
Computational

Economics and

Econometrics

A. Ronald Gallant

Penn State University

c©2015 A. Ronald Gallant

1

Course Website

http://www.aronaldg.org/courses/compecon

Go to website and discuss

• Preassignment

• Course plan (briefly now, in more detail a few slides
later)

• Source code

• libscl

• Lectures

• Homework

• Projects

2

Course Objective – Intro

Introduce modern methods of computation and

numerical analysis to enable students to solve

computationally intensive problems in economics,

econometrics, and finance. The key concepts

to be mastered are the following:

• The object oriented programming style.

• The use of standard data structures.

• Implementation and use of a matrix class.

• Implementation and use of numerical algorithms.

• Practical applications.

• Parallel processing.

Details follow

3

Object Oriented Programming

Object oriented programming is a style of pro-

gramming developed to support modern com-

puting projects. Much of the development was

in the commercial sector. The features of in-

terest to us are the following:

• The computer code closely resembles the way we
think about a problem.

• The computer code is compartmentalized into ob-
jects that perform clearly specified tasks. Impor-
tantly, this allows one to work on one part of the
code without having to remember how the other
parts work: selective ignorance

• One can use inheritance and virtual functions both
to describe the project design as interfaces to its ob-
jects and to permit polymorphism. Interfaces cause
the compiler to enforce our design, relieving us of
the chore. Polymorphism allows us to easily swap
in and out objects so we can try different models,
different algorithms, etc.

• The structures used to implement objects are much
more flexible than the minimalist types of non-
object oriented language structures such as subrou-
tines, functions, and static common storage.

4

Learning Object Oriented

Programming

I believe that object oriented programming can

only be learned by example. However, the ex-

amples must be similar to one’s own projects

for two reasons.

1. It is hard to sustain interest in other peo-

ple’s problems at the level of detail required

to learn.

2. It is easier to transfer ideas, code, and de-

signs between similar projects.

One case study will implement MCMC esti-

mation of a habit economy. This example

encompasses all essential techniques: matrix

class, inheritance, polymorphism, vector class,

associative maps, parallelization by MPI, etc.

Another will estimate a dynamic game using

particle filters with paralleliztion by threads.

5

Data Structures

Data structures are standard ways of organiz-

ing information on a computer.

In a computer science course data structures

are usually conceptualized at the level of detail

of their implementation as trees, heaps, linked

lists, etc. We are interested in them at a higher

level of abstraction, primarily:

• The C++ vector class which allows one to store
any type of object in a container that is indexed
by integers. We will have a need to store GMM
objective functions each containing moments from
different data in a vector.

• The C++ associative map which allows one to
store any type of object in a container that is in-
dexed by any object that can be ordered. We will
have need to store matrices in an associative map
indexed by matrices.

6

Matrix Class

The matrix class that we shall use is libary

libscl, which is available by going to www.aronaldg.org

and clicking on “Browse webfiles”.

You will learn how to compile this library for

your own use.

You can see how such libraries are implemented

from the source code. But be warned, there

are many old fashioned C language tricks in it

designed to combat poorly implemented com-

pilers.

This library makes C++ programming as easy

as Gauss, Matlab, etc., but your programs

can be much more complex and will run much

faster.

7

Numerical Algorithms

These two references are the best places to

look first:

• Press, William H., Brian P. Flannery, Saul

A. Teukolsky, and William T. Vetterling

(1993), Numerical Recipes in C, The Art

of Scientific Computing, Second Edition,

Cambridge University Press.

• Miranda, Maria J., and Paul L. Fackler

(2002), Applied Computational Economics

and Finance, MIT Press.

The actual code in Press at. al. is of low quality. You

will usually have to rewrite it to get something usable.

Search the web instead. But their descriptions of the

numerical analysis ideas are concise and readable. Most

other numerical analysis references are neither

8

Numerical Algorithms

GNU has implemented a scientific library for

use with C and C++ This is a freeware com-

petitor to the proprietary NaG and IMSL li-

braries. See the web site

http://www.gnu.org/software/gsl/manual/html_node

for details.

There is an example of the use of a BFGS al-

gorithm from the GSL library in the C++ im-

plementation of SNP. The production version

of SNP uses a BFGS algorithm from libscl.

9

Numerical Algorithms

Boost is a repository for free peer-reviewed

portable C++ source libraries. The emphasis

is on libraries which work well with the C++

standard library. See

http://www.boost.org

for details.

Mostly augments C++ data structures but

does have matrix classes, random number gen-

erators, etc. The random number generators

are high quality.

10

Practical Application
Our case studies will implement the ideas in these pa-
pers:

• Gallant, A. Ronald, and George Tauchen (2009),
“SNP: A Program for Nonparametric Time Series
Analysis, User’s Guide,”
http://www.aronaldg.org/webfiles/snp

• Gallant, A. Ronald, and George Tauchen (2009),
“EMM: A Program for Efficient Method of Mo-
ments Estimation, User’s Guide,”
http://www.aronaldg.org/webfiles/emm

• Chernozhukov, Victor, and Han Hong (2003), “An
MCMC Approach to Classical Estimation,” Journal
of Econometrics 115, 293–346.

• Aldrich, Eric M., and A. Ronald Gallant (2010),
“Habit, Long Run Risks, Prospect? A Statistical In-
quiry,” Journal of Financial Econometrics, 9, 589–
618. http://www.aronaldg.org/webfiles/papers/tm.pdf

• Gallant, A. Ronald, Han Hong, and Ahmed Khwaja
(2008), “Bayesian Estimation of a Dynamic Game
with Endogenous, Partially Observed, Serially Cor-
related State,” http://www.aronaldg.org/webfiles/papers/socc.pdf

• Vertenstein, Mariana, Tony Craig, Adrianne Mid-
dleton, Diane Feddema, and Chris Fischer (2010)
“CESM1.0 User’s Guide,”
http://www.cesm.ucar.edu/models/cesm1.0/cesm/cesm doc/book1.html

11

Parallel Processing – Clusters

The Message Passing Interface (MPI) is a

standardized parallelization technique and the

most widely used. The following are the best

general and specific references, respectively:

• Foster, Ian, Designing and Building Parallel Pro-
grams (1995), Addison-Wesley, New York. ISBN
0-0201-57594-9. Online at
http://www.mcs.anl.gov/dbpp.

• Pacheco, Peter S., A User’s Guide to MPI (1995),
Manuscript, Department of Mathematics, Univer-
sity of San Francisco. Online at course website or
from math.usfca.edu in directory pub/MPI.

12

Parallel Processing – Multiple
CPU Machines

Although the Message Passing Interface (MPI)

can be used on multiple CPU machines (cores

counts as CPUs) pthreads provide more flexi-

bility. The following is the best general refer-

ence:

• Blaise Barney, POSIX Threads Programming, Liv-
ermore Computing.

http://www.llnl.gov/computing/tutorials/pthreads

• Additional references at the end of the article.

13

Parallel Processing – Multiple
CPU Machines

Rather than threads, on a multiple CPU ma-

chine, one can use OpenMP. Similar to threads

but less disruptive to code logic.

A common strategy on super-computers, which

are clusters of multiple CPU machines, is to

use OpenMP on each node and MPI across

nodes.

We will examine the code of a climate model

that uses this strategy to run on an IBM Power

575: 128 nodes, 32 CPUs per node, each CPU

is 4.7GHz, 4096 CPUs in total, weight 33,000

lbs., not counting the circulating water cooling

equipment.

The following is a good reference:

• OpenMP Specifications

http://www.openMP.org

14

Parallel Processing – Video
Card

Video cards are massively parallel devices, 300+

GPU’s are common. They are very cheap, e.g.

$600 for 240 GPU’s. They can be installed in

a desktop machine; your machine, e.g. a Mac,

may already have one installed. They are easy

to program using an NVIDIA C compiler that

has extensions for parallelization. Can mix host

CPU and GPU instructions. The bad news

is that copying from host memory to device

memory is slow. The following are the best

references:

• http://www.nvidia.com/object/cuda home.html

⊲ CUDA Programming Guide 2.2.1.pdf

⊲ CUDA Reference Manual 2.2.pdf

⊲ CUBLAS Library 2.1.pdf

15

Parallel Processing – Video
Card

Rather than CUDA on a video card one can use

OpenCL. OpenCL has broader applicability. It

can be used with other vendor’s cards, e.g.

AMD, and can be used on a Mac. CUDA quit

working on a Max with the Snow Leopard OS.

OpenCL comes with Snow Leopard and later

releases of Mac OS. OpenCL can be used to

drive any supported compute unit on a host,

including the CPU. The following are the best

references:

• http://www.khronos.org/opencl/registry/cl

⊲ OpenCL 1.2 Specification.pdf

⊲ OpenCL 1.1 C++ Bindings Specification.pdf

• Scarpino, Matthew, (2011) OpenCL in Ac-

tion, Manning Publications, Shelter Island,

NY. (http://www.manning.com)

16

Course Objective – Summary

Introduce modern methods of computation and

numerical analysis to enable students to solve

computationally intensive problems in economics,

econometrics, and finance. The key concepts

to be mastered are the following:

• The object oriented programming style.

• The use of standard data structures.

• Implementation and use of a matrix class.

• Implementation and use of numerical algorithms.

• Practical applications.

• Parallel processing.

Go to course website and go through Course

Plan in detail

17

Downloading Source Code

Go to the course web site and click on “Source

Code”

To view a text file such as ch00/makefile, left

click on ch00. and then left click on makefile.

To download the file, right click on makefile.

and select ”Download Linked File” (Safari) or

”Save Link As...” (Firefox).

18

Computing

• If you use a Microsoft Windows machine,

install Cygwin from http://www.cygwin.com

⊲ An alternative is MinGW (the Minimal-

ist GNU for Windows) from http://www.mingw.org

• If you use a Mac, install Xcode from the

second of the two CDs that came with

the machine or, for new machines, from

https://developer.apple.com/xcode

• Later in the course you will be given an

account on a machine with 16 cores for

assignments involving parallel computing.

19

Course Performance

Evaluation

• Homework 50%.

Homework assignments are posted on the

website.

• Midterm 20%.

Covers the C++ language. Many ques-

tions are similar to homework.

• Project 30%.

Topic chosen by the student with instruc-

tor’s approval. Suggestions are posted on

the website.

20

Running Code Locally

• Cygwin: Follow the documentation.

• MinGW: Follow the documentation.

⊲ Or see the excellent Appendix C of

Scarpino, Matthew, (2011) OpenCL in

Action, Manning Publications, Shelter

Island, NY. (http://www.manning.com)

• Mac: Use terminal.

• Thereafter, except for the next slide, ev-

erything looks much the same as what fol-

lows.

21

Logging on to a Remote Ma-
chine

Above, instead of username arg, use your username, e.g.,

ssh -l xyz125 -p 22006 128.118.17.250

On a PC use F-Secure SSH Client or Tera Term SSH or something

similar. On a Mac use Terminal, as shown, found in /Applica-

tions/Utilities.

22

Editors

• I use vi, which is available on any Unix ma-

chine.

⊲ A Mac is a Unix machine.

⊲ If vi filename doesn’t work then vim filename

will.

⊲ If both work, use vim rather than vi

⊲ See http://vimdoc.sourceforge.net for doc-

umentation.

• Any editor that will write ASCII text files

will work.

• The editor with the least learning cost is

nano, which is on the Mac and which can

be downloaded for a PC and many flavors

of Unix at http://www.nano-editor.org

23

Built-In Documentation for vi

Also see page 85 of Sams Teach Yourself Unix in 10 Minutes. Most

important: i to edit text, Esc to stop editing, :w to save, :q to

quit.

24

Build-In Documentation for vi

Warning: Backspace key may not work. Use Ctrl-H if this happens.

Can be fixed by edits to .vimrc. I’ll discuss if this happens and drives

you nuts.

25

Customizing Your Environment

Note the dot: vi .bashrc. The leading dot makes the file invisible.

To see all files type ’ls ’-lag. It is possible that you are using .tcshrc

or .cshrc; in which case the ideas here and on the next slide are

similar.

26

Customizing Your Environment

NEVER EVER CHANGE THE FIRST LINES OF THIS FILE.

Be extremely careful editing it. Best is to edit a copy called

.bashrc.new, test it with source .bashrc.new, and if it works in-

stall it with cp .bashrc.new .bashrc.

27

Chapter 0: Getting

started
First main point:

• Running the ”Hello World” program.

28

Running prog01 under Linux

• Assume code is in this directory:
$HOME/compecon/src/ch00
— equivalently —
∼/compecon/src/ch00

• Which has these files within it:
makefile
prog01.cpp

• Open a window

• Enter these commands within it:
cd ∼/compecon/src/ch00
make
prog01

29

Files within ∼/compecon/src/ch00
makefile

CXX = g++

SDIR = .

