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Goal

e Systematic comparison of three macro/finance models.

e Likelihood based.

e Using Bayesian methods because data are sparse.

> Prior information augments the data.



Statistical Literature — Frequentist

e Bansal, Ravi, A. Ronald Gallant, and George Tauchen (2007),
“Rational Pessimism, Rational Exuberance, and Asset Pric-
ing Models,” Review of Economic Studies 74, 1005—1033.

e Concerns

> A frequentist comparison was defeated by sparse data.
> Models compared by performance on macro ‘“puzzles”
> Modified proposer’'s models — imposed co-integration

> Used a general purpose solution method.



Statistical Literature — Bayesian

e Gallant, A. Ronald, and Robert E. McCulloch (2009), “On
the Determination of General Scientific Models with Appli-
cation to Asset Pricing,” Journal of the American Statistical
Association 104, 117—-131.

> Related: Dejong, Ingram, and Whiteman (2000), Del Ne-
gro and Schorfheide (2004), etc.
e Advantages
> Can be used when no likelihood is available.
> Permits latent variables

> Augments sparse data with prior information.



Macro/Finance Literature

e Current practice
> List some puzzles — i.e. list some sample moments
> Propose a model
> Check it against the list of puzzles

e Concerns
> Chaotic — lists vary
> Few organized head-to-head comparisons
> In the hands of the proposers

e Most relevant
> Beeler, Jason, and John Y. Campbell (2008), “The Long-
Run Risks Model and Aggregate Asset Prices: An Empir-
ical Assessment,” NBER, W14788

> Bansal, R, D. Kiku. and A. Yaron (2009). “An Empir-
ical Evaluation of the Long-Run Risks Model for Asset
Prices,” NBER, W15504



Models Considered

e Habit
Campbell, J. Y., and J. Cochrane. (1999). “By Force
of Habit: A Consumption-based Explanation of Aggregate
Stock Market Behavior.” Journal of Political Economy 107,
205—251.

e Long run risks
Bansal, R., and A. Yaron. (2004). “Risks For the Long Run:
A Potential Resolution of Asset Pricing Puzzles.” Journal of
Finance 59, 1481—-15009.

e Prospect theory
Barberis, N, M.Huang, and T. Santos (2001), “Prospect
Theory and Asset Prices,” The Quarterly Journal of Eco-
nomics 116, 1-53.



Fairness

e Use the proposer’'s model.

e Use the proposer’s solution method.

e Use the same prior across all models.
> P(—0.104 < re < 1.896) = 0.95

> A preference for model parameters close to the proposer’s
calibration.
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Fig 1. Data, 1925—-2008
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Results

e If one believes that the extreme consumption growth fluctu-

ations of 1930—1949 can recur, then the long run risks model
IS preferred.

> Although they have not in the last sixty years.

> Even counting the current recession.

e Otherwise, the habit model is preferred.



Posterior Probabilities

Relative

Trivariate
Bivariate
Univariate

Absolute

Trivariate
Bivariate
Univariate

1930—-2008

hab

0.00
0.00
0.28

0.00
0.00
0.29

lrr

1.00
1.00
0.48

0.00
0.41
0.36

pPro

0.00
0.24

0.28
0.10

1950—-2008

hab

1.00
1.00
0.44

0.00
0.31
0.40

lrr

0.00
0.00
0.42

0.00
0.16
0.39

pPro

0.00
0.14

0.08
0.29
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Habit Persistence Asset Pricing Model

Driving Processes

Consumption: ¢ —ci—1 = g + ¢

Dividends: dy — dy_1 = g + wy
V¢ O o2 PO Ty
Random Shocks: ~ NID , 5
wy 0/’ \poow oF

The time increment is one month. Lower case denotes logarithms of upper
case quantities; i.e. ¢t = log(C}), dy = log(D;). From Campbell and Cochrane
(1999).



Habit Persistence Asset Pricing Model
Utility function

Habit persistence

Surplus ratio: st —s=¢(s;_1 —35) + A(sg_1)vs_1

1 —
Sensitivity function: A(s) = { §\/1 —2(s=3)—1 st < smax
0 St > Smax

& is conditional expectation with respect to Sy, S;—1, ... . Lower case denotes
logarithms of upper case quantities: s; = 10g9(S;). S and smax can be computed
from model parameters 6 = (g,0,p,0u,¢,8,7) as S = o\/7/(1 — ¢), Smax =
s+ (1 - 52)/2. From Campbell and Cochrane (1999).




