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Econometric Problem

• Estimate a dynamic game

⊲ with partially observed state

⊲ with serially correlated state

⊲ with (possibly) endogenous state

⊲ with (possibly) complete information

⊲ with continuous or discrete choice

⊲ with (mixed) continuous or discrete state

• Applications:

⊲ Entry and exit from industry, technology adoption, tech-

nology upgrades, introduction of new products, discontin-

uation of old products, relocation decisions, etc.



Econometric Approach

• Bayesian econometrics

⊲ accommodates a nondifferentiable, nonlinear likelihood

⊲ easy to parallelize

⊲ allows the use of prior information

• Develop a general solution algorithm

⊲ computes pure strategy subgame perfect Markov equilibria

⊲ using a locally linear value function

• Use sequential importance sampling (particle filter)

⊲ to integrate unobserved variables out of the likelihood

⊲ to estimate ex-post trajectory of unobserved variables



Results

• Method is exact

⊲ Stationary distribution of MCMC chain is the posterior.

⊲ Because we prove the computed likelihood is unbiased.

⊲ Efficient, number of required particles is small.

• Regularity conditions minimal.



Table 1. Related Literature

One Two or more
Game Player Players

Static ∼ 17
incomplete
observed

Dynamic ∼ 9
incomplete
observed

Dynamic ∼ 1
incomplete
discrete
unobserved

Static 1 5
complete
unobserved

Dynamic 3 0
complete
unobserved
correlated
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Table 2. Generic pharmaceuticals, Scott-Morton (1999)

Dominant Firms
(enter = 1, not enter = 0)

Drug / Active Ingredient ANDA Date Mylan Novopharm Lemmon Geneva Total Revenue
Entrants ($’000s)

Sulindac 03 Apr. 90 1 0 1 1 7 189010
Erythromycin Stearate 15 May 90 0 0 0 0 1 13997
Atenolol 31 May 90 1 0 0 0 4 69802
Nifedipine 04 Jul. 90 0 1 0 0 5 302983
Minocycline Hydrochloride 14 Aug. 90 0 0 0 0 3 55491
Methotrexate Sodium 15 Oct. 90 1 0 0 0 3 24848
Pyridostigmine Bromide 27 Nov. 90 0 0 0 0 1 2113
Estropipate 27 Feb. 91 0 0 0 0 2 6820
Loperamide Hydrochloride 30 Aug. 91 1 1 1 1 5 31713
Phendimetrazine 30 Oct. 91 0 0 0 0 1 1269
Tolmetin Sodium 27 Nov. 91 1 1 1 1 7 59108
Clemastine Fumarate 31 Jan. 92 0 0 1 0 1 9077
Cinoxacin 28 Feb. 92 0 0 0 0 1 6281
Diltiazem Hydrochloride 30 Mar. 92 1 1 0 0 5 439125
Nortriptyline Hydrochloride 30 Mar. 92 1 0 0 1 3 187683
Triamterene 30 Apr. 92 0 0 0 1 2 22092
Piroxicam 29 May 92 1 1 1 0 9 309756
Griseofulvin Ultramicrocrystalline 30 Jun. 92 0 0 0 0 1 11727
Pyrazinamide 30 Jun. 92 0 0 0 0 1 306
Diflunisal 31 Jul. 92 0 0 1 0 2 96488
Carbidopa 28 Aug. 92 0 0 1 0 4 117233
Pindolol 03 Sep. 92 1 1 0 1 7 37648
Ketoprofen 22 Dec. 92 0 0 0 0 2 107047
Gemfibrozil 25 Jan. 93 1 0 1 0 5 330539
Benzonatate 29 Jan. 93 0 0 0 0 1 2597
Methadone Hydrochloride 15 Apr. 93 0 0 0 0 1 1858
Methazolamide 30 Jun. 93 0 0 0 1 3 4792
Alprazolam 19 Oct. 93 1 1 0 0 7 614593
Nadolol 31 Oct. 93 1 0 0 0 2 125379
Levonorgestrel 13 Dec. 93 0 0 0 0 1 47836
Metoprolol Tartrate 21 Dec. 93 1 1 0 1 9 235625
Naproxen 21 Dec. 93 1 1 1 1 8 456191
Naproxen Sodium 21 Dec. 93 1 1 1 1 7 164771
Guanabenz Acetate 28 Feb. 94 0 0 0 0 2 18120
Triazolam 25 Mar. 94 0 0 0 0 2 71282
Glipizide 10 May 94 1 0 0 0 1 189717
Cimetidine 17 May 94 1 1 0 0 3 547218
Flurbiprofen 20 Jun. 94 1 0 0 0 1 155329
Sulfadiazine 29 Jul. 94 0 0 0 0 1 72
Hydroxychloroquine Sulfate 30 Sep. 94 0 0 0 0 1 8492

Mean 0.45 0.28 0.25 0.25 3.3 126901



Entry Game Characteristics

• Heterogeneous unobservable costs

⊲ Serially correlated costs.

