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Econometric Problem
e Estimate a dynamic game
> with partially observed state
> with serially correlated state
with (possibly) endogenous state
with (possibly) complete information
with continuous or discrete choice

with (mixed) continuous or discrete state

e Applications:

> Entry and exit from industry, technol-
ogy adoption, technology upgrades, in-
troduction of new products, discontin-
uation of old products, relocation deci-
sions, etc.

Econometric Approach

e Bayesian econometrics

> accommodates a nondifferentiable, non-
linear likelihood

> easy to parallelize

> allows the use of prior information

e Develop a general solution algorithm

> computes pure strategy subgame per-
fect Markov equilibria

> using a locally linear value function

e Use sequential importance sampling (parti-
cle filter)

> to integrate unobserved variables out of
the likelihood

> to estimate ex-post trajectory of unob-
served variables




Results

e Method is exact

> Stationary distribution of MCMC chain
is the posterior.

> Because we prove the computed likeli-
hood is unbiased.

> Efficient, number of required particles is
small.

e Regularity conditions minimal.

Table 1. Related Literature

One Two or more
Game Player Players

Static 17
incomplete
observed

Dynamic
incomplete
observed

Dynamic
incomplete
discrete
unobserved

Static
complete
unobserved

Dynamic
complete
unobserved
correlated
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Table 2. Generics, Scott-Morton (1999)

Dominant F
(enter = 1, not e

Drug / Active Ingredient ANDA Date Mylan Novopharm Lemmon Geneva Total ~Revenue
Entrants _($'000s)

Sulindac 3 4 189010
Erythromycin Stearate 5 97

Nifedipine ¢ : 3
Minocyeline Hydrochloride ) : 55491
Methotrexate Sodium 5 Oct : 24848
Pyridostigmine Bromide 27 Nov. 2113
Estropipate
Loperamide Hydrochloride
Phendimetrazine

odium

me Fumarate

Tydrochloride
Hydrochloride

—oooo M~

Diflunisal
Carbidopa
Pindolol
Ketoprofen
Gemfibrozil 25 Jan.
Benzonatate 29 Jan
Methadone Hydrochloride 15 Apr. 93
Methazolamide 30 Jun. 93
Alprazolam 19 Oct. @
Nadolol E
Levonorgestrel
Metoprolol Tartrate
Naproxen
Naproxen Sodium

Acetate

164771
18120
71282

189717

547218
55329

im
Flurbiprofen
Sulfadiazine
Hydroxychloroquine Sulfate 30 Sep. 94 0

coccocorrocoococoooRooR

Mean 28 0.25 025 3.3 126901




Entry Game Characteristics

Heterogeneous unobservable costs

> Serially correlated costs.

Complete information

> Firms know each other’'s revenue and
costs.

Endogenous state

> Entry changes future costs.
+ Capacity constraint: increased costs.

* Learning: decreased costs.

Simultaneous move dynamic game.

An Entry Game I

e Therearei=1,...,I, firms that are iden-
tical ex ante.

e Firms maximize PDV of profits overt,... oo

e Each period ¢t a market opens and firms
make entry decisions:

> If enter A;; =1, else A;; = 0.

e Number of firms in the market at time ¢, is
Ne=Yl, Ay

An Entry Game II

e Gross revenue R; is exogenously determined.

e A firm's payoff is Ry/Ny — C;; where C; ; is
“cost".

e Costs are endogenous to past entry deci-
sions:

> cit = Ciuttcike (lower case denotes
logs)

> Ciut = te + pe(Ciut—1 — He) + Tcej
> Cikt = PaCiki—1T KaAit—1

> Source of the dynamics

e Coordination game: If multiple equilibria
(rare), the lowest cost firms are the en-
trants.

Solution I: Bellman Equation

For each player

Vi(Cit, C—it, Rt)
= Al (R/NF — Cy)
+ BEWVi(Cig1, Coingr, Rigr) | AF, AE Cit, Coig, Ri)

The value function for all players is
V(Ct, Rt) = (Vi(C1, C-1t, Ry), ..., Vi(Crt, C—1t, Rt))

— Ve, 1) is approximated by a local linear function.

— The integral is computed by Gauss-Hermite quadra-
ture.




Solution III: Local Linear
Approximation

Solution II: Subgame Perfect e The value function V is approximated as

e - follows:

Markov Equilibrium

> Define a coarse grid on
Equilibrium condition (Nash)
s = (C’u,la Tt C’LL,I7T7 Ck,17 R 7C/{3,I)'
Vi(AE, A, Ciy, Cig, Ri) > Vi(Aiy, AE,, Ciy, iy, R) Vit Each hypercube of the grid is indexed
its centroid K, called its key. The local
where linear approximation over the Kth hy-

percube is Vi (s) = bx + (Bg)s.