Habit Persistence Asset Pricing Model
Return on dividends

. St41Ci+1\ | [ Diy1
v =aps(*5g") (5 v

1-|-V(St)< Dy )]

= |0
Ht ? ! V(Si—1) \Di—1

V(-) is defined as the solution of the Euler condition above. It is the price
dividend ratio; i.e. Py/D; = V(S:), where Py is the price of the asset that
pays the dividend stream. rg is the logarithmic real return, i.e. rg = log(Py+
D;) —109(Py-1), where Py and D; are measured in real (inflation adjusted)
dollars. Dividend error can be integrated out analytically. Consumption error
integrated by quadrature. From Campbell and Cochrane (1999).



Habit Persistence Asset Pricing Model
Solution Method

Approximate the log policy function

v(sy) = log V(e’)

by a piecewise linear function and use policy function iteration.

Campbell and Cochrane used Gauss's intquadl and set join
points at s, smax, Smax — 0.01, smax — 0.02, smax — 0.03, smax —
0.04, and log(kSmax/11) for £ = 1,...,10. We used Gauss-
Hermite quadrature; we added the abscissae of the Gauss-
Hermite quadrature formula at the maximum and minimum of
the above join points; we deleted all points less than 0.001 apart.

Figure 2, next slide, plots the approximation at the Campbell
and Cochrane parameter values.



Fig 2. Piecewise Linear Approximation
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x's mark Campbell and Cochrane join points; o’'s mark extra join
points from the quadrature rule.



Habit Persistence Asset Pricing Model

Risk Free Rate

5 Si41Ci41) !
S:Cy

Tt 1S the logarithmic return on an asset that pays one real dollar one month

re = —1og {8,5

hence with certainty. From Campbell and Cochrane (1999).



Habit Persistence Asset Pricing Model
Large Model Output

Given model parameters

0 = (g,O', P, O-’angb) 577)

simulate monthly and aggregate to annual:

11

Ct = > Ciop g
k=0

cf = log(Cy)

11

7“375 — Z Td 12t—k
k=0
11

rfe= D Tf12t—k
k=0



Habit Persistence Asset Pricing Model

Prior Distribution

(9)—N[7“f|0896( . )]HN{ o (()1..19992]

where the 9;5 are the calibrated values from Campbell and
Cochrane (1999) and r% = limn—oo(1/n) Y1y ;.

The scale factor on ¢ and ¢ is 0.001 rather than 0.1.

This is not an independence prior (next slide).



Table 1. Correlation Matrix

of the Habit Model Prior
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Table 2. Habit Model

Prior Posterior

Parameter Mode Std.Dev. Mode Std.Dev.
g 0.00157547 0.00008128 0.00166893 0.00007473

o 0.00440979 0.00022113 0.00502777 0.00018533

P 0.20068359 0.01072491 0.19445801 0.00931413
Ow 0.03228760 0.00169052 0.03193665 0.00138630
¢ 0.98826599 0.00042475 0.98769760 0.00033629

) 0.99046326 0.00043605 0.99033737 0.00044495

~ 2.04296875 0.08924751 1.97558594 0.07720679
Ty 0.97796400 0.13273052 1.02530400 0.12647089
Tq—Tf 6.04969200 0.07700698 6.26854800 0.07426341
Or, 19.67246807 0.14078849 20.17062220 0.14442220

Parameter values are for the monthly frequency. Returns are annualized. Mode is the
mode of the multivariate density. It actually occurs in the MCMC chain whereas other
measures of central tendency may not even satisfy support conditions. In the data,
rq — 1y = 5.59 —0.89 = 5.5 and o,, = 19.72. The auxiliary model is fs. The data are
annual stock returns and consumption growth 1930—2008.



Fig 3. Habit Model Prior and Posterior
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Fig 4. Habit Model Prior and Posterior Forecasts
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Long Run Risks Asset Pricing Model

Driving Processes

Consumption: c;41 — ¢t = pe + ot + o441
Dividends: dt—l—l — di = pg + ¢qxt + TqotNt+41 -+ qbuO'tut_l_l
Long Run Risks: x;41 = pxt + ¢eotesy1

Stochastic Volatility: o7, = ° + v(of — 5°) + cwwit1

Mt /0 1 0 0 0)]

.| €t O O 1 00

Random Shocks: wy NID ol'lo o 1 o
Ut | \O O 00 1/

The time increment is one month. Lower case denotes logarithms of upper
case quantities; i.e. ¢ = log(C}), d: = log(D;). From Bansal, Kiku, and Yaron
(2007).



Long Run Risks Asset Pricing Model
Epstein-Zin utility function

y—1 1o =L %
U= |(1-80)C, " +6(&U 1)

where
~v is the coefficient of risk aversion

() IS the elasticity of inter temporal
substitution

& is conditional expectation with respect to xi, o;.