• Complete information

⊲ Firms know each other’s revenue and costs.

• Endogenous state

⊲ Entry changes future costs.

∗ Capacity constraint: increased costs.

∗ Learning: decreased costs.

• Simultaneous move dynamic game.



An Entry Game I

• There are i = 1, . . . , I, firms that are identical ex ante.

• Firms maximize PDV of profits over t, . . . ,∞

• Each period t a market opens and firms make entry decisions:

⊲ If enter Ai,t = 1, else Ai,t = 0.

• Number of firms in the market at time t, is Nt =
∑I

i=1 Ai,t.



An Entry Game II

• Gross revenue Rt is exogenously determined.

• A firm’s payoff is Rt/Nt − Ci,t where Ci,t is “cost”.

• Costs are endogenous to past entry decisions:

⊲ ci,t = ci,u,t + ci,k,t (lower case denotes logs)

⊲ ci,u,t = µc + ρc (ci,u,t−1 − µc) + σceit

⊲ ci,k,t = ρa ci,k,t−1 + κaAi,t−1

⊲ Source of the dynamics

• Coordination game: If multiple equilibria (rare), the lowest

cost firms are the entrants.



Solution I: Bellman Equation
For each player

Vi(Cit, C−i,t, Rt)

= AE
it

(

Rt/N
E
t − Cit

)

+ β E[Vi(Ci,t+1, C−i,t+1, Rt+1) |A
E
i,t, A

E
−i,t, Ci,t, C−i,t, Rt]

The value function for all players is

V (Ct, Rt) = (V1(C1t, C−1t, Rt), . . . , VI(CIt, C−It, Rt))

– V (ct, rt) is approximated by a local linear function.

– The integral is computed by Gauss-Hermite quadrature.



Solution II: Subgame Perfect Markov Equilibrium

Equilibrium condition (Nash)

Vi(A
E
i,t, A

E
−i,t, Ci,t, C−i,t, Rt) ≥ Vi(Ai,t, A

E
−i,t, Ci,t, C−i,t, Rt) ∀ i, t.

where

Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt)

= Ait (Rt/Nt − Cit)

+ βE[Vi(A
E
i,t+1, A

E
−i,t+1, Ci,t+1, C−i,t+1, Rt+1)|Ai,t, A−i,t, Ci,t, C−i,t, Rt]

is the choice-specific payoff function.

Complete information: Ct, Rt known implies AE
t known whence

Vi(A
E
i,t+1, A

E
−i,t+1, Ci,t+1, C−i,t+1, Rt+1) = Vi(Ci,t+1, C−i,t+1, Rt+1)



Solution III: Local Linear Approximation

• The value function V is approximated as follows:

⊲ Define a coarse grid on s = (cu,1, . . . , cu,I , r, ck,1, . . . , ck,I).Each

hypercube of the grid is indexed its centroid K, called its

key. The local linear approximation over the Kth hyper-

cube is VK(s) = bK + (BK)s.

⊲ For a three player game VK is 3 × 1, bK is 3 × 1 , BK is

3 × 7, and s is 7 × 1.

• The local approximator is determined at key K by (1) solving

the game at a set {sj} of states within the Kth hypercube,

(2) computing {Vj = V (sj)} using the Bellman equation, and

(3) computing the coefficients bK and BK by regressing {Vj}

on {sj}. Continue until bK and BK stabilize.

⊲ Usually only 6 hypercubes are visited.



An Entry Game – Summary

• Log revenue: rt

• Log costs: ci,t = ci,u,t + ci,k,t i = 1, . . . , I

⊲ ci,u,t = µc + ρc (ci,u,t−1 − µc) + σceit

⊲ ci,k,t = ρa ci,k,t−1 + κaAi,t−1

• Parameters: θ = (µc, ρc, σc, µr, σr, ρa, κa, β, pa)

• Solution method: AE
t = S(cu,t, ck,t, rt, θ)

⊲ A deterministic function.



