. To stop a similar attack
strategy from within the network, which need not rely on routers,
configure all machines on the network to not respond to ICMP
messages.



Neptune Attacks

When a machine attempts to establish a TCP connection (web,
telnet, etc.) to a server it sends a SYN message. The server
responds with a SYN-ACK message. The connecting machine
replies to the server with an ACK message and the connection is
then opened. The neptune attack consists in sending many SYN
messages (aka SYN flood) but never sending an ACK message
in reply to the server’'s SYN-ACK message. The server has in its
memory a data structure describing all pending connections, and
too many partially-open connections will cause it to overflow. At
best this causes the server to be unable to respond to connection
requests, at worse the server crashes. One defense is to increase
the size of the data structure dramatically and purge half-open
connections quickly.



Data for Analysis (continued)

Using the same methods as for Case 3, Donor Recapture, the
data is divided into learning

network/Irn/ntw_Irn.dat

validation

network/val/ntw_val.dat
and testing

network /tst/ntw_tst.dat
samples.

T he testing sample is small enough for use with XL-Miner.



Classification Problems

Case 1, Credit Scoring, was a classification problem.

The nearest neighbor method considered then is designed for
classification problems and can be applied directly here. Nothing

more needs to be said. Similarly for classification trees.

To apply prediction methods to the network intrusion problem,
one would proceed as follows:



Classification Problems

Let Yieptune €qual 1 if the connection is “neptune” and O if not.
Using regression, neural nets, or trees, fit the model

Yneptune = f(x),

to the learning data, where x is the vector of features. Let
fneptune denote the model thus obtained. Do the same for Y,,,rmai
and Yg,.rp- Given a feature vector z° for which a classification
is desired, compute the prediction

.

Yneptune — f neptune(mo)

Do the same to get Y, ,rmar and Y-

If aneptune is the largest then classify x° as “neptune’”, else if
Y, rmal IS largest classify as ‘“normal”, else as “smurf” .



Problems with This Approach

Although this approach is common, and often works reasonably
well, there are two main problems with it.

e Masking. It is unlikely but possible that

fsmurf(m) < min {fnormal(x)a fneptune(x)}

for every possible configuration of features x so that a con-
nection never gets classified as “smurf’.

e Ignores Structure The approach completely ignores the
probabilistic structure of the problem. Taking this extra
knowledge into account ought to improve performance.



T he Standard Methods

Taking the probabilistic structure into account leads to the three
standard classification methods:

e Linear Discriminant Analysis

e Quadratic Discriminant Analysis

e L ogistic Regression

We shall consider each of them, in turn.



The Standard Measure of Performance

The standard measure of performance, is the classification error
rate, cer.

The classification error rate of a procedure is the number of
misclassifications in a sample divided by the sample size.

In a sample that had 100 “neptunes,” 100 “normals,” and 100
“smurfs,” were we to misclassify 5 “normals” as ‘“smurfs’ and
2 Y“smurfs” as “neptunes” and classify everything else correctly,
then the classification error rate would be

cer = L = 0.023
300



Probabilistic Structure

For a given set of features x, a connection can be “neptune’,
“normal”, or “smurf’. WHhichever it is can be thought of as
being determined by tossing a single die: If the die lands 1, then
the connection is “neptune”; if 2, then it is “normal”; if 3, then
“smurf”; and if 4, 5, or 6, then toss again.

Now think of this die as being loaded and imagine that the fea-
tures z tell you how much weight has been added to the faces
4, 5, and 6. Because the faces on the opposite sides of a die
sum to 7, if x adds extra weight to face 5, then 2, which is a
“normal’ connection, is the most likely. The more weight added,
the more likely “normal” becomes.



Probabilistic Structure (continued)

This dice mechanism is actually an accurate representation of
the probability model for a classification problem. What it does
is define three conditional probabilities:

P(C = "neptune” | X = x)
P(C = "normal” | X = x)
P(C = “smurf” | X = x)
The first is the probability of the connection C being “neptune”

if features X are known to take on the value . The second and
third are the values for “normal” and “smurf” respectively.



Probabilistic Structure (continued)

If the classification error rate is accepted as the appropriate mea-
sure of a classification scheme, then, given a set of observed
features z°, the optimal classification strategy is to compute

P(C = "neptune” | X = z°)
P(C = “normal” | X = x°)
P(C = “smurf" | X = z°)

and classify the connection according to whichever is largest.
That is, if P(C = “normal”’|X = x°) is the largest of the three,
then for that z° the connection is predicted to be “normal’.



Probabilistic Structure (continued)

The notation

P(C = "neptune” | X = z°)
P(C = “"normal” | X = z°)
P(C = "smurf" | X = x°)

IS cumbersome. Let us substitute
P(C =c|X = x°)

where c=1, 2, 3 for “neptune”, “normal”, and “smurf”, respec-
tively.



Linear Discriminant Analysis

The idea behind linear and quadratic discriminant analysis is to
specify a conditional probability density and marginal probabilities
that are easy to estimate and then construct P(C = c|X = x)

indirectly using Bayes T heorem.