CXXFLAGS = -O2 -Wall -c

LDFLAGS = -lm

prog01 : prog01.o

$(CXX) -o prog01 prog01.o $(LDFLAGS)

prog01.o : $(SDIR)/prog01.cpp

$(CXX) $(CXXFLAGS) $(SDIR)/prog01.cpp

clean :

rm -f *.o

rm -f core core.*

veryclean :

rm -f *.o

rm -f core core.*

rm -f prog01

Warning: The indentation is with tabs, not

blanks.

The variable names CXX, CXXFLAGS, LDFLAGS are

GNU’s conventions for C++; most people

have gotten into the habit of using them.

30

GNU’s Makefile Variable Name Con-
ventions

CC C compiler e.g. CC = gcc
CFLAGS C compiler flags e.g. CFLAGS = -O2
FC Fortran 77 compiler e.g. FC = g77
FFLAGS Fortran 77 compiler flags e.g. FFLAGS = -O2
CXX C++ compiler e.g. CXX = g++
CXXFLAGS C++ compiler flags often use CFLAGS instead
F90 Fortran 90 compiler e.g. F90 = gfortran
F90FLAGS Fortran 90 compiler flags usually use FFLAGS
LDFLAGS Loader flags e.g. LDFLAGS = -lm

This list is not exhaustive.

Sometimes these variable names are put into the envi-
ronment and the definitions omitted from the makefile.

When not in a mixed compiler environment, many just
use CC, CFLAGS, FC, FFLAGS, and LDFLAGS for
whatever flavors of C, C++, or Fortran are being used.

31

Files within ∼/compecon/src/ch00

prog01

#include <iostream>

int main()

{

std::cout << "Hello, world" << ’\n’;

std::cout << "Goodbye\n";

return 0;

}

32

Some Makefile Variables

$@ The name of the rule’s target
$^ The dependency names, separated by spaces
$< The first dependency
$? Dependencies more current than the target

This list is not exhaustive.

In addition, one often adds the lines

.PHONY: clean

.PHONY: veryclean

to tell make that clean and veryclean are not

filenames.

33

Files within ∼/compecon/src/ch00

makefile.alt

CXX = g++

SDIR = .

CXXFLAGS = -O -Wall -c

LDFLAGS = -lm

prog01 : prog01.o

$(CXX) -o $@ $^ $(LDFLAGS)

prog01.o : $(SDIR)/prog01.cpp

$(CXX) $(CXXFLAGS) $^

.PHONY: clean

.PHONY: veryclean

clean :

rm -f *.o

rm -f core core.*

veryclean :

rm -f *.o

rm -f core core.*

rm -f prog01

Warning: The indentation is with tabs, not

blanks.

34

Class Demo

Run prog01 on laptop and course machine

Put CXX, CXXFLAGS, LDFLAGS in the env-

iornment, delete from makefile, rerun.

35

Chapter 0: Getting

started
Remaining main points:

• comments: either //... to end of line or /* ... */
free form

• include: #include <iostream>

• main: int main() { ...

• return: ... return 0; }

• expression: tmp = exp(15) + 77;

• left associative, right associative

• scope

36

Chapter 0 Main Points

Illustrate main points with prog02.

37

Chapter 1: Working with
strings.
Main points:

• variable, object, type

• definition, scope, local variable

• interface, which consists of constructors (string(),
string(n,’c’), string(”text”)), operators ([],+, <<
,=), member functions (size, c str), etc.

• overloading, e.g. string(), string(n,’c’), string(”text”)

• const

• cin, cout

38

Variable, Object, Type

• Type defines both a data structure and the

collection of operations that can be per-

formed on it. For instance, a string is a

type and some operations that are permit-

ted are str1+str2, cout<<str, str.c str().

An operation that is forbidden is string(’a’).

But string("a") is permitted.

• An object is part of a computer’s memory

that has a type. For instance, the state-

ment cout<<string("How now brown cow.");

will create a string object somewhere in

memory but it will not have a name (that

is available to us).

• A variable is an object that has a name.

For instance, the definition string cow =

string("How now brown cow."); gives the ob-

ject above the name cow.

39

Definition, Declaration

• A declaration associates a name to a type.

For instance, string str;. A name must

be declared before it can be used.

• A definition provides enough information

that the compiler can allocate space. A

statement can be both a declaration and

a definition. For simple types, most dec-

larations are also definitions. In Chapter 3

examples will make the distinction clear.

• Only one definition is allowed. There can

be numerous declarations. Header files

such as <string> are usually collections of

declarations. The corresponding defini-

tions are usually in source code that has

been compiled and placed in libraries.

• The extern specification forces a statement

to be a declaration and not a definition:

extern string str;.

40

const

Defining a variable to be const is a promise to

the compiler never to change it.

A const variable can only be defined, not de-

clared then defined, because first declaring

then defining would violate the promise not to

change the variable.

41

cin, cout
std::string s1 = "... something ... ";
std::cout << s1; // writes the entire string including blanks

std::string s2, s3;
std::cin >> s2; // reads one word from an input line
getline(cin,s3); // reads an entire input line

42

prog01

#include <iostream>

#include <string>

using namespace std;

int main(int argc, char** argp, char** envp) // See Section 10.4

{

// Here are three equivalant ways to define a std::string from

// a string literal according to the language standard.

string str01("The quick brown fox jumped over the lazy dogs");

string str02 = "The quick brown fox jumped over the lazy dogs";

string str03 = string("The quick brown fox jumped over the lazy dogs");

// The same constructior is called in each instance. The second

// and third statements are idiomatic because the assignment

// operator is not called.

cout << str01 << ’\n’; // This does not flush cout and is

// therefore more efficient than

cout << str02 << endl; // this line, which flushes cout.

cout << str03 << ’\n’;

cout.flush(); // Explicitly flushes cout.

43

prog01 (continued)

// The following are roughly equivalent to each other but not to the

// above. Here the strings are first initialized as null strings by

// the default constructor and then the assignment operator destroys

// the string and replaces it with another.

{ // Scope: Because of these braces ..

string str04, str05, str06;

str04 = str01;

str05 = string("The quick brown fox jumped over the lazy dogs");

str06 = "The quick brown fox jumped over the lazy dogs";

cout << str04 << ’\n’ << str05 << ’\n’ << str06 << ’\n’;

} // ... the variables str04, str05, str06 have been deleted

// and can no longer be used without re-definition.

string str06; // str06 is re-defined here

// Strings can be added

str06 = str03 + string("\n") + string("How now brown cow?") + "\n";

cout << str06;

44

prog01 (continued)

//A string of given length can be constructed with a fill character.

string str07(40,’*’);

// Elements can be changed, but BE WARNED, the first element is

// str07[0] and the last is str08[39]. An out of range access

// will cause the program to abort.

str07[0] = ’H’; str07[1] = ’o’; str07[2] = ’w’;

str07[4] = ’a’; str07[5] = ’r’; str07[6] = ’e’;

str07[8] = ’y’; str07[9] = ’o’; str07[10] = ’u’; str07[11] = ’?’;

cout << str07 << ’\n’;

return 0;

}

45

Class Demo

Run prog01.

46

Warning: Forward Reference

The discussion and examples for Chapter 2 will

also use material from Sections 10.1 through 10.4

of the book.

47

Chapter 2: Looping and
counting
Main points:

• control statements: while, for, do...while, switch,
if...else

• boolean, true and false

• operators: logical and arithmetic

• precedence, parenthesis

48

Built in types

There are many built-in types. They come in

five groups:

1. Boolean: bool (0 is false, anything else is

true)

2. Character types: char, signed char, un-

signed char, wchar t

3. Integer types: comes in three sizes – short

int, int, long int – and three forms —

signed int, int, unsigned int.

4. Floating-point types: float, double, and

long double.

5. No type information available: void.

49

Built in types

One can abbreviate short int by short and long

int by long. A short, int, or long is signed, a

char may or may not be signed.

For numerical work on an Intel box, you will

use only bool, char, int, double, and void. On

some machines, e.g. DEC, int and double are

not big enough for numerical work and one

needs to use long int and long double instead.

What we shall do a bit later to get portable

code is use a typedef to make REAL and IN-

TEGER types that are synonyms for whatever

is correct for the machine. They are defined

once and for all in a header.

50

Operators

The types can be related by a bewildering num-

ber of operators with elaborate rules of prece-

dence listed on page 32. Many you will never

ever use and you will probably never be able to

trust your memory of precedence.

Don’t worry about precedence, arithmetic op-

erators obey the rules of algebra i.e. a*x+y*z

means (a*x)+(y*z). For anything else, use

parenthesis to make sure the machine does

what you want. E.g., for

(r == 0 || r == rows - 1 || c == 0 || c == cols - 1)

on page 23 write

((r == 0) || (r == (rows-1)) || (c == 0) || (c == (cols-1)))

and there will be no doubt that the machine

will do what you want it to do.

51

Operators

Always use

a += b instead of a = a + b
a -= b instead of a = a - b
a *= b instead of a = a*b
a /= b instead of a = a/b

because they execute much faster.

52

Operators

When this executes

int a;

int b = 1;

a = ++b;

both a and b will equal 2. When this executes

int a;

int b = 1;

a = b++;

a will equal 1 and b will equal 2.

Stated differently: ++b returns b+1 and b++

returns b.

53

Operators

What the following will do is unpredictable

f(n++,n);

because the order in which arguments are eval-

uated by a function is not specified by the lan-

guage standard and there is variation both be-

tween and within implmentations.

What will happen is either equivalent to

f(n,n);
++n;

or to

f(n,n+1);
++n;

depending on which argument gets evaluated first.

Similarly for f(++n,n).

54

if statement

if (a < b) {

//do something

}

if (a < b) {

//do something

}

else {

//do something else

}

NEVER EVER, EVER LEAVE OFF THESE

BRACES despite what the book says.

55

while statement

i = 0; // initialize

while (i < 10) {

//do something

++i; // increment

}

The variable i has the value 10 at the end of

the loop

NEVER EVER, EVER LEAVE OFF THESE

BRACES despite what the book says.

56

while statement

i = 0; // initialize

do {

//do something

++i; // increment

} while (i < 10);

The variable i has the value 10 at the end of

the loop. Regardless of how i is initialized, the

statements in braces will be executed at least

once.

NEVER EVER, EVER LEAVE OFF THESE

BRACES despite what the book says.

57

while statement

for (int i=0; i<10; ++i) {

//do something

}

The variable i is not available end of the loop.

int i;

for (i=0; i<10; ++i) {

//do something

}

The variable i is available end of the loop.

NEVER EVER, EVER LEAVE OFF THESE

BRACES despite what the book says.

58

switch statement

char c = 0;

cin >> c;

switch (c) {

case ’a’:

// do something

break;

case ’b’:

// do something

break;

// etc

default :

// do something

break;

}

59

switch statement

int i = 0;

cin >> i;

switch (i) {

case 1 :

// do something

break;

case 2 :

// do something

break;

// etc

default :

// do something

break;

}

60

Brief Introduction to Arrays
and Pointers
See Sections 10.1, 10.2, and 10.3.

double a[3]; //array of three doubles a[0], a[1], a[2]

double* aptr; //a pointer to a double

aptr = &a[0]; //& means take the address of a[0]
//aptr now points to a[0]

cout << *aptr; //* means dereference aptr;
//the value of a[0] gets printed

aptr++; //aptr now points to a[1]

char* cptr = "Hello world.";

cout << *cptr++; // H gets printed, *cptr is now e.

61

Counting

Computer scientists count from zero. Container classes
(strings, vectors, maps), arrays of built-in types, etc. are
indexed from zero:

double x[n];
for (int i=0; i<n; ++i) {

x[i]=something;
}
double* xi = &x[0];
double* top = xi + n;
while (xi < top) {

*xi++ = something;
}
char* str = "The quick brown fox jumped.";
char copy[256];
char* s = str; char* c = ©[0];
while (*c++=*s++);

Economists, numerical analysts, statisticians, etc. count
from one. One just has to get used to being careful:

realmat y(n,1);
for (int i=1; i<=n; ++i) {

y[i]=x[i-1];
}

62

Invariants
An invariant is basically the state of an object with state
meaning much the same thing as its meaning in eco-
nomics.

Computer scientists attach a lot of importance to invari-
ants and to making sure that the invariants are correct;
i.e. that the state of the object is good.

Real world programmers understand the concept but
usually do not do a lot of invariant creation and check-
ing in production code because it slows execution too
much.