Outcome Uncertainty

• Error density

⊲ p(At |A
E
t , θ) =

∏I
i=1(pa)

δ(Ait=AE
it)(1 − pa)

1−δ(Ait=AE
it)

⊲ AE
t = S(cu,t, ck,t, rt, θ)

• Two scenerios

⊲ Boundedly rational: Ignore outcome uncertainty.

⊲ Fully rational: Take outcome uncertainty into account.

∗ Bellman equations modified to include error density.



Abstraction

The state vector is

xt = (x1t, x2t), (1)

where x1t is not observed and x2t is observed. The observation

(or measurement) density is

p(at |xt, θ). (2)

The transition density is

p(xt | at−1, xt−1, θ). (3)

Its marginal is

p(x1t|at−1, xt−1, θ). (4)

The stationary density is

p(x1t | θ). (5)



Assumptions

• We can draw from p(x1t | at−1, xt−1, θ) and p(x1t | θ).

⊲ Can draw a sample from p(x1t | θ) by simulating the game,

and discarding at and x2t.

⊲ Can draw from p(x1,t | at−1, xt−1, θ) by drawing from

p(xt | at−1, xt−1, θ) and discarding x2t.

• There is an analytic expression or algorithm to compute

p(at |xt, θ), p(xt | at−1, xt−1, θ), and p(x1t|at−1, xt−1, θ).

• If evaluating or drawing from p(x1t|at−1, xt−1, θ) is difficult

some other importance sampler can be substituted.
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Estimation Overview

1. In an MCMC loop, propose a parameter value and a seed.

2. Given the parameter value and the seed, compute an unbi-

ased estimator of the integrated likelihood.

• Integrate by evaluating a likelihood that includes latent

variables at particles for those latent variables and aver-

aging.

3. Use the estimate of the integrated likelihood to make the

accept/reject decision of the MCMC algorithm.



The Likelihood

• With latent variables

Lt(θ) =





t
∏

s=1

p(at |xs, θ) p(xs | as−1, xs−1, θ)



 p(a0, x0 | θ)

• Without latent variables

L(θ) =
T
∏

t=1

∫

· · ·
∫

Lt(θ)
t

∏

s=0

dx1,s

• Integrate by averaging sequentially over progressively longer

particles. Concatenated draws for fixed k that start at time

s and end at time t are denoted

x̃
(k)
1,s:t = (x̃

(k)
1,s , . . . , x̃

(k)
1,t );

x̃
(k)
1,0:t is called a particle.



Particle Filter

1. For t = 0

(a) Start N particles by drawing x̃
(k)
1,0 from p(x1,0 | θ) using s

as the initial seed and putting w̄
(k)
0 = 1

N for k = 1, . . . , N .

(b) If p(at, x2t |x1,t−1, θ) is available, then compute

Ĉ0 = 1
N

∑N
k=1 p(a0, x2,0 | x̃

(k)
1,0, θ) otherwise put Ĉ0 = 1.

(c) Set x
(k)
1,0:0 = x̃

(k)
1,0, x

(k)
1,0 = x

(k)
1,0:0, and w

(k)
0 = 1

N .



2. For t = 1, . . . , n

(a) For each particle, draw x̃
(k)
1t from the transition density

p(x1t | at−1, x
(k)
1,t−1, x2,t−1, θ).

(b) Compute

v̄
(k)
t =

p(at | x̃
(k)
1,t , x2,t, θ) p(x̃

(k)
1,t , x2,t | at−1, x

(k)
1,t−1, x2,t−1, θ)

p(x̃
(k)
1,t | at−1, x

(k)
1,t−1, x2,t−1, θ)

Ĉt =
1

N

N
∑

k=1

v̄
(k)
t

(Note that the draw pair is (x̃
(k)
t , x

(k)
t−1) and the weight pair

is (v̄
(k)
t , 1

N ).)



(c) Set

x̃
(k)
1,0:t =

(

x
(k)
1,0:t−1, x̃

(k)
1,t

)

.

(d) Compute the normalized weights

ŵt =
v̄
(k)
t

∑N
k=1 v̄

(k)
t

(e) For k = 1, . . . , N draw x
(k)
1,0:t by sampling with replacement

from the set {x̃
(k)
1,0:t} according to the weights {ŵ

(k)
t }.

