Topic 2. The Bias-Variance Tradeoff

Case 2: Single Target Single Feature



Reading Assignment

Berry and Linoff (2000)
e Pages 111-120. Decision trees (review).

e Pages 119. Study figure carefully and compare to next slide.



Fig 22. Learning and Validation Loss
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Complexity

The purpose of this topic is to explain why every tool will produce a picture like this
as complexity increases: Loss is underestimated in the learning sample and correctly
estimated in the validation sample. See also Berry and Linoff p. 119. Complexity in
regression increases when a variable is added; in nearest neighbors when the number
of neighbors decreases, in a neural net when a hidden layer is added, in a decision tree
when a leaf is added. Correct complexity is where validation loss is minimized.



T he Bias-Variance Tradeoff

To understand Figure 22 we shall

e Examine the consequences of underfitting and overfitting.

e Show why validation samples are essential in data mining.

e Incidentally, become more familiar with trees.



Fig 23.

target

Simulated Training Data
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One numeric feature x and one numeric target y.
Sample size n = 500.



The Truth

For these data we could learn the truth from the data alone
because:

e [ he dimension is low. Graphical methods have a chance.

e [ he signal to noise ratio is high. Graphical methods will
actually work, e.g. Fig 23.

e Even if graphs do not suggest useful derived features so that
we can use regression; trees, neural nets, and localization
methods will work because we have enough data and the
signal to noise ratio is high.

e Because these data are simulated, we can actually plot the
truth, here it is —



Fig 24. The Truth
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The model is y = f(x)+4e, where f is shown in blue and e is normally
distributed with ¢ = 1. Sample size n = 500.



In Fig 24 notice that:

e The best prediction of y; at feature z; is f(z;), which is the
ordinate of the blue line at abscissa x;.

e NoO other prediction will generalize as well to future samples.

e The error made by this prediction is e; = y; — f(x;).

e [ he sample variance of this prediction is

which converges to its population value of ag as n increases.



Decision Trees

Decision trees work a little differently in prediction:

1. Start with feature 1 and divide the sample into two groups depending
on whether the feature is to the left, 1 < ¢, or the right, ¢ < x1, of the
cut c¢. In each group, the prediction is the average of the y; in that group.

2. Compute the loss over the sample; try all possible cuts; remember the
cut with smallest loss. Do this for every feature and choose the feature
and cut with smallest loss.

3. Work down the tree, subdividing groups using the same procedure.

4. Stop when some measure of complexity such as the depth of the tree or
the number of leaves is reached.

For prediction, MSE, which is the mean of the squared prediction errors, is
the usual loss function.

In this particular case there is only one feature 1 so we are just cutting the
x-axXis into pieces.



T he Default Tree

First we shall fit the default tree.



Fig 25. The Default Tree
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The default tree has seven terminal nodes.

The left branch corresponds to a feature x

that satisfies the inequality. The prediction at a leaf is the average of the y; at that leaf.



Fig 26. Default Tree Compared to Data
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The prediction of the fitted tree is shown as the black line; the learning sample is

shown as black circles. The black line is the average of the y; that have abscissae
within the flat segment.



Fig 27. Default Tree Compared to Truth
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The model is y = f + e where f is shown in blue. The prediction of the fitted

tree is shown as the black line; the learning sample is shown as black circles.
Same as Fig 26 but with blue line added.



Fig 28. Variability in Default Tree
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Trees were fitted to 100 samples from y = f 4+ e where f is shown

in blue. The red line is the average of the 100 trees. The black
lines are the predictions of the first 25 trees.



Sources of Variability

We have already seen that there is an unavoidable error in making
a prediction, which is the deviation, vy, — f(x;), of the actual
occurrence of an observation y; from the truth f(x;). Fig 28
shows two additional sources of prediction variability.

The first is the red line that we shall denote by f(z;). It is the
average of all possible decision trees that we could have gotten
from learning samples the same size as ours. The difference from
the truth, f(x;)— f(z;), is called bias and is a source of prediction
error.

The second source of error is represented by the black lines. Each
black line is the tree f(z) that we get from a particular learning
sample. The variation is due to the fact that learning samples
differ from one another due to randomness. The difference,
f(z) — f(x), is called estimation error.



Controllable Variation

The two sources of variation under our control are the bias and
the estimation error.

AS we increase complexity, i.e. allow the tree to have more |leaves,
the estimation error increases and the bias decreases.

Conversely, as we decrease complexity, the estimation error de-
creases and the bias increases.

We use the validation sample to try to find a balance between
these two sources of error.

But first we need a measure of complexity.