Long Run Risks Asset Pricing Model
Return on consumption

1 ~1 1/4h —
Mrs41 = §171¥exp KZD - 1) 1)+ (1/jb1/;> TC’tH]

C
Ve(ze,o1) = & {mr5t+1 ( tc_:1> [1 + VC(fUt+1>Ut+1)] }

1+ Ve(xt, ot) ( Cy )]

Vo(zi—1,0¢-1) \C¢_1

Ve(+) is defined as the solution of the Euler condition above. It is the price
consumption ratio; i.e. P./C; = Vo(x¢,01), where P is the price of the asset
that pays the consumption stream. r. is the logarithmic real return, i.e.
ret = 109( P+ Ct) —109(Pet—1), where Py and C; are measured in real (inflation

adjusted) dollars.



Long Run Risks Asset Pricing Model
Solution Method

Use the log linear approximation

Tet41 KO T K121 T Aci41 — 2
k1 = [exp(2)]/[1 4 exp(z)]
ko log[1 + exp(2)] — k12
where z; = log(F.+/Ct) and z is its endogenous mean.

To compute z, use the approximation

Ap(Z) + A1(D) 2 + Aa(2) of
A;(z) = tedious expressions in model parameters and z

<t

and solve the fixed point problem

Z=Ag(2) + A1(Z) 2t + Ax(Z) 07



Long Run Risks Asset Pricing Model
Return on dividends

e _1 1/ —
Mrsp1 = §171/%exp [(b) (1) + (1@1/11) rc’t“]

Dyt
Vp(at,01) = 5t{mr5t+1< g; ) 1 +VD($t+1,0t+1)]}

1 + Vp(xt, o) ( Dy )]

Vp(zi_1,0¢-1) \D¢—1

rdt — |Og

Vp(-) is defined as the solution of the Euler condition above. It is the price
dividend ratio; i.e. Py/D: = Vp(xt,0:), Where P, is the price of the asset
that pays the dividend stream. rg is the logarithmic real return, i.e. rgy =
log(Py + Di) — 109(Pyi—1), where Py and D, are measured in real (inflation

adjusted) dollars.

Solution method is similar to the foregoing.



Long Run Risks Asset Pricing Model
Risk Free Rate
T = —log St{mrsH_l}

Tt 1S the logarithmic return on an asset that pays one real dollar one month

hence with certainty.

Solution method is similar to the foregoing.



Long Run Risks Asset Pricing Model
Large Model Output

Given model parameters

0 = (57 Y wa He, P, Qbe, 527 V,O0Ow, Kd, qbda Td, Qbu)

simulate monthly and aggregate to annual:

11

Ct = > Ciop g
k=0

c¢ = 1og(Cyf)

11

7“375 — Z Td 12t—k
k=0
11

rhe= D Ti12t—k
k=0



Long Run Risks Asset Pricing Model

Prior Distribution

1 \2] 2P 0.16%\?
p(6) = N 7“;5 | 0.896, (—) N |6; |67, L
1.96/) | 24 1.96

where the 07 are calibrated values and r} = liMp—oo(1l/n) X7 4 r%t.
The standard deviation on p and v is 0.01 rather than 0.1.

This is not an independence prior (next slide).



Table 3. Correlation Matrix of the

Long Run Risks Model Prior
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Table 4. Long Run Risks Model

Prior Posterior

Parameter Mode Std.Dev. Mode Std.Dev.
) 0.99961090 0.00031172 0.99964905 0.00029362

v 9.89062500 0.48583545 9.92187500 0.50121255
Y 1.49609375 0.07859747 1.53906250 0.07244585
e 0.00148392 0.00007031 0.00151825 0.00007685
P 0.98413086 0.00468241 0.98284912 0.00320064
e 0.03204346 0.00160150 0.03204346 0.00162241
a2 0.00004041 0.00000196 0.00004160 0.00000196
v 0.98730469 0.00441105 0.98199463 0.00299350
Ow 0.00000168 0.00000009 0.00000169 0.00000008
hd 0.00120926 0.00006114 0.00121307 0.00006030
D4 2.78906250 0.14620180 2.88281250 0.15095447
T 4.07031250 0.20586470 4.17187500 0.19923412
o 6.14062500 0.31996896 6.45312500 0.30424633
Ty 0.94398000 0.12177703 0.90874800 0.11709356
rqg—T 4.30737600 0.48844526 4.11223200 0.28433000
Or, 18.28002188 0.17586080 19.07839616 0.13239826

Parameter values are for the monthly frequency. Returns are annualized. Mode is the mode
of the multivariate density. It actually occurs in the MCMC chain whereas other measures of
central tendency may not even satisfy support conditions. In the data, ry—r; = 5.59 -0.89 =
The data are annual stock returns and

5.5 and o,, = 19.72. The auxiliary model is fs.
consumption growth 1930—2008.