(Note the convention: Particles with unequal weights are

denoted by {x̃
(k)
0:t }. After resampling the particles are de-

noted by {x
(k)
0:t }.)

(f) Set x
(k)
t to the last element of x

(k)
1,0:t.



3. Done

(a) An unbiased estimate of the likelihood is

ℓ ′ =
T
∏

t=0

Ĉt

and s′ is the last seed returned in Step 2e.



Why Does This Work?

• For each particle, draw x̃
(k)
1t from the transition density

p(x1t | at−1, x
(k)
1,t−1, x2,t−1, θ).

• Compute

v̄
(k)
t =

p(at | x̃
(k)
1,t , x2,t, θ) p(x̃

(k)
1,t , x2,t | at−1, x

(k)
1,t−1, x2,t−1, θ)

p(x̃
(k)
1,t | at−1, x

(k)
1,t−1, x2,t−1, θ)

Ĉt =
N
∑

k=1

v̄
(k)
t w

(k)
t−1

• An unbiased estimate of the likelihood is

ℓ(θ, s) =
T
∏

t=0

Ĉt

where s is the initial seed.



Verification Requires Some Notation

• In the Bayesian paradigm, θ and {at, xt}
∞
t=−∞ are defined on

a common probability space. Let Ft = σ
{

{as, x2s}
t
s=−T0

, θ
}

.

• The elements of at and xt may be either real or discrete.

For z a vector with some coordinates real and the others

discrete, let λ(z) denote a product measure whose marginals

are either counting measure or Lebesgue ordered to define

an integral of the form
∫

g(z) dλ(z).

• Particle filters are implemented by drawing independent uni-

form random variables u
(k)
t and then evaluating a function∗

of the form X
(k)
1t (u) and putting x̃

(k)
1t = X

(k)
1t (u

(k)
t ) for k =

1, . . . , N . Denote integration with respect to (u
(1)
t , . . . , u

(N)
t )

with X
(k)
1t (u) substituted into the integrand by Ẽ1t. Ẽ1,0:t is

defined similarly.

∗E.g., a conditional probability integral transformation.



To Show

Given weights w̄
(k)
t , k = 1, . . . , N, that satisfy

t
∏

s=0

Cs = Ẽ1,0:t E





N
∑

k=1

w̄
(k)
t | Ft



 ,

we seek to generate weights w̄
(k)
t+1 that satisfy

t+1
∏

s=0

Cs = Ẽ1,t+1Ẽ1,0:t E





N
∑

k=1

w̄
(k)
t+1 | Ft+1



 ,

where

L(θ) =
t+1
∏

s=0

Cs =





t+1
∏

s=1

p(as+1, x2,s+1|Fs)



 p(a0, x2,0 | θ)



We Show a More General Result

Given draws x̃
(k)
1,0:t and weights w̃

(k)
t , k = 1, . . . , N, that satisfy

∫

g(x1,0:t) dP (x1,0:t|Ft) = Ẽ1,0:t







E





N
∑

k=1

w̃
(k)
t g(x̃

(k)
1,0:t) | Ft











for integrable g(x1t), we seek to generate draws x̃
(k)
1,t+1 and com-

pute weights w̃
(k)
t+1 that satisfy

∫ ∫

g(x1,0:t, x1,t+1) dP (x1,0:t, x1,t+1|Ft+1)

= Ẽ1,t+1Ẽ1,0:t







E





N
∑

k=1

w̃
(k)
t+1 g(x̃

(k)
1,0:t, x̃

(k)
1,t+1) | Ft+1











for integrable g(x1,0:t, x1t+1).



Bayes Theorem

p(x1,0:t, x1,t+1|at+1, x2,t+1,Ft) =
p(at+1, x2,t+1, x1,0:t, x1,t+1|Ft)

p(at+1, x2,t+1|Ft)
.