> For a three player game Vg is 3 x 1, by
= Ait (Rt/Ne = Cit) is3x1, Bgis3x7,and sis 7 x 1.
+ ﬂglVi(Ale» Aﬂ-,t_,_l, Citt1, Cipr1, Rit )| Aipy A—iy Ciyy C—iy Ri]

Vi(Aig, Ait, Ciy, C—iy, Ry)

e The local approximator is determined at
key K by (1) solving the game at a set
{sj} of states within the Kth hypercube,
(2) computing {V; = V(s;)} using the Bell-
man equation, and (3) computing the co-
efficients bx and By by regressing {V;} on
{s;}. Continue until by and By stabilize.

is the choice-specific payoff function.

Complete information: C;, R; known implies Af known
whence

Vi(AE 411, AE 1, Ciag1, Ciiger, Reg1) = Vi(Cliug1, Coiggr, Rig1)

> Usually only 6 hypercubes are visited.

14

Outcome Uncertainty

An Entry Game — Summary e Error density

E
e Log revenue: ry p(A¢| A, 0)

I | (p ) ( it zt)(] —p )1 ( it it)
(] LOg costs: Ci,t = Ci,u,t + Ci,k‘,t 1= 1, ey 1 =1

AtE S(Cu,tackytvrta 9)

> Ciut = te + pe(Ciui—1 — He) + Tcei
> Cikt = PaCikit—1 T Kadlit_1 e Two scenerios

> Boundedly rational: Ignhore outcome

e Parameters: 0 = (.ucapCao-Cv Hr, Or, Pa, Haaﬁapa) .
uncertainty.

e Solution method: AF = S(cuts Crtr7t, 0) > Fully rational: Take outcome uncer-

tainty into account.
> A deterministic function.

* Bellman equations modified to include
error density.




Abstraction

The state vector is

Tt = (mltam2t)v (1)

where z1; is not observed and zp; is observed.
The observation (or measurement) density is

pat |z, 0). (2)
The transition density is

p(wt|at—lth—179)' (3)

Its marginal is

p(z1elag—1,24-1,6). (4)
The stationary density is

p(z1¢6).

Assumptions

e We can draw from p(z1¢|a¢_1,2¢-1,6) and
p(z1¢10).

> Can draw a sample from p(z1:]6) by
simulating the game, and discarding ay
and XTot.

> Can draw from p(zq¢|a;—1,74-1,60) by
drawing from
p(z¢|as_1,74_1,0) and discarding zo;.

e Thereis an analytic expression or algorithm
to compute p(at|zt,0), p(wt|ai—1,24-1,0),
and p(z1¢la;_1,24-1,0).

e If evaluating or drawing from p(x1¢as_1,xi_1,0)
is difficult some other importance sampler
can be substituted.
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Estimation Overview

1. In an MCMC loop, propose a parameter
value and a seed.

. Given the parameter value and the seed,
compute an unbiased estimator of the in-
tegrated likelihood.

e Integrate by evaluating a likelihood that
includes latent variables at particles for
those latent variables and averaging.

. Use the estimate of the integrated likeli-
hood to make the accept/reject decision
of the MCMC algorithm.




The Likelihood

e With latent variables

T
L) = lH p(atlxtﬁ)p(wtlat17%1,9)]

t=1
X p(aO) o | 0)

Without latent variables

T
L£(0) = {H /p(at|mt76)p(xt|at173’3t179)d371t]
=1

X /p(ao7wo|9)dw1,o

Integrate by averaging sequentially over
progressively longer particles. Concate-
nated draws for fixed k that start at time
s and end at time t are denoted

= G

i&kgt is called a particle.

Particle Filter

1. Fort=20

(a) Start N particles by drawing xgkg from
p(z1 o|9) using s as the initial seed and

putting 357 =L for k=1,...,N.

If p(at, x| x14—1,0) is available, then

A ~(k
compute Co = % S, p(ag, z2,0| 96573,9)
otherwise put Cy = 1.

g()) = fcgkgov and

2. Fort=1,...,n

(a) For each particle, draw i&’i) from the
transition density

k
p(z1e]as—q, xg,t)_l, r241,0).