Fig 5. Long Run Risks Model Prior and Posterior Returns
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Fig 6. Long Run Risks Model Prior and Posterior Forecasts
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Prospect Theory Asset Pricing Model

Driving Processes

Aggregate Consumption: ¢, 41 — ¢ = go + ocni41

Dividends: dt—l—l —dt =gp + ODE+1

Random Shocks: (™) ~ NiD | (© , L w
€4 0 w 1

C, is aggregate, per capita consumption which is exogenous to the agent.
The time increment is one year. Lower case denotes logarithms of upper
case quantities; i.e. ¢ = log(C;), d; = log(D;). All variables are real. From
Barberis, Huang, Santos (2001).



Prospect Theory Asset Pricing Model
Other Model Variables

Gross Stock Return: Ry

Gross Risk Free Rate: Ry = p~1 exp(mc — 720%/2)

Allocation to Risky Asset: S
Gain or Loss: X;11 = St(Ri41 — Ry)
Benchmark Level (State Variable): z,41 =17 (z

Choose R to make Median{z} =1

The Agent’s Consumption: C}




Prospect Theory Asset Pricing Model
Utility function

oo cl7 -1 _ A
50{ > (Pt tl - + boCy "ot [St O(Ryy1, Zt)])]
t=0

Utility from Gains and Losses: |S;5(Ryq1,2)]

@(Rt—Flazt)
= Ri41— Ry 2t <1, Ry > 2Ry
— (ZtRf - Rf) —|— A(Rt—l—l — ZtRf) 2t S 1, Rt—l—l < ZtRf
— Rt—l—l — Rf zt > 1, Rt—l—l > Rf
= Az)(Rir1 — Ry) 2zt > 1, Ry < Ry

Mzt) = A+ E(z — 1)



Fig 7. Utility of Gains and Losses
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The dot-dash line represents the case where the investor has prior
gains (z < 1), the dashed line the case of prior losses (z > 1), and
the solid line the case where the investor has neither prior gains nor
losses (z = 1).



Prospect Theory Asset Pricing Model
Return on dividends

1 = pexp (gD —vgc + 2o (1 — cuz)/Q)
X Et [1 +sz($+1) exp[(op — ’Ywac)et+1]]
A N
1+ f(2t)

Tdt — IOg

exp(gp + UDGt)]
f(z-1)
f(+) is defined as the solution of the Euler condition above. It is the price
dividend ratio; i.e. Py/D; = f(z:), where P, is the price of the asset that pays
the dividend stream. r4 is the logarithmic real return, i.e. ry4 = log(Py +
D;) —109(Py-1), where Py and D; are measured in real (inflation adjusted)
dollars.



Prospect Theory Asset Pricing Model

Self Referential Equations

R
Zi41 = 7 (zzthH) + (1 —-n)
1
Ry = + f(Et1) exp(gp + oper41)

f(zt)

1 = Median{z}



Prospect Theory Asset Pricing Model
Solution Method

Approximate f by a piecewise linear function f(o)(z).

Approximate R by (14 f(1))exp(gp)/f(1), which is a departure
from Barberis, Huang, and Santos (2001).

Define h(0) such that z,41 = h(9)(z,¢,41) solves the self refer-
ential equations that define 2,41 and R,y on previous slide. A
root finding problem. We use Brent's method.

Substitute h(o)(zt,eH_l) into the Euler equation. Use Gauss-
Hermite quadrature to integrate out ¢4 1. Solve for f(1)(z). A
root finding problem at each join point of £(1) .

Repeat (D) — #(+1) yntil convergence.



Fig 8. Piecewise Linear Approximation
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Prospect Theory Asset Pricing Model

Risk Free Rate

rp=log |p~t exp(vgc —1?02/2)]

rs 1S the logarithmic return on an asset that pays one real dollar one year

hence with certainty.



Prospect Theory Asset Pricing Model
Large Model Output

Given model parameters
0 = (gC7gDaa-Cao-D7w777pa >‘7 k7b07n>
simulate annually and set

cf = 10g9(Ch)

a __
Tde — Tdt

a __



Prospect Asset Pricing Model

Prior Distribution

p(H)—N[rf|0896( ! )]HN{ 0" (2;&2&)2

where the 9;“ are the calibrated values from Barberis, Huang,
Santos (2001) and rf = liMp—oo(1/n) X7 4 ft

This is not an independence prior (seen next slide).