However

p(x1,0:t, x1,t+1|at+1, x2,t+1,Ft)

= p(x1,0:t, x1,t+1|Ft+1)

p(at+1, x2,t+1, x1,0:t, x1,t+1|Ft)

= p(at+1, x2,t+1|x1,0:t, x1,t+1,Ft)p(x1,t+1|x1,0:t,Ft)p(x1,0:t|Ft)

Ct+1 = p(at+1, x2,t+1|Ft)



Proof
Given w̃

(k)
t and x̃t, draw x̃

(k)
1,t+1 from p(x1,t+1|x

(k)
1,0:t,Ft) and define

w̃
(k)
t+1 =

p(at+1, x2,t+1|x̃
(k)
1,0:t, x̃

(k)
1,t+1,Ft)

p(at+1, x2,t+1|Ft)
w̃

(k)
t .

∫ ∫

g(x1,0:t, x1,t+1) dP (x1,0:t, x1,t+1|Ft+1)

=
∫∫

g(x1,0:t, x1,t+1)
p(at+1, x2,t+1|x1,0:t, x1,t+1,Ft)

p(at+1, x2,t+1|Ft)
p(x1,t+1|x1,0:t,Ft)

×dλ(x1,t+1)dP (x1,0:t|Ft)

= Ẽ1,0:t E





∫ N
∑

k=1

g(x̃
(k)
1,0:t, x1,t+1) w̃

(k)
t+1 p(x1,t+1|x̃

(k)
1,0:t,Ft) dλ(x1,t+1) | Ft





= Ẽ1,t+1Ẽ1,0:t E





N
∑

k=1

g(x̃
(k)
1,0:t, x̃

(k)
1,t+1) w̃

(k)
t+1 | Ft+1





Second to last w̃(k)
t+1

is actually w̃(k)
t+1

∣

∣

x̃(k)

t+1
=xt+1



Specialization

• Put 1 = g(x1,0:t) = g(x1,0:t, x1,t+1).

• Realize that the denominator of w̃
(k)
t+1 is Ct+1.

• Algebra to express the numerator of w̃
(k)
t+1 in terms of problem

primitives.

• Show that resampling does not affect the result as long as

scale is preserved.

• Use a telescoping argument to show that weights can be

normalized to sum to one at a certain point in the algorithm.
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Design – 1

• Three firms, time increment one year.

⊲ β is 20% internal rate of return

⊲ µc and µr imply 30% profit margin, persistent ρc

⊲ κa is a 20% hit to margin with ρa at 6 mo. half life.

⊲ σc and σr chosen to prevent monopoly

⊲ Outcome uncertainty 1 − pa is 5% (from an application).

• Simulated from fully rational model.

θ = (µc, ρc, σc, µr, σr, ρa, κa, β, pa)

= (9.7,0.9,0.1,10.0,2.0,0.5,0.2,0.83,0.95)

T0 = 160, sm : T = 40, md : T = 120, lg : T = 360



Design – 2

1. Fit fully rational model, blind proposal, and multinomial re-

sampling.

2. Fit boundedly rational model, blind proposal, and multino-

mial resampling.

3. Fit fully rational model, adaptive proposal, and multinomial

resampling.

4. Fit fully rational model, adaptive proposal, and systematic

resampling.



Results – 1

• A large sample size is better. In Tables 3 through 6 the

estimates shown in the columns labeled ”lg” would not give

misleading results in an application.

• In smaller sample sizes the specification error caused by fit-

ting the boundedly rational model to data generated by the

fully rational model can be serious: compare columns “sm”

and “md” in Tables 3 and 4. The saving in computational

time is about 10% relative to the fully rational model so there

seems to be no point to using the boundedly rational model

unless that is what firms are actually doing, which they are

not in this instance.



Results – 2

• Constraining β is beneficial: compare Figures 1 and 2. The

constraint reduces the bimodality of the marginal posterior

distribution of σr and pushes all histograms closer to uni-

modality.

• Constraining pa is irrelevant except for a small savings in

computational cost: compare columns “β” and “β & pa” in

Tables 3 through 6.

• Improvements to the particle filter are helpful. In particular,

an adaptive proposal is better than a blind proposal; compare

Tables 3 and 5 and compare Figures 3 and 4. Systematic

resampling is better than multinomial resampling; compare

Tables 5 and 6.