Complexity of a Tree

A tree has many tuning parameters: the minimum number of
cases allowed to the right or left of a cut, the minimum number
of cases in a leaf, the maximum depth of the tree, the maximum
number of leaves, etc.

These are crude structural controls. A finer control is the com-
plexity parameter cp, which is the smallest decrease in Loss in
the learning sample for which a split is permitted; ¢p = 0.01 for
the default tree.

We shall plot —log(ep) on the horizontal axis rather than cp
because it scales the plot better. We change its sign because
tree complexity increases as cp decreases.



Loss for a Prediction Tree

Loss for prediction problems is mean squared error:

n

> [y — Flan)]|

1=1

MSE =

S|

As we shall see in a few slides, in the validation sample MSE
correctly measures the sum of the three sources of variability
— noise, bias, and estimation error — and indicates the optimal
complexity.

As we shall also see, in the learning sample MSE underestimates
variability and fails to indicate the optimal complexity.

For our problem, Loss is minimized at complexity ¢p = 0.001 for
which —log(ep) = 6.9077 as seen next.



Fig 29. Learning and Validation MSE
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The MSE in the learning sample is shown in red. The MSE in the validation
sample is shown in blue; its minimum is at ¢p = 0.001. The default tree is the
leftmost point on the graph. The MSE in the leaning sample underestimates
the bias plus variance and does not indicate optimal complexity.



The Math

Add and subtract like terms to get
yi — f(z) = yi — f(z) + [(z) — F(z) + f(z) — F(x;)

Square to get

i F@)|” = e+ [T — F@d)|” + [F(@) - Fa)]

+ cross product terms.

recalling that y; = f(z;) + e;.



The Cross Product Terms

The two terms f(z;) and f(z;) have no sampling variation in
them because the first is a population mean and the second is a
nonrandom function.

The product of a random variable that has mean zero and a
quantity that is not random has mean zero. Therefore, the
following two cross product terms have mean zero in both the
training sample and the validation sample:

ei | F(zi) = f(z)|  [F(@) = F(a)]| |[F(wo) — f@s)]

The third cross product term is

ei | F(z:) — f(z)]



The Third Cross Product Term

When considering

ei | F(z:) — f(z)]

it matters whether we are discussing the training sample or the
validation sample.

First let's consider what happens in the training sample. Look
at Fig 26 and recall that y; = f(x;) +e; and that f(z;) is a mean
that involves y;,. When e; increases y; increases and therefore
f(z;) increases. Consequently [f(aci) —f(:ci)} decreases when e;
increases and the correlation between them must be negative.

Therefore the mean of the cross product term, which is the
numerator of the correlation, is negative in the training sample.



The Third Cross Product Term

Now consider what happens to the third cross product term

ei | F(z:) — F@)]

in the validation sample.

In the validation sample e; and f(z;) have nothing to do with
each other because cases in the validation sample were not used
to compute f(z;). Therefore e; and f(x;) are independent ran-
dom variables. The mean of the product of independent random
variables is the product of their means. Recall that e; has mean
Zero.

Therefore the mean of the third cross product term is zero in
the validation sample.



The Relevant Quantities

The within sample variance due to (1) uncontrollable noise, (2)
controllable estimation error, and (3) controllable bias are

n
=23 [f@) - T
=1
And (4), the covariance between noise and estimation error is
1 2 _ -
Sef = > e [f(-%‘z') — f(ﬂﬁz')}

t=1
The corresponding population quantities are o¢, o7, o7, and o.;.



The Main Facts

In the validation sample, MSE is estimating the quantity
ag -+ 0J2c 4+ 05

As complexity increases, 0% increases and al? decreases. The
desired complexity is where MSE is at a minimum.

In the learning sample, MSE is estimating the quantity

ag—l—ajzc—l—ag—l—Qaef
where o, is negative. Moreover, 20,¢ overwhelms a% so MSE
decreases as complexity increases.



More Features

Adding additional features also increases complexity. For exam-
ple, in the Loan Case, the regression

y = bg + byz1 + boxo + b3(x1)? + ba(x2)? + bs(x1) (x2)

has higher complexity than the regression

y = bg + 171 + boxo.

The principle is the same: Use a validation sample to choose the
correct degree of complexity.



More Plots
T he next slides show what happens as complexity increases.

Pay special attention to Figs 32, 35, 39, 42, 45, and 49.

In these plots, the black fuzz represents o
between the blue and red lines represents o

and the difference

NN

b .

Notice that the red and blue lines eventually coincide to within
plotting accuracy so that a,? becomes nearly zero.



Fig 30. Tree Compared to Data, ¢p = 0.0075

10

target

I
-0.5 0.0

0.5 1.0

feature

The prediction of the fitted tree is shown as the black line; the
learning sample is shown as black circles.