However, they often have such code in the program con-
trolled by a compiler directive to check the state while
debugging code:

#define DEBUG
// ...
#if defined DEBUG

// code to check state
#endif
// ...
#undef DEBUG

63

More on Arrays and Pointers

double b[6] = {0.0,1.0,2.0,3.0,4.0,5.0}; // initialization of an array

double* bptr = &b[0]; // pointer to first element

*(bptr+2) = 1.0; bptr[2] = 1.0; // equivalent, all change 2.0 to 1.0

*(b+2) = 1.0; b[2] = 1.0; // remember, counting starts at 0

char d[13] = {’H’,’e’,’l’,’l’,’o’,’ ’,’W’,’o’,’r’,’l’,’d’,’.’,’\0’};

char* dptr = &d[0];

*(dptr+11) = ’!’; d[11] = ’!’; // both legal, both change ’.’ to ’!’

char* cptr = "Hello world."; // cptr points to a string literal

// of 13 chars, a trailing ’\0’

// gets stuck in automatically

*(cptr+11) = ’!’; // illegal, program will abort with a segmentation

// fault because a string literal is stored in

// static memory and cannot be changed.

// Moral: It is much safer to use the C++ string class than to fool

// with C style strings.

64

prog01

#include <iostream>

using std::cout;

int main()

{

double b[6] = {0.0,1.0,2.0,3.0,4.0,5.0}; // b is actually

// a pointer

double* bptr = &b[0];

for (int i=0; i<6; ++i) cout << b[i] << " "; cout << ’\n’;

*(bptr+2) = 1.0;

for (int i=0; i<6; ++i) cout << b[i] << " "; cout << ’\n’;

bptr[2] = 2.0;

for (int i=0; i<6; ++i) cout << b[i] << " "; cout << ’\n’;

*(b+2) = 3.0;

for (int i=0; i<6; ++i) cout << b[i] << " "; cout << ’\n’;

b[2] = 4.0;

for (int i=0; i<6; ++i) cout << b[i] << " "; cout << ’\n’;

return 0;

}

65

prog02

#include <iostream>

#include <fstream>

#include <string>

using std::ofstream;

using std::string;

using namespace std;

int main(int argc, char** argp, char** envp) // See Section 10.4

{

char* cstr = "This is a C-style string.";

cout << cstr << ’\n’;

string sstr(cstr); // How to convert a C-string

cout << sstr << ’\n’; // to a C++ string

const char* copy = sstr.c_str(); // How to convert a C++ string

cout << copy << ’\n’; // to a C-string

ofstream fout("arg.txt"); // How to open a file for writing

if (!fout) { // How to error check an fstream

cerr << "File open failed\n";

return 1;

}

66

prog02(continued)

char** ptr; // Pointer to a pointer to a C-style string

char* str; // Pointer to a char.

// Remark: A C-style string is an array of char whose

// last element is ’\0’. Most functions that have a

// a pointer to char as an argument assume that it

// points to the first element of a C-style string.

ptr = argp; // Don’t want to change argp so assign to ptr

for (int i=0; i<argc; ++i) {

str = *ptr++; // Derefernce, assign, increment

fout << str << ’\n’; // Print str

}

// Remark: When operator<<’s argument is

// a pointer to char it is assumed to be

// pointer to a C-style string, which is

// a ’\0’ terminated array of char. The

// array is printed, not the pointer value.

67

prog02(continued)

ptr = argp;

for (int i=0; i<argc; ++i) {

str = *ptr++; // Dereference ptr, assign to str, increment

while(*str) { // C-strings terminated by ’\0’, i.e. false

fout << *str++; // Print one character, increment

}

fout << ’\n’;

}

for (int i=0; i<argc; ++i) { // Equivalent, [] dereferences

fout << argp[i] << ’\n’; // pointers

}

for (int i=0; i<argc; ++i) { // Equivalent, [][] dereferences

int j=0; // pointers

while(argp[i][j]) fout << argp[i][j++];

fout << ’\n’;

}

68

prog02(continued)

ofstream envout("env.txt");

ptr = envp;

while(*ptr) { // Last pointer in envp is null, i.e., 0

envout << *ptr++ << ’\n’;

}

return 0;

}

69

prog03 A better way

#include "libscl.h"

using namespace std;

using namespace scl;

int main(int argc, char** argp, char** envp)

{

// A better way, vectors are discussed in Chapter 3.

vector<string> arguments;

char** ptr = argp;

char** top = argp + argc;

while (ptr < top) arguments.push_back(*ptr++);

vector<string> environment;

ptr = envp;

while (*ptr) environment.push_back(*ptr++);

70

prog03 (continued)

ofstream fout;

fout.open("arg.txt");

if (!fout) error("Error, cannot open fout");

vector<string>::size_type i = 0;

while (i != arguments.size()) fout << arguments[i++] << ’ ’;

fout << ’\n’;

fout.close(); fout.clear();

fout.open("env.txt");

if (!fout) error("Error, cannot open fout");

i = 0;

while (i != environment.size()) fout << environment[i++] << ’\n’;

fout.close(); fout.clear();

return 0;

}

71

Class Demo

Run prog01 and prog03.

72

Arrays and Pointers

The use of C-style arrays and strings is con-

fusing and error prone.

The use of C-style arrays and strings can be

avoided in C++ and should be.

C-style strings are avoided by using the string

class from the STL, as we have seen.

C-style arrays can be avoided using a matrix

class. This is our next topic.

73

Installation and use of a
library

We will install libscl, which is a statistical com-

puting library built upon a matrix class.

The matrix class is very similar to the string

class in concept and usage.

It will give you the ease of doing matrix algebra

in C++ that you have in Gauss, Matlab, Splus,

R, etc.

But it will run much faster!

74

Installing libscl

• Go to the course website

www.aronaldg.org/courses/compecon

• Click on libscl

• Download file libscl.tar

• Assume for the remaining slides that the

file libscl.tar is downloaded to $HOME, which

is your home directory.

75

Installing libscl
arg@argux0$ cd $HOME
arg@argux0$ mkdir lib
arg@argux0$ cd lib
arg@argux0$ tar -xf ../libscl.tar
arg@argux0$ ls -l
total 4
drwxrwxr-x 7 arg arg 4096 Dec 29 11:11 libscl
arg@argux0$ cd libscl
arg@argux0$ ls -l
total 32
drwxrwxr-x 2 arg arg 4096 Dec 29 11:11 cblas
-rw-rw-r-- 1 arg arg 1083 Dec 29 11:11 copyrite
drwxrwxr-x 2 arg arg 4096 Dec 29 11:11 gpp
drwxrwxr-x 2 arg arg 4096 Dec 29 11:11 ms
drwxrwxr-x 2 arg arg 4096 Dec 29 11:11 src
drwxrwxr-x 2 arg arg 12288 Dec 29 11:11 test
arg@argux0$ cd gpp
arg@argux0$ make
arg@argux0$ cd ../cblas
arg@argux0$ make

76

Using libscl

• Look at makefiles.

• Hello world – painless version of Chapter

2’s starbox.

• Regression – easy as Matlab or Gauss.

• Data construction – illustrates random num-

ber generation.

• Detailed study of headers that define the li-

brary – scltypes.h, sclerror.h, intvec.h, real-

mat.h, libscl.h.

77

makefile

CXX = g++

SDIR = .

ISCL = $(HOME)/lib/libscl/gpp

LSCL = $(HOME)/lib/libscl/gpp

CXXFLAGS = -O2 -Wall -c -I$(SDIR) -I$(ISCL)

LDFLAGS = -lm -L$(LSCL) -lscl

PROGRAMS = data hello regr

all: $(PROGRAMS)

data : data.o

$(CXX) -o data data.o $(LDFLAGS)

data.o : $(SDIR)/data.cpp

$(CXX) $(CXXFLAGS) $(SDIR)/data.cpp

hello : hello.o

$(CXX) -o hello hello.o $(LDFLAGS)

hello.o : $(SDIR)/hello.cpp

$(CXX) $(CXXFLAGS) $(SDIR)/hello.cpp

78

makefile (continued)

regr : regr.o

$(CXX) -o regr regr.o $(LDFLAGS)

regr.o : $(SDIR)/regr.cpp

$(CXX) $(CXXFLAGS) $(SDIR)/regr.cpp

clean :

rm -f *.o

rm -f core core.*

veryclean :

rm -f *.o

rm -f core core.*

rm -f $(PROGRAMS)

79

hello.cpp

#include "scltypes.h"

#include "sclerror.h"

#include "sclfuncs.h"

#include "intvec.h"

#include "realmat.h"

#include "kronprd.h" // libscl.h is the only one actually needed

#include "libscl.h" // because each includes its predecessor.

using namespace scl;

using std::cout;

using std::string;

int main(int argc, char** argp, char** envp)

{

cout << starbox("/Hello world//");

cout << starbox("/How now /brown cow//");

string msg("\nSecond argument changes delimiter\n");

msg += string("’/’ is no longer a delimiter\n\n");

cout << starbox(msg.c_str(),’\n’);

return 0;

}

80

hello > hello.out

**

* *

* Hello world *

* *

**

**

* *

* How now *

* brown cow *

* *

**

**

* *

* Second argument changes delimiter *

* ’/’ is no longer a delimiter *

* *

**

81

regr.cpp

#include "libscl.h"

using namespace scl;

using std::cout;

int main(int argc, char** argp, char** envp)

{

realmat data;

vecread("regr.dat",data);

realmat y = data("",1);

realmat X = data("",seq(2,data.ncol()));

realmat b = inv(T(X)*X)*T(X)*y;

realmat sse = T(y - X*b)*(y - X*b);

realmat V = sse[1]*inv(T(X)*X)/(y.nrow()-X.ncol());

cout << starbox("/Estimate of b and its variance//");

cout << b << V;

return 0;

}

82

regr > regr.out

**

* *

* Estimate of b and its variance *

* *

**

Col 1

Row 1 0.72910

Row 2 1.50053

Row 3 0.97680

Col 1 Col 2 Col 3

Row 1 0.00875663 -0.013017 -0.00046027

Row 2 -0.013017 0.025357 -0.00014200

Row 3 -0.00046027 -0.00014200 0.00199555

83

data.cpp

#include "libscl.h"

using namespace scl;

int main(int argc, char** argp, char** envp)

{

INTEGER n=100;

INTEGER p=4;

INT_32BIT seed = 100542;

realmat data(n,p);

for (INTEGER i=1; i<=n; ++i) {

data(i,2) = 1.0;

data(i,3) = ran(seed);

data(i,4) = unsk(seed);

data(i,1) = data(i,2)+data(i,3)+data(i,4)+0.5*unsk(seed);

}

vecwrite("regr.dat",data);

return 0;

}

84

Headers

• scltypes.h – contains typedefs and includes

headers used frequently.

⊲ Go to http://www.cplusplus.com/reference/cfloat

before looking at scltypes.h

• sclerror.h – the error handler.

• sclfuncs.h – routines and classes that don’t

use class realmat.

• intvec.h – integer vectors used as a helper

class for realmat.

• realmat.h – declares the matrix class real-

mat.

• kronprd.h – declares the matrix class kro-

nprd.

• libscl.h – routines and classes that use class

realmat.

85

Extensive libscl example

Discuss headers.

Discuss tstrm.cpp.

86

The BLAS

The blas, or more relevant to us the cblas, is

a set of functions for matrix algebra that are

optimized to be as fast as possible for a given

machine.

There are two main sources of the blas: the

manufacturer of the CPU, and ATLAS (Au-

tomatrically Tuned Linear Algebra Software),

http://math.atlas.sourceforge.net. The one

routine that provides a huge performance im-

provement is matrix multiply:

cblas dgemm.

The performance advantage can be 100 to 1

for large matrices.

libsclcb uses the cblas. libsclcb is included

with the libscl distribution.

87

cblas dgemm

Computes: C ← αAB + βC

Syntax:

cblas_degmm(Order, TransA, TransB,
M, N, K,
alpha, A, lda, B, ldb,
beta, C, ldc)

Used in: dgmprd.cpp and realmat.cpp

Example:

//The following call computes C = A*B;

realmat C(A.nrow(),B.ncol());
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans,

A.nrow(), B.ncol(), A.ncol(),
1.0, A.begin(), A.nrow(), B.begin(), B.nrow(),
0.0, C.begin(), C.nrow());

88

General description of cblas dgemm

More generally: C ← αop(A)op(B) + βC

If TransA == CblasNoTrans, then op(A) = A.
If TransA == CblasTrans, then op(A) = A′

M and K are the number of rows and columns of op(A),
respectively

If TransB == CblasNoTrans, then op(B) = B.
If TransB == CblasTrans, then op(B) = B′

K and N are the number of rows and columns of op(B),
respectively

M and N are the number of rows and columns of C,
respectively.