Table 3. Fully Rational Estimates, Blind Proposal, Multinomial Resampling

Constrained

Parameter Unconstrained β β & pa

value sm md lg sm md lg sm md lg

µc 9.70 10.10 9.72 9.68 9.94 9.67 9.68 9.86 9.72 9.68

(0.15) (0.12) (0.06) (0.19) (0.11) (0.06) (0.18) (0.12) (0.06)

ρc 0.90 0.58 0.86 0.92 0.69 0.92 0.91 0.69 0.85 0.91

(0.25) (0.09) (0.03) (0.26) (0.05) (0.03) (0.25) (0.11) (0.03)

σc 0.10 0.16 0.09 0.09 0.17 0.08 0.10 0.15 0.09 0.10

(0.05) (0.03) (0.01) (0.06) (0.03) (0.01) (0.07) (0.03) (0.01)

µr 10.00 9.87 9.98 9.96 9.88 9.99 9.98 9.84 9.99 9.99

(0.10) (0.03) (0.02) (0.10) (0.03) (0.02) (0.13) (0.06) (0.02)

σr 2.00 1.95 1.97 1.98 2.02 2.00 2.02 2.04 2.00 2.03

(0.09) (0.05) (0.01) (0.08) (0.02) (0.02) (0.10) (0.03) (0.01)

ρa 0.50 0.76 0.56 0.58 0.59 0.57 0.56 0.76 0.57 0.52

(0.09) (0.07) (0.06) (0.22) (0.09) (0.05) (0.10) (0.07) (0.04)

κa 0.20 0.04 0.24 0.19 0.15 0.26 0.20 0.14 0.22 0.22

(0.05) (0.05) (0.02) (0.07) (0.05) (0.03) (0.06) (0.06) (0.03)

β 0.83 0.90 0.95 0.87 0.83 0.83 0.83 0.83 0.83 0.83

(0.07) (0.04) (0.04)

pa 0.95 0.97 0.94 0.95 0.96 0.94 0.95 0.95 0.95 0.95

(0.02) (0.01) (0.01) (0.02) (0.01) (0.01)



Table 4. Boundedly Rational Estimates, Blind Proposal, Multinomial Resampling

Constrained

Parameter Unconstrained β β & pa

value sm md lg sm md lg sm md lg

µc 9.70 10.06 9.71 9.69 9.71 9.48 9.64 9.90 9.57 9.66

(0.18) (0.10) (0.06) (0.18) (0.13) (0.06) (0.23) (0.14) (0.05)

ρc 0.90 0.80 0.92 0.91 0.83 0.95 0.90 0.73 0.94 0.92

(0.13) (0.03) (0.02) (0.13) (0.04) (0.03) (0.20) (0.03) (0.03)

σc 0.10 0.31 0.08 0.09 0.13 0.06 0.09 0.13 0.07 0.09

(0.13) (0.02) (0.01) (0.06) (0.02) (0.02) (0.05) (0.02) (0.01)

µr 10.00 9.84 9.96 9.96 9.91 9.99 9.92 9.82 10.00 9.94

(0.07) (0.02) (0.03) (0.08) (0.02) (0.04) (0.14) (0.02) (0.04)

σr 2.00 1.91 1.95 1.99 1.93 1.96 1.99 2.00 2.01 2.00

(0.09) (0.04) (0.03) (0.05) (0.05) (0.02) (0.09) (0.05) (0.02)

ρa 0.50 0.22 0.47 0.52 0.72 0.56 0.55 0.78 0.55 0.57

(0.15) (0.13) (0.06) (0.15) (0.06) (0.07) (0.06) (0.07) (0.05)

κa 0.20 0.01 0.25 0.19 0.19 0.36 0.20 0.10 0.32 0.19

(0.14) (0.05) (0.02) (0.07) (0.08) (0.03) (0.10) (0.07) (0.02)

β 0.83 0.61 0.95 0.85 0.83 0.83 0.83 0.83 0.83 0.83

(0.28) (0.04) (0.06)

pa 0.95 0.97 0.93 0.95 0.97 0.94 0.95 0.95 0.95 0.95

(0.02) (0.01) (0.01) (0.02) (0.01) (0.01)



Table 5. Fully Rational Estimates, Adaptive Proposal, Multinomial Resampling

Constrained

Parameter Unconstrained β β & pa

value sm md lg sm md lg sm md lg

µc 9.70 10.00 9.82 9.77 9.93 9.74 9.70 9.85 9.73 9.65

(0.24) (0.07) (0.05) (0.12) (0.07) (0.06) (0.15) (0.09) (0.05)

ρc 0.90 0.95 0.85 0.87 0.87 0.92 0.93 0.87 0.92 0.94

(0.03) (0.07) (0.05) (0.08) (0.04) (0.03) (0.09) (0.04) (0.02)