Table 5. Correlation Matrix of the

Prospect Theory Model Prior
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Table 6. Prospect Theory Model

Prior Posterior

Parameter Mode Std.Dev. Mode Std.Dev.
go 0.01828003 0.00093413 0.01846313 0.00095215
gp 0.01870728 0.00095276 0.01849365 0.00097794
oc 0.03918457 0.00200690 0.03295898 0.00201110
oD 0.12231445 0.00611083 0.11962891 0.00597238
w 0.14794922 0.00694094 0.14892578 0.00801015
v 0.98632812 0.05145608 0.96484375 0.04958596

P 0.99972534 0.00163604 0.99969482 0.00202090

A 2.17968750 0.11486810 2.23437500 0.11761822

k 9.82812500 0.53189914 9.90625000 0.53634137
bo 2.00195312 0.10967111 1.89355469 0.12735310
n 0.91601562 0.04412695 0.85375977 0.02405305
Ty 1.75579200 0.05667617 1.76136000 0.06495191
Tqg— Tf 5.92353600 0.19235810 4.88326800 0.12334973
Or, 27.97748380 0.92424294 22.90177286 0.29273615

Parameter values are for the annual frequency. Returns are annualized. Mode is the
mode of the multivariate density. It actually occurs in the MCMC chain whereas other
measures of central tendency may not even satisfy support conditions. In the data,
rq — 1 = 5.59 —0.89 = 5.5 and o,, = 19.72. The auxiliary model is fs. The data are
annual stock returns and consumption growth 1930—2008.



Fig 9. Prospect Theory Model Prior and Posterior Returns

risk free rate

1.5 2.0 2.5 3.0

equity premium

a 5 6 7

stock returns

sdev stock returns

20 25 30 35 40

Dashed line is the prior. Solid line is the posterior.



Fig 10. Prospect Theory Model Prior and Posterior Forecasts
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Bayesian Inference for
General Scientific Models

e Gallant and McCulloch (2009)

e [ he ideas for model estimation are not new.
> What is new is a computational strategy that works.

> Extremely computationally intensive.

e [ he ideas for absolute model assessment are probably new.

> “No attribution is correct.” Steve Stigler.



Genesis is in II/EMM Notions

e Structural model: p(y|z,0)
e Auxiliary model: f(y|x,n)
e Assumption: f nests p

e Binding function:

g(0) — arggnin [/ 1og p(y|z,0) —log f(ylx,n) dP(y,x|0)

> Use KL because it can be computed without knowledge
of p(y|x,0) provided simulation from p(y|x, ) is possible.

> g(0) — arggwaxzivzl log f(Tt|Ze,m)

e Likelihood: p(y|z,0) = f(y|z, g(9))



Computing the Binding Function

1. For each 6 of an MCMC chain of length R, generate a sim-
ulation {g, @4}Y_, from p(y|z,0), N = 5000.

2. The start value of n is the mode of an MCMC chain {nt}fle
with likelihood Zi\le log f(yt|z¢,m) and a flat prior, K = 200.

e For use later compute Sy — Sy + (52 — 1K) (MK /2 — 1K)’

3. Compute argmax >, log (@@, n) using BFGS.
7



An Essential Refinement

e At each iteration of the 6-chain, recompute

Mold = 9(001q)
by BFGS using

Mproposed — g(eproposed)

as a start; use recomputed if

N

log f(yt|Z¢, m)
t=1

increases.

e Similarly, recompute Nproposed using ngg for a start.



Computing the Posterior

For data {y, x¢};—1 use MCMC with prior w(#) and likelihood

£0) = S 100 f(yelzr, 9(6))

t=1
e g(0) — argg’laxzivzl log f(G|Zt,m)

e The prior can depend on functionals of p(y|z,0) that can be
computed from the simulation {gt,:fzt},{\le, e.g. risk free rate.



Relative Model Comparison

Compute posterior probabilities for structural models

p]_(y|33,9]_), pQ(y|x792)7 p3(y|$,93)

with priors
w(01), w(02), w(63)

from their 6-chains.

e Use method fs of Gamerman and Lopes (2006),

e Use the same auxiliary model f(y|z,n) for each model.



Relative Model Comparison

e Equivalent to comparing the models

fylz,91(01)), [flylz,92(02)), f(ylz,g3(03))
with priors
w(01), w(02), w(63)

e T his is an important observation.

e Inference is actually being conducted with likelihoods

11 /lz,91(01)), ] flz, 92002)), 1] fwlz, 93(63)),

Nnot

[[r1(ylz, 01), [lp2(ylz,02), []p3ylz,03).

o If f(ylz,n) nests p1(y|z,01), pa(ylx,02), pa(y|z,03), then the
former and later are the same.



Fig 11. Relative Model Comparison

Prior of Model 1

Prior of Model 2

Shown is relative model comparison under a change of variables of integration 6 — 7.
The contours show the likelihood of the auxiliary model f(-|n). The curved lines show
the manifolds M = {n € H : n = ¢g(0),0 € ©} for Models 1 and 2. Thickness is
proportional to the priors w1 and mw». Posterior probabilities are proportional to the
integral of the likelihood over the manifold weighted by the prior.