If Order == CblasColMajor then matrices are stored
columnwise and lda is the number of rows that A was
dimensioned with, ldb is the same for B, and ldc is the
same for C.

If Order == CblasRowMajor then matrices are stored
by rows and lda is the number of columns that A was
dimensioned with, ldb is the same for B, and ldc is the
same for C.

A, B, and C are pointers to the first elements of A, B,
and C, respectively, which are all arrays of double.

alpha and beta are double.

89

cblas dgemm

More generally: C ← αop(A)op(B) + βC

Syntax:

cblas_degmm(Order, TransA, TransB,
M, N, K,
alpha, A, lda, B, ldb,
beta, C, ldc)

Example:

//The following call computes C = A’*B;

INTEGER M = A.ncol();
INTEGER N = B.ncol();
INTEGER K = A.nrow();
realmat C(M,N);

cblas_dgemm(CblasColMajor, CblasTrans, CblasNoTrans,
M, N, K,
1.0, A.begin(), A.nrow(), B.begin(), B.nrow(),
0.0, C.begin(), C.nrow());

90

How dgemm Works

It localizes the computation to ensure that all

variables are in the CPU’s cache. The goal is

to minimize waiting for reading and writing to

memory.

Look at /proc/cpuinfo on latte and other ma-

chines to see cache size.

Loop unrolling (or loop unwinding) is a device

to get the cache filled with the correct ele-

ments. Unrolling examples follow.

The cblas also reorders instructions to exploit

pipelining.

91

Loop Unrolling
/*
Compute C=A*B where C is MxN, A is MxK, B is KxN, and
cache holds at least 12 elements
*/
INTEGER MN=M*N;
for (INTEGER i=1; i<=MN; ++i) C[i] = 0.0;
INTEGER M0=4*(M/4); INTEGER M1=M-M%4+1;
for (INTEGER k=1; k<=K; ++k) {

for (INTEGER j=1; j<=N; ++j) {
for (INTEGER i=0; i<M0; i+=4) {

C(i+1,j) += A(i+1,k)*B(k,j);
C(i+2,j) += A(i+2,k)*B(k,j);
C(i+3,j) += A(i+3,k)*B(k,j);
C(i+4,j) += A(i+4,k)*B(k,j);

}
for (INTEGER i=M1;i<=M;++i) C(i,j) += A(i,k)*B(k,j);

}
}

Remark: The GNU g++ compiler will automatically un-
roll loops under -O3.

92

Duff’s Device
INTEGER MN=M*N;
for (INTEGER i=1; i<=MN; ++i) C[i] = 0.0;
for (INTEGER k=1; k<=K; ++k) {

for (INTEGER j=1; j<=N; ++j) {
INTEGER i = 0;
INTEGER M0 = (M + 7) / 8;
switch (M % 8) {

case 0: do {
C(++i,j) += A(i,k)*B(k,j);

case 7: C(++i,j) += A(i,k)*B(k,j);
case 6: C(++i,j) += A(i,k)*B(k,j);
case 5: C(++i,j) += A(i,k)*B(k,j);
case 4: C(++i,j) += A(i,k)*B(k,j);
case 3: C(++i,j) += A(i,k)*B(k,j);
case 2: C(++i,j) += A(i,k)*B(k,j);
case 1: C(++i,j) += A(i,k)*B(k,j);

} while (--M0 > 0) ;
}

}
}

93

Some Timings
Program src/cblas/mult, Xeon Quad Core 3.16GHz 6144KB cache,
M, N, K = 16005 1000 100

Do not depend on optimization flag:

Using libscl’s C = A*B, dgmprd clock = 4.78, 4.61

Using libsclcb’s C = A*B, dgmprd clock = 0.74, 0.5

Using cblas_dgemm clock = 0.5

Optimization flag O0:

Using loop unrolling clock = 26.92

Using Duff’s device clock = 26.76

Using no acceleration techniques clock = 27.29

Optimization flag O1:

Using loop unrolling clock = 6.94

Using Duff’s device clock = 6.91

Using no acceleration techniques clock = 7.14

Optimization flag O2:

Using loop unrolling clock = 5.68

Using Duff’s device clock = 6.12

Using no acceleration techniques clock = 5.76

Optimization flag O3:

Using loop unrolling clock = 5.71

Using Duff’s device clock = 6.13

Using no acceleration techniques clock = 5.76

94

Code

• Look at makefiles and mult.cpp in src/cblas.

⊲ Mention stopwatch in libscl.

• Look at dgmprd in libscl.

95

Chapter 3: Working with
batches of data
Main points:

• introduces the first and simplest of the container
classes in the STL, the vector class

• shows how to apply an algorithm from <algorithm>
to a container class, namely sort

• describes the logic behind using ”while (cin >> x)
{ ... }” to test for end of file

• describes how to change and restore the precision
of an ostream

⊲ Can use fmt in libscl instead

96

Container classes

The most useful in computational economics:

1. string, used to store and manipulate char-

acter data

2. vector, used to store any type that is use-

fully indexed by an int

3. list, like a vector, but used when there will

be a lot of insertions and both ends will be

growing

4. associative maps, used to store any type

and index it by any type for which compar-

ison can be defined; i.e. realmats indexed

by realmats

97

Begin and end

The text showed how to use the member func-

tions begin and end of the vector class as in-

puts to the sort algorithm. You may have no-

ticed that sort(b,e) doesn’t have to be told

much. All it needs is to have the ends marked

and to have the container hold a type for which

the operator < is defined. What kind of con-

tainer it is doesn’t matter. That is, sort works

for maps, lists, etc.

As will be seen in Chapter 5, the members

begin, end, and iterator are the main tools used

to gain this generality for algorithms.

They can also make your own programs more

general. The container you use can be changed

without having to rewrite code.

98

Begin and end – continued

When we looked at pointers we studied this

idiom:

int n;

double x[n];

//...

double* xi = &x[0];

double* top = xi + n;

while (xi < top) {

*xi++ = something;

}

Begin and end are manifestations of this id-

iom. Begin corresponds to &x[0] and end

corresponds to top. In fact, if you did this:

sort(&x[0],top), the array x would get sorted.

99

End of file

The usage

ifstream stream("filename");

while(stream >> x) { // do something }

works because the expression (stream >> x)

returns the stream for which is was called.

What is missing from the discussion is the

point that there is a function called a conver-

sion operator that takes an istream as its argu-

ment and returns a bool and that the compiler

automatically calls this conversion operator.

Another approach is

ifstream stream("filename");

while((stream >> x).good()) { //... }

100

Conversions

Whenever one type is expected as an argument

and another is given, the compiler will try to

find either a constructor or conversion operator

to convert from the given type to the expected

type. If a conversion operator or constructor

exists, it can be used explicitly. For instance,

bool a=bool(cin);. Another example is intvec

idx=intvec("1:15"); which converts a C-style

string to an intvec. Here is an instance where

you actually need to use explicit conversion to

get the desired result:

realmat X(r,c);

for {INTEGER i=1; i<=r; i++) {

for {INTEGER j=1; j<=c; j++) {

X(i,j) = REAL(i)/REAL(j);

}

}

101

prog01

int main(int argc, char** argp, char** envp)

{

// If you know how big a vector will be ahead of time, you can declare

// its length and use it like an array rather than use push_back.

INT_32BIT seed = 12345;

typedef vector<REAL>::size_type rv_int;

rv_int len_rv = 9;

vector<REAL> rv(len_rv);

for (rv_int i=0; i<len_rv; i++) { // Note: counting from zero

rv[i] = scl::unsk(seed); // unsk is normal(0,1)

}

cout << starbox("/Contents of rv//") << ’\n’;

for (rv_int i=0; i<rv.size(); i++) { // Note: counting from zero

cout << " rv["<<i<<"] = " << rv[i] << ’\n’;

}

102

prog01 (continued)

// This usage has some of the pitfalls of arrays. The use of

// push_back as in the book is safer. If you want to make it

// more efficient, do this.

rv_int est_len_rmv = 1000;

vector<realmat> rmv;

rmv.reserve(est_len_rmv);

INTEGER j = 1;

while (j < 9) {

realmat rm(1,j);

for (INTEGER i=1; i<=j; ++i) { // Note: counting from one

rm[i] = scl::ran(seed); // ran is uniform on (0,1)

}

j = scl::iran(seed,9)+1; // iran is uniform on 0,..,9

rmv.push_back(rm);

}

103

prog01 (continued)

// Regardless of the amount of space reserved, this works

// the same as in the text and size reports what was actually

// pushed, not what you reserved.

cout << starbox("/Contents of rmv//");

typedef vector<realmat>::size_type rmv_int;

for (rmv_int i=0; i<rmv.size(); ++i) { // Note: counting from zero.

cout << rmv[i];

}

cout << "\n Unused capacity = "<< rmv.capacity()-rmv.size()<<’\n’;

// As with vectors, realmats can be grown as needed.

realmat A(2,1,REAL_MAX);

realmat B(1,2,-REAL_MAX);

for (INTEGER i=1; i<=iran(seed,15)+1; ++i) { // Note: from one

realmat new_col(2,1,unsk(seed));

A = cbind(A,new_col);

realmat new_row(1,2,unsk(seed));

B = rbind(B,new_row);

}

cout << starbox("/Contents of A and B//") << A << B;

return 0;

}

104

prog01 output

**

* *

* Contents of rv *

* *

**

rv[0] = 0.190261

rv[1] = 0.532602

rv[2] = -1.57

rv[3] = 1.87929

rv[4] = -2.14323

rv[5] = -0.577296

rv[6] = -0.489348

rv[7] = 0.725152

rv[8] = -1.01215

105

prog01 output (continued)

**

* *

* Contents of rmv *

* *

**

Col 1

Row 1 0.91065

Col 1 Col 2 Col 3 Col 4

Row 1 0.98221 0.94942 0.93087 0.051522

Unused capacity = 998

106

prog01 output (continued)

**

* *

* Contents of A and B *

* *

**

Col 1 Col 2 Col 3 Col 4

Row 1 1.7977e+308 -1.89638 0.17084 0.44763

Row 2 1.7977e+308 -1.89638 0.17084 0.44763

Col 1 Col 2

Row 1-1.7977e+308-1.7977e+308

Row 2 0.20556 0.20556

Row 3 0.25277 0.25277

Row 4 1.18597 1.18597

107

Output Precision

The text p. 43 suggests

streamsize prec = cout.precision();

cout << "Your final grade is " << setprecision(3)

<< 0.2 + midterm + 0.4*final + 0.4*sum/count

<< setprecision(prec) << endl;

My preference is to use a manipulator from
libscl

cout << "Your final grade is "

<< fmt(’f’,5,3,0.2 + midterm + 0.4*final + 0.4*sum/count)

<< endl;

Discuss libscl/src/fmt.cpp

108

Chapter 4: Organizing
programs and data

Main points:

• call by value, call by reference, call using pointers,
const

• overloading

• states of an iostream, clever method of returning
iostream as a reference

• error handling with exceptions, try and catch

• header files (.h files) and source files (.cpp files aka
.c, .C, and .cc)

• structs

• algorithms and predicates (compare function)

• compiler directives (#ifndef, #define, etc.)

109

Call by Value: value.cpp

#include "libscl.h"

using namespace scl; using namespace std;

REAL f(realmat b) {b(1,1)=5.0; return b(1,1);}

int main()

{

realmat a(5,5,0.0);

REAL r = f(a);

cout << "a(1,1) = " << a(1,1) << ’\n’;

cout << "r = " << r << ’\n’;

return 0;

}

Output: a(1,1) = 0

r = 5

The function f cannot change a; b is a copy

of a. Inefficient if a is large and a copy is not

actually needed.

110

Call by Reference: refer.cpp

#include "libscl.h"

using namespace scl; using namespace std;

REAL f(realmat& b) {b(1,1)=5.0; return b(1,1);}

int main()

{

realmat a(5,5,0.0);

REAL r = f(a);

cout << "a(1,1) = " << a(1,1) << ’\n’;

cout << "r = " << r << ’\n’;

return 0;

}

Output: a(1,1) = 5

r = 5

The function f changes a; b is a reference to f.

Efficient. A reference is usually implemented

as a pointer that is automatically dereferenced

at every use. All variables in Fortran are im-

plemented this way: pointers that are derefer-

enced at every use.