σc 0.10 0.14 0.09 0.10 0.12 0.08 0.08 0.12 0.09 0.08

(0.02) (0.02) (0.01) (0.04) (0.02) (0.01) (0.04) (0.03) (0.01)

µr 10.00 9.93 10.00 10.01 10.00 9.99 9.97 9.94 9.96 9.96

(0.06) (0.02) (0.01) (0.05) (0.02) (0.02) (0.07) (0.03) (0.03)

σr 2.00 1.93 1.98 1.99 2.01 1.98 2.00 2.03 1.97 1.99

(0.10) (0.02) (0.02) (0.09) (0.01) (0.01) (0.09) (0.02) (0.02)

ρa 0.50 -0.11 0.51 0.47 0.56 0.59 0.57 0.47 0.51 0.61

(0.21) (0.09) (0.06) (0.17) (0.06) (0.06) (0.20) (0.07) (0.05)

κa 0.20 0.19 0.20 0.17 0.17 0.21 0.18 0.24 0.20 0.19

(0.02) (0.03) (0.02) (0.06) (0.02) (0.02) (0.03) (0.02) (0.02)

β 0.83 0.87 0.95 0.92 0.83 0.83 0.83 0.83 0.83 0.83

(0.10) (0.03) (0.04)

pa 0.95 0.95 0.94 0.95 0.96 0.95 0.95 0.95 0.95 0.95

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01)



Table 6. Fully Rational Estimates, Adaptive Proposal, Systematic Resampling

Constrained

Parameter Unconstrained β β & pa

value sm md lg sm md lg sm md lg

µc 9.70 9.87 9.82 9.72 9.81 9.78 9.68 9.78 9.76 9.65

(0.24) (0.07) (0.05) (0.12) (0.07) (0.06) (0.15) (0.09) (0.05)

ρc 0.90 0.77 0.82 0.91 0.93 0.94 0.94 0.86 0.92 0.94

(0.03) (0.07) (0.05) (0.08) (0.04) (0.03) (0.09) (0.04) (0.02)

σc 0.10 0.14 0.10 0.09 0.14 0.08 0.08 0.11 0.08 0.08

(0.02) (0.02) (0.01) (0.04) (0.02) (0.01) (0.04) (0.03) (0.01)

µr 10.00 10.05 10.00 9.97 9.95 9.96 9.94 9.78 9.95 9.96

(0.06) (0.02) (0.01) (0.05) (0.02) (0.02) (0.07) (0.03) (0.03)

σr 2.00 1.94 1.99 1.99 1.93 1.97 2.01 2.07 1.98 1.97

(0.10) (0.02) (0.02) (0.09) (0.01) (0.01) (0.09) (0.02) (0.02)

ρa 0.50 0.61 0.53 0.56 0.41 0.36 0.61 0.71 0.58 0.64

(0.21) (0.09) (0.06) (0.17) (0.06) (0.06) (0.20) (0.07) (0.05)

κa 0.20 0.21 0.22 0.18 0.20 0.18 0.18 0.17 0.19 0.18

(0.02) (0.03) (0.02) (0.06) (0.02) (0.02) (0.03) (0.02) (0.02)

β 0.83 0.93 0.96 0.90 0.83 0.83 0.83 0.83 0.83 0.83

(0.10) (0.03) (0.04)

pa 0.95 0.96 0.94 0.95 0.95 0.93 0.95 0.95 0.95 0.95

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01)



Figure 1. Fully Rational Distributions, Unconstrained, Blind Proposal.
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Figure 2. Fully Rational Distributions, β Constrained, Blind Proposal.
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Figure 3. Fully Rational Cost Estimates, β Constrained, Blind Proposal.
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Circles indicate entry. Dashed line is true unobserved cost. The solid line is the
average of β constrained estimates over all MCMC repetitions, with a stride of
25. The dotted line is ± 1.96 standard deviations about solid line. The sum of
the norms of the difference between the solid and dashed lines is 0.186146.



Figure 4. Fully Rational Cost Estimates, β Constrained, Adaptive Proposal.
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Circles indicate entry. Dashed line is true unobserved cost. The solid line is the
average of β constrained estimates over all MCMC repetitions, with a stride of
25. The dotted line is ± 1.96 standard deviations about solid line. The sum of
the norms of the difference between the solid and dashed lines is 0.169411.