Absolute Model Assessment

e Likelihood: auxiliary model f(y|z,n).

o Prior: mg(n) o« exp (=5 ming [n — g(0))' (k<) ~1n — g(0)])

e AsSsign equal prior probability to a sequence of model speci-
fications that differ only in their s priors; e.g.

K1 < kp < R3
e Compute posterior probabilities under k1, ko, and k3.

e Low posterior probability under k1 is evidence against the
model.



Fig 12. Absolute Model Assessment — Reject

//

The contours show the likelihood of the auxiliary model f(:|n). The shaded areas show
priors ki1, k2, k3. 1 he crosses show the mode of the posterior under x1, k2, k3. The

posterior probabilities for absolute model assessment are proportional to the integral of
the likelihood over respective the shaded area.



Fig 13. Absolute Model Assessment — Accept

The contours show the likelihood of the auxiliary model f(:|n). The shaded areas show
priors ki1, k2, k3. 1 he crosses show the mode of the posterior under x1, k2, k3. The

posterior probabilities for absolute model assessment are proportional to the integral of
the likelihood over the respective shaded area.



Common Sense Auxiliary Model f;

e Mean function:
> One lag
> Linear
Variance function:
> GARCH(1,1)
Errors:

> Normal



Nesting Auxiliary Model f5

e Mean function:
> Two lags
> Nonlinear
Variance function:
> GARCH(1,1)
> Leverage
Errors:

> Flexible SNP density



Outline

e Overview
e Models considered
e Bayesian inference for general scientific models

e Results
> Relative comparison
> Absolute assessment

> Diagnostics

e Sensitivity analysis



Model Assessment
Relative Performance in Annual Data

Stock Returns

Posterior Probabilities for Three Models

1930—-2008 1950—2008

Habit Persistence 0.28 0.44
Long Run Risks 0.48 0.42
Prospect Theory 0.24 0.14

Data are annual stock returns. The auxiliary model has a two-lag nonlinear
mean function, a GARCH variance function with leverage, and a flexible error

distribution.



Model Assessment

Absolute Performance in Annual Data
Stock Returns

Posterior Probabilities for Three Models

1930—2008 1950—2008
Prior hab lrr pro hab lrr pro

r =0.1 0.29 0.36 0.10 0.40 0.39 0.29
k=1.0 0.30 0.26 0.30 0.38 0.35 0.34
x =10.0 0.41 0.38 0.60 0.22 0.26 0.37

The data are annual stock returns over the years shown. The auxiliary model
has a two-lag nonlinear mean function, GARCH variance function with lever-
age, and a flexible error distribution. k is the standard deviation of a prior
that imposes the habit model (hab), the long run risks model (lrr), and the

prospect theory model (pro), repectively, on the auxilliary model. The prior
weakens as k increases.



Model Assessment
Relative Performance in Annual Data
Consumption Growth and Stock Returns

Posterior Probabilities for Three Models

19302008 1950—-2008

Habit Persistence 0.00 1.00
Long Run Risks 1.00 0.00
Prospect Theory 0.00 0.00

Data are annual consumption growth and stock returns. The auxiliary model
has a two-lag nonlinear mean function, a GARCH variance function with

leverage, and a flexible error distribution.



Model Assessment
Absolute Performance in Annual Data
Consumption Growth and Stock Returns

Posterior Probabilities for Three Models

1930—2008 1950—2008
Prior hab lrr pro hab lrr pro

r =0.1 0.00 0.41 0.28 0.31 0.16 0.08
k=1.0 0.00 0.36 0.28 0.31 0.21 0.08
x = 10.0 1.00 0.23 0.44 0.38 0.64 0.84

The data are annual consumption growth and stock returns over the years
shown. The auxiliary model has a two-lag nonlinear mean function, GARCH
variance function with leverage, and a flexible error distribution. &k is the
standard deviation of a prior that imposes the habit model (hab), the long
run risks model (lrr), and the prospect theory model (pro), repectively, on the
auxilliary model. The prior weakens as k increases.



Model Assessment

Relative Performance in Annual Data
Consumption Growth, Stock Returns
and the Price Dividend Ratio

Posterior Probabilities for Three Models

1930—2008 1950—2008
Habit Persistence 0.00 1.00
Long Run Risks 1.00 0.00

Data are annual consumption growth, stock returns, and the price dividend
ratio. The auxiliary model is a one-lag VAR with homegeneous errors.