111

Call Using a Pointer: cptr.cpp

#include "libscl.h"

using namespace scl; using namespace std;

REAL f(realmat* bptr) {(*bptr)(1,1)=5.0; return (*bptr)(1,1);}

int main()

{

realmat a(5,5,0.0);

REAL r = f(&a);

cout << "a(1,1) = " << a(1,1) << ’\n’;

cout << "r = " << r << ’\n’;

return 0;

}

Output: a(1,1) = 5

r = 5

Efficient but error prone. The function f can-

not change bptr because bptr is passed by

value. But f can change the thing pointed

to, which is a. Calls using pointers are often

necessary to use code intended to be used with

both C and C++. The MPI parallel processing

library is an example. This is how you call a

Fortran subroutine from C++.

112

Call Using const Reference:
crefer.cpp

#include "libscl.h"

using namespace scl; using namespace std;

//REAL f(const realmat& b) {b(1,1)=1.0; return b(1,1);} //This is an error.

REAL f(const realmat& b) {realmat a=b; a(1,1)=1.0; return a(1,1);} //This

int main()

{

realmat a(5,5,0.0);

REAL r = f(a);

cout << "a(1,1) = " << a(1,1) << ’\n’;

cout << "r = " << r << ’\n’;

return 0;

}

Output: a(1,1) = 0

r = 1

b(1,1)=1.0; violates the const promise but

taking a copy realmat a=b; honors the const

promise.

113

Call Using const Pointer: cptr.cpp

#include "libscl.h"

using namespace scl; using namespace std;

//REAL f(const realmat* bptr) {realmat* a=bptr; return (*a)(1,1);} //Error.

//REAL f(const realmat* bptr) {const realmat* a=bptr; return (*a)(1,1);}//OK.

REAL f(const realmat* bptr) {realmat a=*bptr; a(1,1)=1; return a(1,1);} //OK.

int main()

{

realmat a(5,5,0.0);

REAL r = f(&a);

cout << "a(1,1) = " << a(1,1) << ’\n’;

cout << "r = " << r << ’\n’;

return 0;

}

Output: a(1,1) = 0

r = 1

realmat* a=bptr; violates the const promise.

const realmat* a=bptr; honors the const promise.

Taking a copy realmat a=*bptr; honors the

const promise.

114

Overloading: over.cpp

#include "libscl.h"

using namespace scl; using namespace std;

REAL f(realmat b) {cout << "#1 "; return b[1];}

REAL f(realmat* bptr) {cout << "#2 "; return (*bptr)[1];}

REAL f(REAL b) {cout << "#3 "; return b;}

REAL f(INTEGER b) {cout << "#4 "; return b;}

int main()

{

realmat a(5,5,1.5);

cout << f(a) << ’\n’;

cout << f(&a) << ’\n’;

cout << f(a[1]) << ’\n’;

cout << f(INTEGER(a[1])) << ’\n’;

return 0;

}

Output: #1 1.5

#2 1.5

#3 1.5

#4 1

The compiler figures out which function is

meant by the function’s arguments.

115

Clever

istream& read(istream& is, Student_info& s)

{

// read and store the student’s name and

// midterm and final exam grades

is >> s.name >> s.midterm >> s.final;

read_hw(is, s.homework); // read and store all the

return is; // student’s homework grades

}

One doesn’t have to do a lot of error check-

ing. Just return the istream and let the calling

program figure out if an error occurred.

116

Disaster

istream& read(Student_info& s)

{

ifstream is("grades.txt");

is >> s.name >> s.midterm >> s.final;

read_hw(is, s.homework);

return is;

}

is is destroyed on exit from read — remember

scope rules — and any attempt to use is by

the calling program will most likely cause ter-

mination with a segmentation fault. But there

are no guarantees other than that something

awful will happen.

117

Exceptions

The text explains the use of error handling by

means of exceptions: try ... catch(object).

Library libscl uses an older style of error han-

dling that is usually better for numerical anal-

ysis, where the error is most likely a coding

error and no recovery is possible. It is easy to

modify libscl error handling. To see how to

modify it to use the exceptions style, look at

the instructions in sclerror.h and examples in

tstrm.cpp.

Sometimes one must modify libscl error han-

dling. Parallel processing is an example be-

cause MPI implementations have their own er-

ror handlers that should be used. We will

see an example of this in the case study:

habit main mpi.cpp.

118

Headers and Separate Compilation

funcs.h

#ifndef __FILE_FUNCS_H_SEEN__

#define __FILE_FUNCS_H_SEEN__

#include "libscl.h"

extern REAL f(scl::realmat b); // Note the usage scl::realmat

extern REAL f(scl::realmat* bptr); // It is unacceptable to have

extern REAL f(REAL b); // a using statement in a header

extern REAL f(INTEGER b);

#endif

119

Headers and Separate Compilation

funcs.cpp

#include "funcs.h"

using std::cout;

REAL f(realmat b) {cout << "#1 "; return b[1];}

REAL f(realmat* bptr) {cout << "#2 "; return (*bptr)[1];}

REAL f(REAL b) {cout << "#3 "; return b;}

REAL f(INTEGER b) {cout << "#4 "; return b;}

120

Headers and Separate Compilation

fmain.cpp

#include "libscl.h"

#include "funcs.h"

using namespace scl; using namespace std;

int main()

{

realmat a(5,5,1.5);

cout << f(a) << ’\n’;

cout << f(&a) << ’\n’;

cout << f(a[1]) << ’\n’;

cout << f(INTEGER(a[1])) << ’\n’;

return 0;

}

121

Headers and Separate Compilation

makefile

CC = g++

SDIR = .

ISCL = $(HOME)/lib/libscl/gpp

LSCL = $(HOME)/lib/libscl/gpp

CFLAGS = -O -Wall -c -I$(SDIR) -I$(ISCL)

LFLAGS = -lm -L$(LSCL) -lscl

fmain : fmain.o funcs.o

$(CC) -o fmain fmain.o funcs.o $(LFLAGS)

fmain.o : $(SDIR)/fmain.cpp $(SDIR)/funcs.h

$(CC) $(CFLAGS) $(SDIR)/fmain.cpp

funcs.o : $(SDIR)/funcs.cpp $(SDIR)/funcs.h

$(CC) $(CFLAGS) $(SDIR)/funcs.cpp

122

Structs

struct Student_info {

string name;

double midterm;

double final;

vector<double> homework;

}; // note the semicolon -- it’s required

//...

vector<Student_info> students;

students[0].name = "Paul";

//...

Student_info si;

si.name = "Paul";

//...

Student_info* si_ptr = &si;

(*si_ptr).name = "Paul";

si_ptr->name = "Paul";

//...

A struct is a way to collect together a group

of different types. It is itself a type and can be

used as a type. How to access member student

is illustrated.

123

Demo

Compile and run value, refer, ptr, crefer, cptr,

over, and fmain.

124

Warning.

Read slides for Chapter 6 before reading Chap-

ter 6 to save yourself unnecessary reading be-

cause we shall skip much of Chapter 6.

125

Chapter 5.
Using sequential contain-
ers and analyzing strings.
Main points:

• iterators

• iterator types, iterator operations

• erasing, inserting, and iterator invalidation

• lists

• string manipulation

• details in Section 5.9

126

Indexing with pointers

This is the fastest way to compute a sum of

the elements of an array and is instinctive with

experienced C programmers:

int n=5000;

double a[n];

\\ fill a with something

double* t = a;

double* top = a + n;

double sum = 0.0;

while(t<top) {

sum += *t++;

}

127

Things to Notice

• One begins at a pointer to the first ele-

ment, which is a, and uses a pointer to

one past the last element, which is top, to

stop the iterations.

• Iterators are the natural abstraction of this

usage.

128

Iterators and Pointers

In fact, the notion of a pointer and iterator

are so similar that a pointer is an example of

an iterator. The following code actually does

work.

int n=5000;

double a[n];

\\ fill a with something

double* t = a;

double* top = a + n;

sort(t,top);

while(t<top) {

cout << *t++ << ’\n’;

}

129

Iterators and Pointers

Recall, page 44, that the sort function was sug-

gested for use with the vector container class.

But, as just seen, it works for any container

type that

1. permits random access

2. has a pointer to the first element,

3. has a pointer to one past the last element,

4. and for which the operation *a < *b is de-

fined.

130

Example of Iterator Usage
vector<realmat> v;

for(INTEGER i=1; i<=5; i++) {

realmat x(1,5);

for (INTEGER j=1; j<=5; ++j) {

x[j] = unsk(seed);

}

v.push_back(x);

}

vector<realmat>::const_iterator v_iter;

cout << starbox("/before sort//");

for (v_iter = v.begin(); v_iter < v.end(); ++v_iter) {

cout << *v_iter;

}

sort(v.begin(),v.end(),realmat_cmp());

cout << starbox("/after sort//");

for (v_iter = v.begin(); v_iter < v.end(); ++v_iter) {

cout << *v_iter;

}

131

Example of Iterator Usage
**

* before sort *

**

Col 1 Col 2 Col 3 Col 4 Col 5

Row 1 -2.52605 0.46897 1.12823 1.22625 0.66402

Row 1 -0.39204 -0.048188 1.82471 -0.020153 -0.055393

Row 1 -0.52677 -1.44619 0.66122 1.01763 0.43759

Row 1 1.16838 0.078569 -0.50887 -0.84152 1.73040

Row 1 -0.65305 -0.28374 0.41111 0.097130 -0.80161

**

* after sort *

**

Col 1 Col 2 Col 3 Col 4 Col 5

Row 1 -2.52605 0.46897 1.12823 1.22625 0.66402

Row 1 -0.65305 -0.28374 0.41111 0.097130 -0.80161

Row 1 -0.52677 -1.44619 0.66122 1.01763 0.43759

Row 1 -0.39204 -0.048188 1.82471 -0.020153 -0.055393

Row 1 1.16838 0.078569 -0.50887 -0.84152 1.73040

132

Pitfalls

There are two easily made mistakes that can

be made with pointers to a container:

1. Forgetting to preserve a copy of a pointer

to the first element before incrementing.

If you do not have some way to retrieve

a pointer to the first element, then that

container is lost. E.g. void f(double* a)

followed by a random bunch of a++ in the

body of f; the container a is now lost within

the body of function f.

2. Forgetting that some operations, like era-

sure, can cause a pointer to point to some-

thing you do not want it to point to. The

discussion of this in the text is good.

133

cutstr

cutstr in libscl is a generalization of the

book’s split

std::vector<string> cutstr(const std::string& str, char

1. The delimiter is white space other than a tab.

Returns the delimited words with white space stripped.

2. The delimiter is a tab.

The tab is stripped. White space is not.

3. The delimiter is a comma.

Cuts the string into words using Microsoft Excel

The comma is stripped. White space is not.

4. The delimiter is other than the above.

The delimiter is stripped. White space is not.

134

Illustration and Homework

• Discuss and run program prog01.

• Discuss homework and illustrate with time

prog02, time prog03.

• Go through header and source for intvec

to introduce ideas of classes and how con-

tainer classes are coded.

⊲ Just briefly touch on the ideas in the

code because the code is discussed in

detail in the slides for Chapter 11.

135

Chapter 6: Using library
algorithms
Main points:

• generic algorithm, declared in <algorithm>, – find,
find if, search, copy, remove copy, partition, etc.

• iterator adapter, declared in <iterator>, – back inserters,
front inserter, inserter, . . .

• prefix x=++a;, same as a++; x=a;, and postfix x=a++;,
same as x=a; a++;. Warning: do not rely on this
behavior except for built-in variables and iterators.

• Functions that return void and how to exit them
with return; or falling off the end.

• The ideas of this chapter are useful for text and list
processing but not of much use in numerical analysis
with the exception of find, copy, accumulate, and
transform. Skim chapter; read Section 6.5 carefully.

• Discuss accumulate and transform in class. Illustrate
with prog08 in src/ch05.

• Warning: Never use the static qualifier in code that
might be parallelized.

136

Chapter 7: Using
associative containers
Main points:

• associative container or map, declared in <map> –
very useful in numerical work

• pairs – how one recovers the key-value pair from a
map iterator

• How to use find to make sure a map element exists.

• If the key is not already in the map, then accessing
the map adds the key and initializes the value using
its default constructor.

• How to declare a function type and how to default
initialize the last argument(s) of a function.

• Recursion – a function can call itself.

137

Maps, pairs, recursion, and
find

The ideas of maps, pairs, and recursion will be

illustrated by an example: computing a multi-

variate polynomial.

The example does not illustrate the use of

find. Briefly, the problem is this: If a map m

(defined as map<K,V> m;) is accessed using m[k],

where k has type K, and the element m[k] does

not exist, then a sort of automatic push back

occurs and m[k] is created. To avoid this be-

havior, use m itr=m.find(k), where m itr has

type map<K,V>::iterator to access m. If m[k] is

not in the map, then m itr==m.end(). The dis-

cussion of the book is good. Another way to

deal with this is to check v, where v=m[k], for a

special value that occurs only when v is default

initialized. Examples of the latter occur in the

case study.