Conditional Probability Density

The training sample can be divided into three groups corresponding to “nep-
tune”, “normal’, and “smurf” or, equivalently, ¢ = 1,2,3. The features in
each of these three groups its own probability density f(x|C = ¢).

Linear discriminant analysis assumes that f(xz|C = ¢) is the normal distribution
where the vector of features has a different mean for each ¢ but the variances
and correlations are the same for all ¢. Quadratic discriminant analysis allows
these variances and correlations to depend on ¢. That is the only difference
between the two methods. The normal density f(x|C = ¢) is easily determined
from the training sample by computing means, variances, and correlations.

Note that a side effect of the normality assumption is that only continuous
features are allowed.



Fig 96. Data That Satisfy LDA Assumptions
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Simulated data that satisfy the LDA assumptions of normality
and equal variances and correlations within groups.



Fig 97. Data That Satisfy QDA Assumptions
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Simulated data that satisfy the QDA assumptions of normality
but different variances and correlations across groups.



Marginal Probabilities

Returning now to Case 5, Intrusion Detection, we can ignore the
features altogether and estimate the unconditional probability of
a “neptune” as

number of "neptunes’ in the training set
mT1 =
1 total number observations in the training set
Similarly for mo and w3 for “normals” and “smurfs’.

Notice that if the training set is experimental data and not obser-
vational data, these proportions will not be what one encounters
when classifying new cases. For smaller sized training sets one
must adjust the m; to more realistic values. For the larger sized
training sets in data mining this will not matter much.



Bayes T heorem

f(x]|C = c)me

P(C = C|X — CC) p— 2221 f(ag|C — C)ﬂ_c




Bayes Theorem (continued)

One can work out a detailed expression for P(C = ¢|X = x) of
the previous slide, but there is really no point to it.

All that is necessary to know is that the boundary between fea-
tures where cases get classified differently, e.g. the vectors x that
satisfy the equation

P(C=1|X =z) = P(C =2|X = 2),

is a flat linear surface for linear discriminant analysis and is a
curved quadratic surface for quadratic discriminant analysis.

That is where the names come from.



Fig 98. LDA Classification Applied to LDA Data
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LDA classification method applied to simulated data that satisfy
the LDA assumptions.



Fig 99. QDA Classification Applied to QDA Data
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QDA classification method applied to simulated data that satisfy
the QDA assumptions but not the LDA assumptions.



Fig 100. LDA Classification Applied to QDA Data
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LDA classification method applied to simulated data that satisfy
the QDA assumptions but not the LDA assumptions.



Feature Selection

As with Case 3, Donor Recapture, we need some automatic
means to select features, although with only 41 features, features
selection could actually be done by hand.

Because I want to illustrate classifications graphically, I will re-
strict myself to two continuous features. This actually does little
harm because we achieve a classification error rate of 0.0063 in
the validation data set, which is surprisingly good.

We will use linear discrimination analysis to try all possible pairs
of two continuous features, estimate the linear discriminant rule
in the training sample, compute the cer in the validation sample,
and select the pair of features with the smallest cer.



LDA Model Selection: Results

ntw_sel.r.Rout

[1] "0.00632845730884947 count same.srv.rate"



T he Selected Features

Field Feature Definition

23 count number of connections
to the same host as
the current connection
in the past two seconds

29 same.srv.rate fraction of same-host
connections to the same
service in the past two
seconds



Fig 101. The Training Data
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Neptune attacks shown in red, normal connections in green, and
smurf attacks in blue.



Table 28. Verification of Assumptions

Mean Standard Deviation
Same Serv Same Serv
Data Count Rate Count Rate Correlation
Combined 42.6075 0.06434 -0.24278
Neptune 188.43 0.06949 69.0462 0.06602 -0.44984
Normal 8.0139 0.98622 18.1781 0.08979 0.03288

Smurf 506.90 1 18.6648 0 NA




Verification of Assumptions (continued)

The linear discriminant analysis assumption of equal standard
deviations and correlations across groups is clearly violated.

Ordinarily quadratic discrimination analysis would therefore be
more appropriate.

But most software, including R, cannot handle a zero standard
error. T heoretically it is not a problem, but unless one takes
special precautions when writing the code the zero standard error
will cause a division by zero with at best no results and at worst
unreliable results.

We are stuck with linear discriminant analysis, like it or not.



Fig 102. LDA Classification with Sample Proportions
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Neptune attacks shown in red, normal connections in green, and smurf attacks
in blue. Prior is (0.2246, 0.2018, 0.5736); validation cer is 0.006328.



The Prior

The prior that we used was the proportion of “neptunes’, “normals”’, and
“smurfs’” found in the training data.

But the training data is experimental data where these proportions were de-
termined by the experimenters. They are not the proportions that would be
seen in actual data.

If the classification procedure is to be used online when most connections are
normal, then the proportions should be adjusted to more realistic values.

An interesting approach would be to try to adjust them dynamically. For
instance, if connections started to become increasingly classified as “smurf”,
then the proportion assigned to smurf would be increased.

However, in this application, adjusting them to more realistic values makes
hardly any difference.



Fig 103. LDA Classification with a Realistic Prior
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Neptune attacks shown in red, normal connections in green, and
smurf attacks in blue. Prior is (0.1, 0.8, 0.1).