Compute

oy Pla] 78, 20,0) p@) wor a1, 2 1, 20,1,0)
Ut = - -

pER) a1, 2) | 22-1,6)
N
C= Z ﬁgk)wff)l
k=1
(Note that the draw pair is (3, z("))

and the weight pair is (v( ), ]{,))

~(kr) N () ~(k)
T1,0t = (xlot pwlt)
Compute the normalized weights
—(k)
—(k)
Ek 1Y

wy =

For k=1,...,N draw x&kg.t by sampling
with replacement from the set {:cgk()) "
according to the weights {wgk)}.

(Note the convention: Particles with
unequal weights are denoted by {m(k)}
After resampling the particles are de-
noted by {:cgft)}.)

(f) Set xgk) to the last element of xgk(%:t'




3. Done

(a) An unbiased estimate of the likelihood
is

T ~
o =1] &
t=0

and s’ is the last seed returned in Step 2e.

Why Does This Work?

e For each particle, draw 5%) from the tran-
sition density

k
p(z1t|az—1, :c§73_1, 24 1,0).

e Compute

—(k) p(at | 58?, 2, 0) P(igﬁ), o | ar—1, I(llf,,)_l, x2,¢-1,0)
’Ut =

p(f(li) lai1, irgﬁ,),l, x24-1,0)
N
Ci=>" 7M™
k=1

e An unbiased estimate of the likelihood is
T

00,s) =[] C:

t=0
where s is the initial seed.

Verification Requires Some
Notation

e In the Bayesian paradigm, 6 and {a¢, z¢}72 _

are defined on a common probability space.
Let Fr =0 {{as,mgs}';:_To , 9}.
The elements of a; and x; may be either
real or discrete. For z a vector with some
coordinates real and the others discrete,
let A(z) denote a product measure whose
marginals are either counting measure or
Lebesgue ordered to define an integral of
the form [ g(z) d\(z).

Particle filters are implemented by drawing
independent uniform random variables ugk)
and then evaluating a function* of the form
Xﬂf)(u) and putting izglf) = Xﬁ“)(ugk)) for
k=1,...,N. Denote integration with re-
spect to (ugl),...,ugN)) with ng)(u) sub-
stituted into the integrand by &£1. &1 0 is
defined similarly.

*E.g., a conditional probability integral transformation.
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To Show

Given weights u-}g’“), k=1,..., N, that satisfy

t B N k)
Hcs:gl,O:tg Zwt | Ft|
s=0 k=1

we seek to generate weights "J’t(i)l that satisfy

t+1 3 . N o
I Cs=¢&1 4416104 Wy [ Fega| s
s=0 k=1

where

t+1 t+1
£0) =[] Cs= | [[ rlast+1,22,5+1|Fs)| plag,z2,016)

s=0 s=1




We Show a More General
Result

Given draws i(llf&t and weights @, k = 1,...,N, that
satisfy

N
/g(wl,o:z) dP(x1,0:4|F) = &1 04 {5 {Z @f’“)g(:fi’f&t) |-7:t:| }
k=1

(k)

for integrable g(z1:), we seek to generate draws

and compute weights i;fi)l that satisfy

//g(xl,o:tyxl,t—o—l)dp(xlﬁoztyxl,t+1‘}—t+l)

N
= & 1o {5 S al g3, 78, 0) |ft+1} }
k=1

for integrable g(z1,0:¢, Z1t41)-

Bayes T heorem

(21,004, T1 t4 1104415 T2, 41, Ft)

_ P(aq1, 22141, 21,010, 21,441 F)
plag41, 2 1411Ft)

However

(21,006, 1 1411041, T2 441, Ft)
= p(x1,0:4, %1 4411F141)
(@415 2 441, 1,006, T1 41| Ft)

(41,22 44-1171,0:, T1 441, Ft)

x p(x1 t+1121,0:0 F)p(w1,0:¢F1)

plagy1, T2 14+11F)

Proof
Given w,@ and Z;, draw g"c&’_"i)ﬂ from p(zl‘f,+1|z§kg:t,]:¢) and define

~)  ~(k
a0 P(at+1,Ez,z,+1|1§,3;pr§,,)+l,fz) 0
1 p(ai+1, T2+1|F1) i

//g(w1.o:f,7w1,t+1)dP(w1,o:t,w1,1+1\ft+1)

p(ai+1, T21+1|F1)
XdX(z1441)dP(x1,0:¢| Ft)

p(ait1, T2 p41|T1,0:, 141, Ft)
9(@1,0:t, T1,441) p(1 441|100, Fr)

N
= E104& [/Z g(iﬁ’f&,, z141) ‘7’&)1 P(Il,z+1|5§%:pfz) dX(z141) | Fi
k=1

N
= &14416104E |:Z g(ﬁ%;piﬁﬁll) i)t(_):_)l |~7:z+1:|
k=1

is actually o®

Second to last w*) "
50 =,

t+1

Specialization

Put 1 =g(z104) = 9($1,0:tam1,t+l)-

Realize that the denominator of wf_lf_)l is

Cry1-

Algebra to express the numerator of ﬁ;gf_)l

in terms of problem primitives.