138

Function type

In the type declarations

int f(double);

int (*g)(double);

the identifier f has type ”function returning

int” and the identifier g has type ”pointer to

function returning int”. The book suggests

the usage

int h(double x, int p(double)) {return p(x);}

// ...

i=h(x,f);

139

Function type

My readings suggest that the following is what

actually happens:

int h(double x, int (*ptr)(double))

{

return (*ptr)(x);

}

//...

i=h(x,&f);

My readings suggest that this automatic pointer

and address generation for function calls is in

both the C++ and ANSI C language stan-

dards. Moreover, the type int f(double) no

longer actually exists. It now gets interpreted

as int (*f)(double). My readings also suggest

that some think what the book does is the

preferred style.

140

Function type

Most experienced programmers would write

the code this way:

int f(double x) {// do something;}

// ...

typedef int (*F_PTR)(double x);

// ...

int h(double x, F_PTR ptr)) {return (*ptr)(x);}

// ...

i=h(x,&f);

This is my style.

141

Multivariate Polynomials

We shall use maps and recursions to show how

to implement a multivariate polynomial. First

some background.

A multi-index is a vector with elements that

are either zero or positive. Here is one

λ = (0,3,5).

A monomial can be represented as a vec-

tor raised to a multi-index power. For x =

(5.0, 6.1, 2.3), here it is

xλ = x
λ1
1 x

λ2
2 x

λ3
3 = (5.0)0(6.1)3(2.3)5 = 14609.3

An intvec can represent λ and a realmat can

represent x.

142

Multivariate Polynomials

Index let aλ be the coefficient of the monomial

xλ in a multivariate polynomial and let

|λ| =
d
∑

i=1

λi,

where d is the dimension of x; recall that the

elements of λ must be zero or positive. A mul-

tivariate polynomial of degree K can be written

as

PK(x) =
∑

|λ|≤K

aλx
λ.

This notation is standard.

143

Multivariate Polynomials

The minimal object that we need to compute

in order to implement a multivariate polyno-

mial is a column vector

b(x) =
(

xλ(1), xλ(2), . . . , xλ(n)
)′

where λ(1), λ(2) . . . , λ(n) is some ordering of

the multi-indexes that satisfy |λ| ≤ K.

It would also be nice to know the value of n,

to have a vector containing the ordered multi-

indexes, and to have the Jacobian of b(x),

which is the n× d matrix

(

∂

∂x′

)

b(x) =

[(

∂

∂x

)

xλ(1), . . . ,

(

∂

∂x

)

xλ(n)
]′

It would be frosting on the cake to exclude

interactions of large degree. An interaction is

a multi-index with more than one element not

zero.

144

Example, deg main = 2, deg inter
= 2

x transpose = (1, 2, 3)

basis multi jacobian

1.0 0 0 0 0.0 0.0 0.0

3.0 0 0 1 0.0 0.0 1.0

9.0 0 0 2 0.0 0.0 6.0

2.0 0 1 0 0.0 1.0 0.0

6.0 0 1 1 0.0 3.0 2.0

4.0 0 2 0 0.0 4.0 0.0

1.0 1 0 0 1.0 0.0 0.0

3.0 1 0 1 3.0 0.0 1.0

2.0 1 1 0 2.0 1.0 0.0

1.0 2 0 0 2.0 0.0 0.0

145

Example, deg main = 3, deg inter
= 2
x transpose = (1, 2, 3)

basis multi jacobian
1.0 0 0 0 0.0 0.0 0.0
3.0 0 0 1 0.0 0.0 1.0
9.0 0 0 2 0.0 0.0 6.0

27.0 0 0 3 0.0 0.0 27.0
2.0 0 1 0 0.0 1.0 0.0
6.0 0 1 1 0.0 3.0 2.0
4.0 0 2 0 0.0 4.0 0.0
8.0 0 3 0 0.0 12.0 0.0
1.0 1 0 0 1.0 0.0 0.0
3.0 1 0 1 3.0 0.0 1.0
2.0 1 1 0 2.0 1.0 0.0
1.0 2 0 0 2.0 0.0 0.0
1.0 3 0 0 3.0 0.0 0.0

146

Multivariate Polynomials

If the dimension d were known at compile

time one could generate the monomials using

d nested for loops:

INTEGER d, deg; // dimension, degree

intvec multi(d); // a multi index

REAL y; // value of the monomial

for (INTEGER i=0; i<=deg; ++i) {

multi[1] = i;

y = pow(x[1],i);

for (INTEGER j=0; j<=deg-i; ++j) {

multi[2] = j;

y *= pow(x[2],j);

//...

for (INTEGER l=0; l<=deg-i-j-...-k; ++l) {

multi[d] = l;

cout << y*pow(x[d],l) << multi << ’\n’;

}

//...

}

}

When d is not known at compile one can use

recursion to generate the d nested for loops.

Details follow.

147

Multivariate Polynomials
– declaration (in libscl.h)

class poly {

private:

char type_poly; // ’r’ regular, ’h’ Hermite, ’l’ Laguerre

realmat x; // current value of x

INTEGER dim_x; // dimension of x

INTEGER deg_main; // degree of main effects

INTEGER deg_inter; // degree of interactions

INTEGER len_basis; // number of basis functions

realmat powers; // table lookup for pow(x[i],j)

realmat derivs; // table lookup for (d/dx)pow(x[i],j)

void make_monomials(INTEGER d, REAL y, intvec midx);

std::map<intvec,REAL,scl::intvec_cmp> monomials;

public:

poly(char type, const realmat& x_init, INTEGER d_main, INTEGER d_inter);

void set_x(const realmat& x_new);

INTEGER get_len() const { return len_basis; }

void get_basis(realmat& basis) const;

void get_multi(std::vector<intvec>& multi) const;

void get_multi(std::vector<std::string>& multi,char c) const;

void get_jacobian(realmat& jacobian) const;

};

148

Using Class Poly

Illustrate with prog00.cpp in src/ch07

149

Multivariate Polynomials
– constructor (in poly.cpp)

poly::poly

(char type, const realmat& x_init,

INTEGER d_main, INTEGER d_inter)

: type_poly(type), dim_x(x_init.size()),

deg_main(d_main), deg_inter(d_inter)

{

switch (type_poly) {

case ’r’:

case ’h’:

case ’l’:

break;

default :

error ("Error, poly, type must be ’r’,’h’ or ’l’");

break;

}

set_x(x_init);

len_basis = monomials.size();

}

150

Multivariate Polynomials
– set x (in poly.cpp)

void poly::set_x(const realmat& x_new)

{

if (x_new.ncol() != 1 && x_new.nrow() != 1) {

error("Error, poly, x must be either a row or column vector");

}

if (x_new.nrow() != dim_x) error("Error, poly, dim_x cannot change");

x = x_new;

powers.resize(dim_x,deg_main+1);

derivs.resize(dim_x,deg_main+1);

switch (type_poly) {

case ’r’:

for (INTEGER i=1; i<=dim_x; i++) {

powers(i,1) = 1.0; // code requires

derivs(i,1) = 0.0; // that the first

for (INTEGER j=1; j<=deg_main; j++) { // be 1.0, don’t

powers(i,j+1) = powers(i,j)*x[i]; // add a type poly

derivs(i,j+1) = REAL(j)*powers(i,j); // for which false

}

}

break;

151

Multivariate Polynomials
– set x (in poly.cpp)

case ’h’: // orthogonal wrt MVN

for (INTEGER i=1; i<=dim_x; i++) {

powers(i,1) = 1.0; // deg 0

derivs(i,1) = 0.0;

powers(i,2) = x[i]; // deg 1

derivs(i,2) = 1.0;

REAL r0 = 1.0;

for (INTEGER j=2; j<=deg_main; j++) {

REAL r1 = sqrt(REAL(j));

powers(i,j+1) = (powers(i,j)*x[i]

- r0*powers(i,j-1))/r1; // deg j

derivs(i,j+1) = r1*powers(i,j);

r0 = r1;

}

}

break;

152

Multivariate Polynomials
– set x (in poly.cpp)

case ’l’: // orthogonal wrt exp

for (INTEGER i=1; i<=dim_x; i++) {

powers(i,1) = 1.0; // deg 0

derivs(i,1) = 0.0;

powers(i,2) = 1.0 - x[i]; // deg 1

derivs(i,2) = -1.0;

REAL r0 = 1.0;

for (INTEGER j=2; j<=deg_main; j++) {

REAL r1 = REAL(j);

REAL p=(powers(i,j)*(2.0*r1-1.0-x[i])-r0*powers(i,j-1))/r1;

REAL d=(derivs(i,j)*(2.0*r1-1.0-x[i])-r0*derivs(i,j-1))/r1;

d -= powers(i,j)/r1;

powers(i,j+1) = p;

derivs(i,j+1) = d;

r0 = r1;

}

}

break;

}

make_monomials(dim_x, REAL(), intvec());

}

The real work is done by make monomials. Member
functions like set x are often called methods.

153

Multivariate Polynomials
– make monomials (in poly.cpp)

void poly::make_monomials(INTEGER d, REAL y, intvec midx)

{

if (d == dim_x) { // external call must have d == dim_x

midx.resize(dim_x,0);

for (INTEGER j=0; j<=deg_main; j++) {

midx[1] = j;

REAL y_new = powers(1,j+1);

if (d == 1) {

monomials[midx] = y_new;

}

else {

make_monomials(d-1,y_new,midx);

}

}

}

154

Multivariate Polynomials
– make monomials (in poly.cpp)

else { // recursive calls have d < dim_x

INTEGER sum = 0;

for (INTEGER i=1; i<=dim_x-d; i++) {

sum += midx[i];

}

if (sum == 0) { // main effect for x[dim_x-d+1]

for (INTEGER j=0; j<=deg_main; j++) {

midx[dim_x-d+1] = j;

REAL y_new = y * powers(dim_x-d+1,j+1);

if (d == 1) {

monomials[midx] = y_new;

}

else {

make_monomials(d-1,y_new,midx);

}

}

}

155

Multivariate Polynomials
– make monomials (in poly.cpp)

else if (sum < deg_inter) {

// interaction term involving x[dim_x-d+1]

for (INTEGER j=0; j<=deg_inter-sum; j++) {

midx[dim_x-d+1] = j;

REAL y_new = y * powers(dim_x-d+1,j+1);

if (d == 1) {

monomials[midx] = y_new;

}

else {

make_monomials(d-1,y_new,midx);

}

}

}

156

Multivariate Polynomials
– make monomials (in poly.cpp)

else { // x[dim_x-d+1] not involved

midx[dim_x-d+1] = 0;

if (d == 1) {

monomials[midx] = y;

}

else {

make_monomials(d-1,y,midx);

}

}

}

}

157

Multivariate Polynomials
– get basis (in poly.cpp)

void poly::get_basis(realmat& basis) const

{

basis.resize(len_basis,1);

std::map<intvec,REAL,intvec_cmp>::const_iterator

itr = monomials.begin();

for (INTEGER i=1; i<=len_basis; i++) {

basis[i] = itr->second;

++itr;

}

}

158

Multivariate Polynomials
– get multi (in poly.cpp)

void poly::get_multi(std::vector<intvec>& multi) const

{

typedef std::vector<intvec>::size_type v_int;

v_int v_len = len_basis;

multi.resize(v_len);

std::map<intvec,REAL,intvec_cmp>::const_iterator

itr = monomials.begin();

for (v_int i=0; i < v_len; i++) {

multi[i] = itr->first;

++itr;

}

}

159

Multivariate Polynomials
– get jacobian (in poly.cpp)

void poly::get_jacobian(realmat& jacobian) const

{

jacobian.resize(len_basis,dim_x);

intvec multi;

REAL basis;

std::map<intvec,REAL,intvec_cmp>::const_iterator

itr = monomials.begin();

160

Multivariate Polynomials
– get jacobian (in poly.cpp)

for (INTEGER i=1; i<=len_basis; i++) {

multi = itr->first;

basis = itr->second;

++itr;

for (INTEGER j=1; j<=dim_x; j++) {

if (multi[j] == 0) {

jacobian(i,j) = 0.0;

}

else if (powers(j,multi[j]+1) != 0.0) {

REAL ratio = basis/powers(j,multi[j]+1);

jacobian(i,j) = ratio*derivs(j,multi[j]+1);

}

else {

REAL ratio = 1.0;

for (INTEGER k=1; k<=dim_x; k++) {

if (k != j) ratio *= powers(k,multi[k]+1);

}

jacobian(i,j) = ratio*derivs(j,multi[j]+1);

}

}

}

}

161

Example

Illustrate the use of class poly with the epa

example in compecon/src/ch07.