Fig 31. Tree Compared to Truth, ¢p = 0.0075
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The model is y = f + e where f is shown in blue. The prediction

of the fitted tree is shown as the black line; the learning sample is
shown as black circles.



Fig 32. Variability in Tree, ¢p = 0.0075
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Trees were fitted to 100 samples from y = f 4+ e where f is shown

in blue. The red line is the average of the 100 trees and the black
lines are the predictions of the first 25 trees.



Fig 33. Tree Compared to Data, ¢p = 0.005
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The prediction of the fitted tree is shown as the black line; the
learning sample is shown as black circles.



Fig 34. Tree Compared to Truth, ¢p = 0.005
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The model is y = f + e where f is shown in blue. The prediction

of the fitted tree is shown as the black line; the learning sample is
shown as black circles.



Fig 35. Variability in Tree, ¢p = 0.005
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Trees were fitted to 100 samples from y = f 4+ e where f is shown

in blue. The red line is the average of the 100 trees and the black
lines are the predictions of the first 25 trees.



Fig 36. Tree Compared to Data, ¢p = 0.001
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The prediction of the fitted tree is shown as the black line; the
learning sample is shown as black circles. This is the best tree.



Fig 37. Tree Compared to Validation Data, ¢p = 0.001
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The prediction of the fitted tree is shown as the black line; the

validation sample is shown as black circles.
well.

This tree generalizes



Fig 38. Tree Compared to Truth, ¢p = 0.001
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The model is y = f + e where f is shown in blue. The prediction
of the fitted tree is shown as the black line; the learning sample is
shown as black circles. This is the best tree.



Fig 39. Variability in Tree, ¢p = 0.001
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Trees were fitted to 100 samples from y = f 4+ e where f is shown

in blue. The red line is the average of the 100 trees and the black
lines are the predictions of the first 25 trees. This is the best tree.



Fig 40. Tree Compared to Data, ¢p = 0.00075
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The prediction of the fitted tree is shown as the black line; the
learning sample is shown as black circles.



Fig 41. Tree Compared to Truth, ¢p = 0.00075
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The model is y = f + e where f is shown in blue. The prediction

of the fitted tree is shown as the black line; the learning sample is
shown as black circles.



Fig 42. Variability in Tree, ¢p = 0.00075
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Trees were fitted to 100 samples from y = f 4+ e where f is shown

in blue. The red line is the average of the 100 trees and the black
lines are the predictions of the first 25 trees.



Fig 43. Tree Compared to Data, ¢p = 0.0005
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The prediction of the fitted tree is shown as the black line; the
learning sample is shown as black circles.



Fig 44. Tree Compared to Truth, ¢p = 0.0005
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The model is y = f + e where f is shown in blue. The prediction

of the fitted tree is shown as the black line; the learning sample is
shown as black circles.



Fig 45. Variability in Tree, cp = 0.0005

o _]
—
LO_
+—
Q
S o
@
+—
o _|
|
o
T

I
0.0 0.5 1.0

feature

Trees were fitted to 100 samples from y = f 4+ e where f is shown

in blue. The red line is the average of the 100 trees and the black
lines are the predictions of the first 25 trees.



Fig 46. Tree Compared to Data, ¢p = 0.0001
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The prediction of the fitted tree is shown as the black line; the
learning sample is shown as black circles.



Fig 47. Tree Compared to Validation Data, ¢p = 0.0001
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The prediction of the fitted tree is shown as the black line; the vali-

dation sample is shown as black circles. One sees that an overfitted

tree generalizes poorly.



Fig 48. Tree Compared to Truth, ¢p = 0.0001
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The model is y = f + e where f is shown in blue. The prediction

of the fitted tree is shown as the black line; the learning sample is
shown as black circles.



Fig 49. Variability in Tree, cp = 0.0001

10

+—
Q
© o
@
+—
o _|
|

feature

Trees were fitted to 100 samples from y = f 4+ e where f is shown

in blue. The red line is the average of the 100 trees and the black
lines are the predictions of the first 25 trees.



The Main Points

1. The correct complexity for any tool is at the point at which
the MSE in the validation sample is minimized. Generaliza-
tion is best at that point.

2. The MSE in the learning sample is an under estimate of the
relevant MSE because o, is negative. For most tools, the
learning sample MSE curve will not have a minimum.

These two points can be verified visually by the following plot,
which repeats Fig 28.



Fig 50. Learning and Validation MSE
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The MSE in the learning sample is shown in red. The MSE in
the validation sample is shown in blue; its minimum is at cp =
0.001. The MSE in the leaning sample underestimates the bias
plus variance. The tree with ¢p = 0.0001 is the rightmost point on
the graph.
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