Show that resampling does not affect the
result as long as scale is preserved.

Use a telescoping argument to show that
weights can be normalized to sum to one
at a certain point in the algorithm.




Design — 1

e Three firms, time increment one year.
Outline > B is 20% internal rate of return

> pe and pp imply 30% profit margin, per-
sistent p¢

e Overview
Background kq IS @ 20% hit to margin with p, at 6

Solution method mo. half life.

oc and o, chosen to prevent monopoly
Econometrics

Outcome uncertainty 1 —pq is 5% (from
Simulation results an application).

> Design
> Results e Simulated from fully rational model.
0 = (IUJC)pro-Ca,u'Tyo-T)paaH&aﬁ)pa)

(9.7,0.9,0.1,10.0,2.0,0.5,0.2,0.83,0.95)
To 160, sm: T=40, md: T=120, 1g: T=360

Results — 1

e A large sample size is better. In Ta-
bles 3 through 6 the estimates shown in
the columns labeled "Ig" would not give
misleading results in an application.

Design — 2

. Fit fully rational model, blind proposal, and
multinomial resampling.

. Fit boundedly rational model, blind pro- In smaller sample sizes the specification er-

posal, and multinomial resampling. ror caused by fitting the boundedly ratio-
nal model to data generated by the fully
rational model can be serious: compare
columns “sm” and “md” in Tables 3 and 4.
The saving in computational time is about
10% relative to the fully rational model
so there seems to be no point to using
the boundedly rational model unless that is
what firms are actually doing, which they
are not in this instance.

. Fit fully rational model, adaptive proposal,
and multinomial resampling.

. Fit fully rational model, adaptive proposal,
and systematic resampling.




Results — 2

e Constraining g is beneficial: compare Fig-

ures 1 and 2. The constraint reduces the
bimodality of the marginal posterior dis-
tribution of o, and pushes all histograms
closer to unimodality.

Constraining pq is irrelevant except for a
small savings in computational cost: com-
pare columns “gB" and "8 & p" in Tables 3
through 6.

Improvements to the particle filter are help-
ful. In particular, an adaptive proposal
is better than a blind proposal; compare
Tables 3 and 5 and compare Figures 3
and 4. Systematic resampling is better
than multinomial resampling; compare Ta-
bles 5 and 6.

Table 3. Fully Rational Estimates
Blind Proposal, Multinomial Resampling

Constrained

Parameter Unconstrained 8 B & pa

value sm md g sm md g sm md Ig

970 1010 972 968 994 967 9.68 986 9.72
(0.15) (0.12) (0.06) (0.19) (0.11) (0.06) (0.18) (0.12)

090 058 086 092 069 092 091 069 085
(0.25) (0.09) (0.03) (0.26) (0.05) (0.03) (0.25) (0.11)

010 016 009 009 017 008 010 015 0.09
(0.05) (0.03) (0.01) (0.06) (0.03) (0.01) (0.07) (0.03)
987 9.98 996 988 9.99 998 984 9.99
(0.10) (0.03) (0.02) (0.10) (0.03) (0.02) (0.13) (0.06)
195 197 198 202 200 202 204 2.00
(0.09) (0.05) (0.01) (0.08) (0.02) (0.02) (0.10) (0.03)
076 056 058 059 057 056 076 057
(0.09) (0.07) (0.06) (0.22) (0.09) (0.05) (0.10) (0.07)
004 024 019 015 026 020 014 022
(0.05) (0.05) (0.02) (0.07) (0.05) (0.03) (0.06) (0.06)
090 095 087 083 083 083 083 083
(0.07) (0.04) (0.04)
097 094 095 096 094 095 095 095
(0.02) (0.01) (0.01) (0.02) (0.01) (0.01)

Table 4. Boundedly Rational Estimates
Blind Proposal, Multinomial Resampling

Constrained

Parameter Unconstrained 8 B & pa

value sm md g sm md g sm md Ig

970 1006 9.71 9.69 948 964 990 957
(0.18) (0.10) (0.06) (0.13) (0.06) (0.23) (0.14)

090 080 092 091 095 090 073 094
(0.13) (0.03) (0.02) (0.04) (0.03) (0.20) (0.03)