162

Chapter 8: Writing generic
functions
Main points:

• generic function, aka template functions

• typename

• instantiation occurs at compile time if function
called, generic function must be in header, cannot
be compiled separately

• types of iterators, just be aware that a hierarchy
exists, don’t waste time trying to learn it

• off the end values

163

Template Functions

template <class S, class T>

return_type function_name(S sval, T tval, double x)

//...

double s,t,x;

function_name(s,t,x);

If the types do not appear in the argument list,

they must be supplied at the call

template <class S, class T>

T function_name(S sval) {//...}

//...

double s,t;

t=function_name<double,double>(s);

May use template <typename S, typename T> instead of template

<class S, class T>.

164

typename

Within the body of the template function, the

typename keyword must be used to qualify dec-

larations that use types that are defined as

member types of a template parameter. For

example,

typename T::size_type identifier;

declares identifier to have type T::size type.

Note that size type must be defined as a mem-

ber type within class T’s definition.

165

Instantiation

The entire template function source code must

be available within the source code that calls

the function. As a practical matter, this means

putting the template function code in a header

which is included.

The template function must actually be called

for complete syntax checking and compilation

to occur. Otherwise syntax errors in the tem-

plate function may not be detected.

At compile time actual parameters are substi-

tuted for the template parameters and the re-

sulting code is compiled. The use of the tem-

plate function for one type can result in error

messages that would not occur with another

type; e.g. illegal conversions.

166

Example: Simple Statistics

for a Container Class

#ifndef __FILE_SIMPLE_H_SEEN__

#define __FILE_SIMPLE_H_SEEN__

#include "libscl.h"

struct stats {

REAL mean;

REAL sdev;

REAL var;

REAL skew;

REAL kurt;

INTEGER nobs;

};

167

template <class P>

stats simple(const P begin, const P end)

{

stats ret;

ret.mean = 0.0;

ret.nobs = 0;

P x = begin;

while (x != end) {

ret.mean += *x++;

++ret.nobs;

}

if (ret.nobs<2)

scl::error("Error, simple, not enough data");

ret.mean /= REAL(ret.nobs);

168

REAL adev = 0.0;

REAL r,p;

ret.var = ret.skew = ret.kurt = 0.0;

x = begin;

while (x != end) {

adev += (r = *x++ - ret.mean) > 0 ? r : -r;

ret.var += (p = r*r);

ret.skew += (p *= r);

ret.kurt += (p *= r);

}

adev /= REAL(ret.nobs);

ret.var /= REAL(ret.nobs-1);

ret.sdev = sqrt(ret.var);

if (ret.var) {

ret.skew /= (REAL(ret.nobs) * ret.var * ret.sdev);

ret.kurt = ret.kurt/(REAL(ret.nobs) * ret.var * ret.var) - 3.0;

}

else {

ret.skew = ret.kurt = REAL_MAX;

}

return ret;

}

#endif

169

Main: Filename from command line

#include "libscl.h"

#include "simple.h"

using namespace scl; using namespace std;

int main(int argc, char *argp[], char *envp[])

{

string msg = string("Error, ") + argp[0] + ", ";

if (argc < 2) error(msg+"specify a filename on command line");

ifstream is(argp[1]);

if (!is) error(msg+"bad filename");

170

Main: Reading a file whose length
is unknown efficiently

realmat x;

REAL r;

while (is >> r) x.push_back(r);

The realmat member function void push_back(const

does the buffering automatically.

171

Main: Call to simple

stats s = simple(rm.begin(), rm.end());

cout << ’\n’

<< " mean = " << s.mean << ’\n’

<< " std dev = " << s.sdev << ’\n’

<< " variance = " << s.var << ’\n’

<< " skewness = " << s.skew << ’\n’

<< " kurtosis = " << s.kurt << ’\n’

<< " no.obs. = " << s.nobs << ’\n’ ;

vector<REAL> vc(rm.size());

copy(rm.begin(), rm.end(), vc.begin());

s = simple(vc.begin(),vc.end());

cout << ’\n’

<< " mean = " << s.mean << ’\n’

<< " std dev = " << s.sdev << ’\n’

<< " variance = " << s.var << ’\n’

<< " skewness = " << s.skew << ’\n’

<< " kurtosis = " << s.kurt << ’\n’

<< " no.obs. = " << s.nobs << ’\n’ ;

return 0;

}

172

Example

Illustrate the use of simple with the T-Bill data

in compecon/src/ch08.

173

Chapter 9: Defining new
types
Main points:

• structs, classes

• private, public

• member functions

• constructors

174

structs, classes
public, private,
constructors

• We have already covered the ideas in this

chapter.

• Review the use of constructors with real-

mat.h in libscl.

⊲ Just briefly touch on the ideas in the

code because the ideas are discussed in

detail in the slides for Chapter 11.

175

Chapter 10: Managing
memory and low level data
structures
Main points:

• pointers and arrays

• pointers to functions

• string literals, array initialization

• arguments to main

• reading and writing files

• built-in memory management

176

pointers, arrays
main
input-output
memory management

We have already covered the ideas in this chap-

ter.

Give full story on command line arguments

(slides below).

Review the use of the new operator (slide be-

low) and with realmat.cpp in libscl.

177

Command Line Arguments, Full
Story
C and C++ language standard:

int main()

int main(void)

int main(int argc, char** argv)

int main(int argc, char* argv[])

// Function getenv in stdlib.h gives access to env

// argv[argc] is guaranteed to be a null pointer

Unix (POSIX excepted), Microsoft Windows:

int main(int argc, char** argv, char** envp)

int main(int argc, char* argv[], char* envp[])

// Discussed in previous lectures and examples

// env[size] is guaranteed to be a null pointer

Mac OS X and Darwin:

int main(int argc, char** argv, char** envp, char** apple)

int main(int argc, char* argv[], char* envp[], char* apple[])

// apple contains arbitrary OS-supplied information, apple[0]

// is the filename, including path, of the executing binary

178

new operator

T* p = new T Allocates and default-initializes
object of type T and returns a p

T* p = new T(args) Allocates and initializes an object
type T using arg to initialize T.

delete p Destroys the object to which p p

T* q = new T[n] Allocates and default-initializes
of size n of type T and returns a

delete [] q Destroys the object to which q p

179

Chapter 11. Defining ab-
stract data types
Main points:

• constructors

• destructors

• copy

• assign

180

constructors, destructors
copy, assign

Every class whose constructor allocates mem-

ory dynamically must have these items because

the compiler will supply them if the program-

mer does not. What the compiler does is usu-

ally not what ought to be done.

The book’s discussion of these points is excel-

lent.

The book describes memory management us-

ing the facilities of the std library rather than

the new operator. I will illustrate with new which

is adequate for containers of built in types such

as intvec and realmat.

One should use std library memory manage-

ment for containers of class type to avoid un-

necessary calls to the default constructor.

181

constructors, destructors,
assignment
class intvec {

private:

INTEGER len;

INTEGER* ix;

intvec(INTEGER lgth, INTEGER* iptr)

: len(lgth), ix(iptr) { }

public:

intvec() : len(0), ix(0) { }

explicit intvec(INTEGER length);

intvec(INTEGER length, INTEGER fill_value);

explicit intvec(const char* str);

intvec(const intvec& ivec);

~intvec() { delete [] ix; }

intvec& operator=(const intvec& ivec);

Note: Differs from libscl because the private variable stor is omitted.

182

explicit

Without the explicit declarators, the compiler

would accept the following statements and

would attempt execution.

int main

{

intvec ivec = "Hello world";

intvec jvec = 5;

return 0;

}

A constructor defines a conversion operator,

which may have unintended side effects. With

the explicit declarator, the programmer must

actually code

int main

{

intvec ivec("Hello world");

intvec jvec(5);

return 0;

}

to get the same outcome.

183

default constructor

The constructor

intvec() : len(0), ix(0) { }

is called in these instances

REAL f(const intvec& ivec);

REAL g(intvec& ivec);

int main()

{

intvec ivec;

REAL x = f(intvec());

REAL y = g(intvec()); //Error, won’t compile.

return 0;

}

184

constructor, new, destructor
~intvec() { delete [] ix; }

Whenever the operator new is used in a con-

structor, a destructor must be provided, oth-

erwise there will be a memory leak.

intvec::intvec(INTEGER length)

{

if (length<=0) error("Error, intvec, intvec, length not positive");

len = length;

ix = new(nothrow) INTEGER[len];

if (ix == 0) {

len = 0;

error("Error, intvec, intvec, operator new failed");

}

}

In the following, the destructor is called when

jvec goes out of scope; len gets deleted auto-

matically, only ix that had space assigned to

it by operator new needs explicit deletion.

int main()

{

{intvec jvec(5);} //destructor called on exit from this scope

return 0;

}

185

copy constructor
intvec::intvec(const intvec& ivec)

{

len = ivec.len;

if (len > 0) {

ix = new(nothrow) INTEGER[len];

if (ix == 0) {

len = 0;

error("Error, intvec, intvec, operator new failed.");

}

INTEGER* top = ix + len;

INTEGER* t = ix;

const INTEGER* u = ivec.ix;

while (t < top) *t++ = *u++;

}

else {

len = 0; ix = 0;

}

}

Typical usage

intvec f(intvec ivec) //copy constructor invoked when f called

{

intvec jvec=ivec; //copy constructor invoked

intvec kvec(ivec); //equivalent to previous line

return jvec; //copy constructor invoked when f returns

}

186

assignment operator
intvec& intvec::operator=(const intvec& ivec)

{

if (this != &ivec) {

if (ivec.len > 0) {

INTEGER* newix = new(nothrow) INTEGER[ivec.len];

if (newix == 0)

error("Error, intvec, operator =, operator new failed.");

delete [] ix; // Applying delete to 0 has no effect.

ix = newix;

len = ivec.len;

INTEGER* top = ix + len;

INTEGER* t = ix;

const INTEGER* u = ivec.ix;

while (t < top) *t++ = *u++;

}

else {

delete [] ix; // Applying delete to 0 has no effect.

len = 0; ix = 0;

}

}

return *this; //So that chaining works; i.e. ivec=jvec=kvec.

}

187

Use of assignment operator
int main()

{

intvec ivec(5); //explicit constructor invoked

intvec jvec = ivec; //copy constructor invoked

intvec kvec; //default constructor invoked

kvec = jvec; //assignment operator called

return 0;

}

188

constructor in return

A constructor in a return statement, as in the

following, will keep the copy constructor from

being called in some C++ implementations. It

is good style regardless.

intvec operator+(const intvec& ivec, const intvec& jvec)

{

if (ivec.len != jvec.len)

error("Error, intvec, operator +, vectors not conformable.");

if (ivec.len == 0)

error("Error, intvec, operator +, null matrix.");

INTEGER* newix = new(nothrow) INTEGER[ivec.len];

if (newix == 0)

error("Error, intvec, operator +, operator new failed.");

INTEGER* ri = newix;

INTEGER* rtop = ri + ivec.len;

const INTEGER* ai = ivec.ix;

const INTEGER* bi = jvec.ix;

while (ri < rtop) *ri++ = *ai++ + *bi++;

return intvec(ivec.len,newix);

}

189

private constructor

The constructor

intvec(INTEGER lgth, INTEGER* iptr) : len(lgth), ix(iptr) { }

is in the private part of class intvec to pre-

vent the following usage, which would crash at

execution.

int main()

{

INTEGER ix[5] = {1, 2, 3, 4, 5};

{

intvec ivec(5,ix);

} //a crash will occur here when the destructor is called

//because it was not operator new that allocated the space

//to pointer ix

return 0;

}

190

Chapter 12. Making class
objects act like values
Main points:

• overloading the index operator []

• automatic conversions

• conversion operators

• friends

• assignment operators

• binary operators

191

Overloading operator[]
class container {

private:

INTEGER len;

REAL * x;

public:

container() : len(0), x(0) {}

container(INTEGER l) : len(l) {x = new(nothrow) REAL[len];}

~container() { delete [] x; }

INTEGER size() { return len; }

//This will compile:

const REAL& operator[] (INTEGER i) const { return x[i]; };

REAL& operator[] (INTEGER i) { return x[i]; };

//This will compile:

//REAL operator[] (INTEGER i) const { return x[i]; };

//REAL& operator[] (INTEGER i) { return x[i]; };

//This will not compile:

//const REAL& operator[] (INTEGER i) { return x[i]; };

//REAL& operator[] (INTEGER i) { return x[i]; };

//This will not compile:

//REAL operator[] (INTEGER i) { return x[i]; };

//REAL& operator[] (INTEGER i) { return x[i]; };

};

192

Conversions

• A conversion operator is used by the com-

piler to automatically convert one type to

another.