Model Assessment

Relative Performance in Annual Data
Consumption Growth, Stock Returns
and the Price Dividend Ratio

Posterior Probabilities for Three Models

1930—2008 1950—2008
Prior hab lrr hab lrr

k =0.1 0.00 0.00 0.00 0.00
k=1.0 0.00 0.00 0.33 0.00
x = 10.0 1.00 0.00 0.67 1.00

Data are annual consumption growth, stock returns, and the price dividend
ratio. The auxiliary model is a one-lag VAR with homegeneous errors. k is
the standard deviation of a prior that imposes the habit model (hab), the long
run risks model (lrr), and the prospect theory model (pro), repectively, on the
auxilliary model. The prior weakens as k increases.



Table 7. Diagnostics for the Habit Persistence Model

1930—-2008 1950—-2008

Mode Mode Diag- Mode Mode Diag-
Parameter k=0.1 x =10 nostic kK =0.1 k= 10 nostic

bo,1 -0.08 -0.05 -1.30 -0.06 -0.05 -0.21
bo,2 0.07 0.04 0.53 0.06 0.04 0.34
Bi11 0.08 0.16 -1.62 0.09 0.15 -1.21
B2 -0.16 -0.09 -0.94 -0.15 -0.22 0.64
Bio 0.29 0.32 -0.80 0.29 0.23 1.58
Boo 0.02 0.02 -0.10 0.02 0.00 0.35
Ro 11 -0.03 -0.01 -0.23 -0.03 -0.06 0.41
Ro,12 0.23 0.27 -0.85 0.23 0.22 0.29
Ro 22 0.21 0.21 -0.07 0.20 0.26 -0.74
P11 -0.06 0.17 -4.98 -0.05 -0.02 -0.55
P> -0.21 -0.22 O0.16 -0.21 -0.24 0.93
Q11 0.91 0.91 -0.04 0.91 0.91 0.13

Shown are the posterior modes from fitting (f1,7) to the bivariate con-
sumption growth and stock returns data over the periods and k values
shown together with the diagnostic, which is the change in each param-
eter estimate divided by the posterior standard deviation under k = 10.



Fig 14. Conditional Mean of the Habit Persistence Model
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The solid line is the conditional mean of auxiliary model f; with its parameters set to the
posterior mode from fitting (f1,7«) with x = 10 to the bivariate consumption growth and
stock returns data over the period 1930—2008. The dashed line is the same with k = 0.1. &k
is the standard deviation of a prior that imposes the habit persistence model on the auxiliary
model fi;. The prior weakens as « increases.



Fig 15. Conditional Volatility of the Habit Persistence Model

Conditional Consumption Growth Volatility
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Conditional Stock Returns Volatility

Conditional Correlation
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The solid line is the conditional volatility of auxiliary model f; with its parameters set to the
posterior mode from fitting (f1,7«) with x = 10 to the bivariate consumption growth and
stock returns data over the period 1930—2008. The dashed line is the same with xk = 0.1. &k
is the standard deviation of a prior that imposes the habit persistence model on the auxiliary
model fi;. The prior weakens as « increases.



Fig 16. Conditional Means of the Three Models
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The solid line is the conditional mean of the long run risks model with its parameters set to
the posterior mode from fitting to the bivariate consumption growth and stock returns data
over the period 1930—2008 using auxiliary model fs5. The dashed line is the same for the
habit persistence model and the dot-dash line is the same for the prospect theory model. The
shaded area is £1.96 posterior standard deviations.



Fig 17. Conditional Volatility of the Three Models

Conditional Consumption Growth Volatility
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The solid line is the conditional volatility of the lon

1980 . 2000 . .
g run risks model with its parameters set

to the posterior mode from fitting to the bivariate consumption growth and stock returns

data over the period 1930—2008 using auxiliary model fs.

The dashed line is the same for

the habit persistence model and the dot-dash line is the same for the prospect theory model.
The shaded area is £1.96 posterior standard deviations.



Outline

e Overview

e Models considered

e Bayesian inference for general scientific models
e Results

e Sensitivity analysis
> Role of the auxiliary model

> Do results depend on the choice of auxiliary model?



The Auxiliary Model

e Common sense suggests that the auxiliary model f1(y|z,n)
that best fits the data should be used, particularly for abso-
lute model assessment.

e [ heory dictates that for correct Bayesian inference an auxil-
iary model fs(y|x,n) that nests the structural models under
consideration be used.

e How to choose”? Particularly in our case because the nesting
model is absurd.



Points of View
e Using f; instead if fg means that a likelihood that differs
from the structural model’s likelihood is being used.
> Inference cannot be regarded as relating to the structural
model.
e Using f7 instead of fg is akin to GMM estimation.

> One only asks the structural model to match certain fea-
tures of the data and allows it to ignore others.



LLogically Correct Approach

e Use the nesting model f5(y|x,n) together with a prior =(n)
that forces equality, i.e., fs(y|lz,n)w(n) =f1(y|x,n).

e Does not work, even for relaxed priors that do not force
equality.