010 031 008 0.09 006 009 013 007
(0.13) (0.02) (0.01) (0.06) (0.02) (0.02) (0.05) (0.02)
984 9.96 9.96 999 992 982 10.00
(0.07) (0.02) (0.03) (0.02) (0.04) (0.14) (0.02)
191 195 1.9 196 1.99 200 2.01
(0.09) (0.04) (0.03) (0.05) (0.02) (0.09) (0.05)
022 047 052 056 055 078 055
(0.15) (0.13) (0.06) (0.06) (0.07) (0.06) (0.07)
001 025 0.9 036 020 010 032
(0.14) (0.05) (0.02) (0.08) (0.03) (0.10) (0.07)
0.61 095 085 083 0.8 083 083
(0.28) (0.04) (0.06)
097 093 095 094 095 095 095
(0.02) (0.01) (0.01) (0.02) (0.01) (0.01)

Table 5. Fully Rational Estimates
Adaptive Proposal, Multinomial Resampling

Constrained

Parameter Unconstrained 8 B & pa

value sm md g sm md g sm md Ig

970 1000 982 977 993 974 970 985
(0.24) (0.07) (0.05) (0.12) (0.07) (0.06) (0.15)

090 095 085 087 087 092 093 087
(0.03) (0.07) (0.05) (0.08) (0.04) (0.03) (0.09)

010 014 009 010 012 008 008 0.12
(0.02) (0.02) (0.01) (0.04) (0.02) (0.01) (0.04)
993 10.00 1001 10.00 9.99 997  9.94
(0.06) (0.02) (0.01) (0.05) (0.02) (0.02) (0.07)
193 198 199 201 198 200 203
(0.10) (0.02) (0.02) (0.09) (0.01) (0.01) (0.09)
011 051 047 056 059 057 047
(0.21) (0.09) (0.06) (0.17) (0.06) (0.06) (0.20)
019 020 017 017 021 018 024
(0.02) (0.03) (0.02) (0.06) (0.02) (0.02) (0.03)
0.87 095 092 083 083 08 083
(0.10) (0.03) (0.04)
095 094 095 096 095 095 095
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01)




Table 6. Fully Rational Estimates
Adaptive Proposal, Systematic Resampling

Figure 1. Fully Rational Distributions,
Constrained Unconstrained, Blind Proposal.

Parameter Unconstrained Jé B & pa

Histogram of mu_c
value sm md Ig s Ig sm md <

970 987 982 9.72 978 968 978 9.76
(0.24) (0.07) (0.05) (0.07) (0.06) (0.15) (0.09)

090 077 082 091 094 094 086 092
(0.03) (0.07) (0.05) (0.04) (0.03) (0.09) (0.04)

010 014 010 0.09 008 008 011 008 " -
(0.02) (0.02) (0.01) (0.02) (0.01) (0.04) (0.03) (0. ) Histogram of mu_r
10.05 10.00 9.97 996 994 978 9.95
(0.06) (0.02) (0.01) (0.02) (0.02) (0.07) (0.03) ) Histogram of sigma_r
194 199 1.99 197 201 207 198
(0.10) (0.02) (0.02) (0.01) (0.01) (0.09) (0.02)
0.61 053 0.56 036 061 071 058
(0.21) (0.09) (0.06) (0.06) (0.06) (0.20) (0.07)
021 022 018 018 018 017 0.19
(0.02) (0.03) (0.02) (0.02) (0.02) (0.03) (0.02)
093 0.96 0.90 083 083 083 083
(0.10) (0.03) (0.04)
0.96 094 095 093 095 095 095
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

Histogram of rho_c

Figure 3. Fully Rational Cost Estimates
B Constrained, Blind Proposal.

Figure 2. Fully Rational Distributions, £ ot s
Constrained, Blind Proposal. AR T

Histogram of mu_c

98 100 102

90 92 94 96

a0 o
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Histogram of sigma_r
Firm 3's log un

98 100 102

90 92 94 96

Circles indicate entry. Dashed line is true unobserved cost.
The solid line is the average of 3 constrained estimates over
all MCMC repetitions, with a stride of 25. The dotted line is
+ 1.96 standard deviations about solid line. The sum of the
norms of the difference between the solid and dashed lines
is 0.186146.




Figure 4. Fully Rational Cost Estimates
[ Constrained, Adaptive Proposal.

Firm 1's log unobserved cost

94 96 98 100 102

94 95 98 100 102

94 96 98 100 102

Circles indicate entry. Dashed line is true unobserved cost.
The solid line is the average of 3 constrained estimates over
all MCMC repetitions, with a stride of 25. The dotted line is
+ 1.96 standard deviations about solid line. The sum of the
norms of the difference between the solid and dashed lines
is 0.169411.