Curved Boundaries

The fact that quadratic discrimination analysis cannot be used
with these training data does not mean that we cannot have

curved boundaries if we wish.
We can use derived features to get them.

To get quadratic boundaries, we can add the features

(count)? (same.serv.rate)? (count)(same.serve.rate)

to the linear discriminant analysis.



Fig 104. LDA Classification with Quadratic Boundaries

1.0

0.8

same.srv.rate
0.4

0.2

0.0

0 100 200 300 400 500

count

Neptune attacks shown in red, normal connections in green, and smurf attacks
in blue. Prior is (0.2246, 0.2018, 0.5736); validation cer is 0.00508.



Commentary Linear on Discriminant Analysis

Linear discriminant analysis works surprisingly well even when its
assumptions of normality and constant standard deviations and
correlations across classifications are violated.

Hastie, Tibshirani, and Friedman (2001) speculate that the rea-
son for this is that the variance in trying to determine classifi-
cation boundaries is inherently so large that a lot of bias can be
tolerated. Linear discriminant analysis is low variance because it
only depends on the estimate of as many means, standard devia-
tions, and pairwise correlations as there are classifications. If its
assumptions are violated, the bias will increase. But apparently
never gets large enough to do much harm.



Probabilistic Structure Revisited

For a given set of features x, a connection can be “neptune’,
“normal”, or “smurf’. WHhichever it is can be thought of as
being determined by tossing a single die: If the die lands 1, then
the connection is “neptune”; if 2, then it is “normal”; if 3, then
“smurf”; and if 4, 5, or 6, then toss again.

Now think of this die as being loaded and imagine that the fea-
tures x tell you how much weight has been added to the faces 4,
5, and 6. Because the faces on the opposite sides of a die sum to
7, iIf x adds extra weight to face 6, then 1, which is a “neptune”
connection is the most likely. The more weight added, the more
likely “neptune” becomes.



Probabilistic Structure Revisited (continued)

This dice mechanism is actually an accurate representation of
the probability model for a classification problem. What it does
is define three conditional probabilities:

P(C = "neptune” | X = x)
P(C = "normal” | X = x)
P(C = “smurf” | X = x)
The first is the probability of the connection C being “neptune”

if features X are known to take on the value . The second and
third are the values for “normal” and “smurf” respectively.



Logistic Regression

Logistic regression models these conditional probabilities directly.
It does so by modeling the logarithm of the pairwise odds.

Odds are the ratio of two probabilities. For instance, the prob-
ability of a UK woman dying between the ages of 35 to 65 is
0.09, for an ex-smoker it is 0.10, and for a current smoker 0.16
(Callum, C. (1998). The UK smoking epidemic: deaths in 1995.
London: Health Education Authority.) Thus, the odds of a UK
woman dying of smoking are 0.16/0.09=1.78, nearly 2 to 1.

The logarithm of the ratio of two probabilities is called a logit.
Hence the name, logit regression or logistic regression.

Logistic regression models the logit as a linear function of the
features.



Logistic Regression (continued)

For our application the logistic model is

= Bo1 + Br1(catch) 4+ Bo1(same.srv.rate)

o (P(C = “neptune”’ | X = :p))
J P(C = “"smurf" | X = z)

= o2 + B12(catch) + Boo(same.srv.rate)

o (P(C’ = “normal” | X = a:))
d P(C = “smurf"|X = z)

P(C = "smurf’|X =2) = 1-P(C= "neptune”|X =x)
— P(C = “normal” | X = x)

Here P(C = “smurf”|X = z) is chosen as the denominator, but exactly the
same classifications will result regardless of which category is chosen as the
denominator. Only two ratios need to be modeled; the third can be gotten
by subtraction because probabilities add to one.



Probabilistic Structure Revisited (continued)

Given a set of observed features x°, the optimal classification
strategy is to compute

P(C = "neptune” | X = z°)

P(C = “"normal” | X = z°)
P(C = "smurf"|X = x°)

and classify the connection according to whichever is largest.
That is, if P(C = “normal”’ | X = x°) is the largest of the three,
then for that z° the connection is predicted to be “normal’.



Logistic Regression (continued)

The boundary between “normal”’ and “smurf” will be where

P(C = "neptune” | X ==x) 1
P(C = “smurf’ | X =z)

P(C = "neptune” | X = x)
log =0
P(C = "smurf” | X = x)

which is where

which is where

0 = Bo1 + B11(catch) 4+ Br1(same.srv.rate)

which means that the boundaries for logistic regression, like those for linear
discriminant analysis, are linear.



Logistic Regression (continued)

Hastie, Tibshirani, and Friedman (2001) state that in their ex-
perience, there is hardly any difference between the classification
regions chosen by linear discriminant analysis and logistic regres-

sion.

This is just as well because, other than the binary case, where
there are only two categories, it is hard to find code implementing
the method. Thereis no code in R that works for our application,
which has three categories.



Classification: Synthesis

e Linear discriminant analysis is the best of the probabilistic
classification tools.

e \With derived features, linear discriminant analysis is flexible.