> There do not exist parameter settings for these strucural
models and solution methods that will stop them from
emitting bizarre simulations.



Sensitivity
e Does the choice of auxiliary model affect results?

e Does the choice of sample period, 1930—2008 or 1950—2008,
interact with the choice of auxiliary model?



Table 8. Auxiliary Models

Jo J1 J2 J3 Ja 5
Mean 1 lag 1 lag 1 lag 1 lag 1 lag 2 lags
Variance constant garch garch garch garch garch

leverage leverage leverage leverage

Errors normal normal normal flexible flexible flexible

nonlinear nonlinear

Parms univar 3 5 6 10 11 12
Parms bivar ®) 12 14 22 24 28

Variance matrices are of the BEKK form. When evaluated, data are
centered and scaled and lags are attenuated by a spline transform. Parms
univar is the number of parameters when y; = rgy and parms cgsr is the
same when y; = (¢t — ¢;—1,74:). T he habit model has 7 parameters, the
long run risks model has 13, and the prospect theory model has 11.



Table 9. Posterior Probability,
Stock Returns, 1930—2008

Model Jo J1 fo f3 fa Is

Habit 0.47 0.71 0.28 0.36 0.28 0.28
LR Risks 0.49 0.25 0.57 0.34 0.45 0.48
Prospect 0.04 0.04 0.15 0.30 0.27 0.24

The data are annual stock returns 1930—2008. Variance matrices are of
the BEKK form. When evaluated, data are centered and scaled and lags
are attenuated by a spline transform. The number of MCMC repetitions
is R = 25000.



Table 10. Posterior Probability,
Stock Returns, 1950—2008

Model Jo J1 fo f3 fa Is

Habit 0.51 0.49 0.44 0.42 0.46 0.44
LR Risks 0.47 0.42 0.51 0.49 0.45 0.42
Prospect 0.02 0.10 0.05 0.09 0.09 0.14

The data are annual stock returns 1950—2008. Variance matrices are of
the BEKK form. When evaluated, data are centered and scaled and lags
are attenuated by a spline transform. The number of MCMC repetitions
is R = 25000.



Table 11. Posterior Probability, Consumption
Growth and Stock Returns, 1930—2008

Model Jo f1 fo f3 fa /s

Habit 0.00 0.00 0.00 0.00 0.00 o0.00
LR Risks 1.00 1.00 1.00 1.00 1.00 1.00
Prospect 0.00 0.00 0.00 0.00 0.00 0.00

The data are annual stock returns and consumption growth 1930—2008.
Variance matrices are of the BEKK form. When evaluated, data are
centered and scaled and lags are attenuated by a spline transform. The
number of MCMC repetitions is R = 25000.



Table 12. Posterior Probability, Consumption
Growth and Stock Returns, 1950—2008

Model Jo f1 fo f3 fa /s

Habit 1.00 1.00 1.00 1.00 1.00 1.00
LR Risks 0.00 0.00 0.00 0.00 0.00 0.00
Prospect 0.00 0.00 0.00 0.00 0.00 0.00

The data are annual stock returns and consumption growth 1950—2008.
Variance matrices are of the BEKK form. When evaluated, data are
centered and scaled and lags are attenuated by a spline transform. The
number of MCMC repetitions is R = 25000.



Fig 18. Sensitivity to Specification of the Risk Aversion Parmater
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In each plot, the solid line is the posterior mean and the dashed
lines are plus and minus 1.96 posterior standard deviations plotted
against the auxiliary models fo through f5. From the left, the first
column is for the bivariate data data from 1930—2008, the second
for 1950—2008, the third for the univariate data 1930—2008, and
the fourth for 1950—2008.



Fig 19. Sensitivity to Specification of the Equity Premium
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In each plot, the solid line is the posterior mean and the dashed
lines are plus and minus 1.96 posterior standard deviations plotted
against the auxiliary models fo through f5. From the left, the first
column is for the bivariate data data from 1930—2008, the second
for 1950—2008, the third for the univariate data 1930—2008, and
the fourth for 1950—2008.



Fig 20. Sensitivity to Specification of Stock Returns Volatility
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In each plot, the solid line is the posterior mean and the dashed
lines are plus and minus 1.96 posterior standard deviations plotted
against the auxiliary models fo through f5. From the left, the first
column is for the bivariate data data from 1930—2008, the second
for 1950—2008, the third for the univariate data 1930—2008, and
the fourth for 1950—2008.



Fig 21. Sensitivity to Specification of the Correlation
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In each plot, the solid line is the posterior mean and the dashed
lines are plus and minus 1.96 posterior standard deviations plotted
against the auxiliary models fo through f5. From the left, the first
column is for the bivariate data data from 1930—2008, the second
for 1950—2008.