• Only explicit arguments can be converted.

Consider:

class whatever {

public:

double member_function(double arg1, int arg2);

whatever(double arg3);

whatever();

};

int main()

{

double arg1 = 1;

double arg2 = 2;

double arg3 = 3;

whatever arg0(arg3);

double arg4 = arg0.member_function(arg1, arg2);

arg0 cannot be converted; arg1, arg2, arg3,

and arg4 can be converted.

193

Conversions

• A constructor that has a single argument

is also a conversion operator.

• The explicit declarator prevents a construc-

tor with a single argument from being a

conversion operator.

• A conversion operator from an owned class

to a non-owned class can be defined within

the owned class.

• Conversions can be costly: functions with

explicit arguments may be required for per-

formance.

⊲ Even so, the g++ compiler still might

convert. Why the g++ compiler con-

verts unecessarily is a mystery (to me).

⊲ To stop this from hapenning, the realmat(const

trealmat&) constructor is explicit in class

realmat.

194

Conversions
struct den_val {

bool positive;

REAL log_den;

den_val() : positive(false), log_den(-REAL_MAX) { }

den_val(bool p, REAL l) : positive(p), log_den(l) { }

// Constructs a den_val from REAL and converts REAL to den_val

den_val(REAL ld) : positive(true), log_den(ld) {}

// Converts den_val to REAL

operator REAL() const { return this->log_den; }

// Constructs a den_val from INTEGER but does not convert

explicit den_val(INTEGER i) : positive(true), log_den(REAL(i)) {}

den_val operator+=(den_val f)

{

positive = positive && f.positive;

if (positive) log_den += f.log_den;

else log_den = -REAL_MAX;

return *this;

}

};

195

Friends

• friend declarations within a class allow the

friend to access private members of the

class.

• Binary operators such as +, -, *, /, ==,

!= are usually implemented as friends to al-

low both arguments to be treated symmet-

rically and to allow both to be converted.

• The assignment operator and assignment

versions of binary operators such as +=, -=,

*=, /= are intrinsically asymmetric and are

usually implemented as member functions.

• Illustrate with intvec.h and intvec.cpp.

196

Member, Static, Friend

Stroustrup (1997, p. 278): An ordinary mem-

ber function declaration specifies three logi-

cally distinct things:

1. The function can access the private part of

the class declaration, and

2. the function is in the scope of the class,

and

3. the function must be invoked on an object

(has a this pointer).

By declaring a member function static, we can

give it the first two properties only. By declar-

ing a function a friend, we can give it the first

property only.

197

Chapter 13. Using
inheritance and
dynamic binding

This is one of the most important chapters in

the book because it describes the OOP con-

cepts that are most useful in scientific com-

puting.

The chapter is very dense, it will require a care-

ful reading.

This is the last chapter we shall cover in class.

You should skim the remaining chapters so you

will understand the more sophisticated OOP

concepts found in industrial strength code.

198

Chapter 13. Using
inheritance and
dynamic binding
Main points:

• inheritance

• virtual functions

• polymorphism

• dynamic and static binding

• handle classes

199

Inheritance and Virtual Func-
tions

A (derived) class may build upon a (base) class,

keeping features of the of the base class and

adding features of its own. This is called in-

heritance.

If a member function of the base class is de-

clared virtual, the derived class can redefine it.

If declared pure virtual, the derived class must

redefine it. A base class that has a virtual

function must have a virtual destructor.

A base class may have three parts: private,

protected, public. The derived class has access

to the protected and public parts of a base

class. Everyone has access to the public parts

of any class, including a base class, but does

not have access to the protected part.

200

Inheritance and Virtual Func-
tions

Two features of inheritance allow polymor-

phism, which means that the identity of a class

does not need to be known at compile time,

only at run time. They are:

A pointer to the base class may also point to

a derived class.

A function argument that is a reference to the

base class can accept derived classes for that

argument when called.

201

Inheritance and Virtual Func-
tions

First we will look at a simple example, which

is taken from homework Assignment 7.

202

Homework 7, den val, aka. denval

// This struct is in libscl; specifically it is in sclfuncs.h

struct den_val {

bool positive;

REAL log_den;

den_val() : positive(false), log_den(-REAL_MAX) { }

den_val(bool p, REAL l) : positive(p), log_den(l) { }

den_val operator+=(den_val f)

{

positive = positive && f.positive;

if (positive) log_den += f.log_den;

else log_den = -REAL_MAX;

return *this;

}

};

203

Homework 7, base and derived classes

class density_base {

public:

virtual den_val operator() (REAL) = 0;

virtual ~density_base() { }

};

class uniform : public density_base { // public here means that what’s

public: // public in the base class is

den_val operator() (REAL x) // public in the dervied class

{

if (0.0<=x && x<=1.0) return den_val(true,0.0);

return den_val();

}

};

class exponential : public density_base {

public:

den_val operator() (REAL x)

{

if (0.0<=x) return den_val(true,-x);

return den_val();

}

};

204

Homework 7 prob with references

REAL prob(density_base& f, REAL a, REAL b, INTEGER n)

{ //Compute probability with trapezoid rule

REAL sum = 0.0;

REAL x = a;

REAL inc = (b - a)/REAL(n);

if (f(a).positive) sum += exp(f(a).log_den)/2.0;

for (INTEGER i=1; i<n; ++i) {

x += inc;

if (f(x).positive) sum += exp(f(x).log_den);

}

if (f(b).positive) sum += exp(f(b).log_den)/2.0;

return sum*inc;

}

205

Homework 7 main with references

int main(int argc, char** argp, char** envp)

{

uniform u;

exponential e;

REAL a=0.0;

REAL b=1.0;

INTEGER g=100;

switch (argc) {

case 4: g=atoi(argp[3]);

case 3: a=atof(argp[1]); b=atof(argp[2]); break;

default: error(string("Usage: ")+argp[0]+" a b [g] "); break;

}

cout << prob(u,a,b,g) << ’\n’;

cout << prob(e,a,b,g) << ’\n’;

return 0;

}

206

Homework 7 prob with pointers

REAL prob(density_base* f, REAL a, REAL b, INTEGER n)

{ //Compute probability with trapezoid rule

REAL sum = 0.0;

REAL x = a;

REAL inc = (b - a)/REAL(n);

if ((*f)(a).positive) sum += exp((*f)(a).log_den)/2.0;

for (INTEGER i=1; i<n; ++i) {

x += inc;

if ((*f)(x).positive) sum += exp((*f)(x).log_den);

}

if ((*f)(b).positive) sum += exp((*f)(b).log_den)/2.0;

return sum*inc;

}

207

Homework 7 main with pointers

int main(int argc, char** argp, char** envp)

{

uniform u;

exponential e;

REAL a=0.0;

REAL b=1.0;

INTEGER g=100;

switch (argc) {

case 4: g=atoi(argp[3]);

case 3: a=atof(argp[1]); b=atof(argp[2]); break;

default: error(string("Usage: ")+argp[0]+" a b [g] "); break;

}

density_base* f;

f = &u;

cout << prob(f,a,b,g) << ’\n’;

f = &e;

cout << prob(f,a,b,g) << ’\n’;

return 0;

}

208

Homework 7 instantiation at run time

int main(int argc, char** argp, char** envp)

{

char d=’n’;

REAL a=0.0;

REAL b=1.0;

INTEGER g=100;

switch (argc) {

case 5: g=atoi(argp[4]);

case 4: d=argp[1][0], a=atof(argp[2]); b=atof(argp[3]); break;

default: error(string("Usage: ")+argp[0]+" d a b [g] "); break;

}

density_base* f = 0;

switch(d) {

case ’e’: f = new exponential; break;

case ’u’: f = new uniform; break;

case ’n’: f = new normal; break;

default: error("Error, d must be e or n or u");

}

cout << prob(f,a,b,g) << ’\n’;

delete f; // Never forget to delete the pointer

return 0;

}

209

Handle Classes

The use of pointers and operator new is in-

herently error prone and a common source of

memory leaks. A handle class can get around

this. A handle class encapsulates memory al-

location and deallocation. The programmer is

spared the details: the scope rules and rules

for automatic will automatically take care that

no memory leaks or other errors occur. The

classes realmat and intvec are examples of this.

A handle class must have a copy constructor,

an assignment operator, and a destructor to

work properly. The programmer will have to

write them because the compiler generated de-

faults will not work correctly for pointers to

space allocated by new.

210

Object Oriented Programming

• Motivate the ideas of OOP using Project Sugges-
tion 11, which simulates the game of craps.

⊲ Play the game at http://www.crapdice.com/crapgame.html

⊲ Go through the project statement at course
website

⊲ Go through the project design in craps base.h.

• The code uses inheritance, virtual functions, and
pure virtual functions to lay out and enforce a
project design and to allow interchangeable com-
ponents through polymorphism.

⊲ Bets are polymorphic so that they can be placed
in lists of bets.

⊲ Strategies are polymorphic so that players at the
same game can have different strategies.

⊲ A template function is used.

⊲ The list and vector container classes are used.

211

MCMC Case Study

• Present MCMC case study slides.

• When finished continue with these slides

and then

• Discuss the code in habit_main.h, habit_main.h,

asymptotics.h.

212

Inheritance and Virtual Func-
tions

The case study uses inheritance, virtual func-

tions, and pure virtual functions to lay out

and enforce a project design and to allow in-

terchangeable components through polymor-

phism.

URL: http://wwwr.aronaldg.org/webfiles/compecon/src/case/libmcmc/src/
Files: libmcmc base.h mcmc.h

213

Fig 1. MCMC Case Design

Arrows show which classes depend on which. The next three slides,

titled libmcmc_base.h, present the intefaces that enforce the design.

The fourth slide in the sequence, titled mcmc.h, presents mcmc, which

inherits from the interface mcmc_base.

214

libmcmc base.h

class objfun_base {

private:

void required() const

{ scl::error("Error, objfun_base, derived class must overide"); }

public:

virtual void set_parms(const realmat& data) { required(); }

virtual REAL operator()(const realmat& sim) const {required();return 0;}

virtual ~objfun_base() {};

virtual objfun_base* new_objfun() { required(); return 0; }

virtual void delete_objfun(objfun_base*) { required(); }

};

215

libmcmc base.h

class usrmod_base {

public:

virtual INTEGER len_theta() = 0;

virtual INTEGER len_stats() = 0;

virtual bool gen_sim(realmat& sim) = 0; //Same seed every call

virtual bool gen_sim(realmat& sim, realmat& stats) = 0;

virtual bool gen_bootstrap(realmat& sim) = 0; //Different seed

virtual void get_theta(realmat& theta) = 0;

virtual void set_theta(const realmat& theta) = 0;

virtual bool support(const realmat& theta) = 0;

virtual den_val prior(const realmat& theta, const realmat& stats) = 0;

virtual ~usrmod_base() {};

};

class proposal_base {

public:

virtual den_val operator()

(const realmat& th_old, const realmat& th_new)=0;

virtual void draw

(INT_32BIT& seed,const realmat& th_old,realmat& th_new)=0;

virtual INTEGER len_theta()=0;

virtual ~proposal_base() {};

};

216

libmcmc base.h

class likehood_base {

public:

virtual den_val operator()(const realmat& theta, realmat& stats) = 0;

virtual INTEGER len_theta() = 0;

virtual INTEGER len_stats() = 0;

virtual ~likehood_base() {};

};

class asymptotics_base {

public:

virtual bool set_asymptotics(const realmat& chain) = 0;

virtual void get_asymptotics(realmat& theta_hat, realmat& V_hat) = 0;

virtual ~asymptotics_base() {};

};

class mcmc_base {

public:

virtual REAL draw(INT_32BIT& seed, realmat& theta_start,

realmat& theta_chain, realmat& stats_chain,

realmat& pi_chain) = 0;

virtual void set_simulation_size(INTEGER n) = 0;

virtual void set_temp(REAL temperature) = 0;

virtual REAL get_temp() = 0;

virtual realmat get_mode() = 0;

virtual ~mcmc_base() {};

};

217

mcmc.h

class mcmc : public mcmc_base {

private:

proposal_base& T;

likehood_base& L;

usrmod_base& U;

INTEGER simulation_size;

REAL temp;

realmat mode;

public:

mcmc(proposal_base& T_fn, likehood_base& L_fn, usrmod_base& U_mod)

: T(T_fn), L(L_fn), U(U_mod), simulation_size(1), temp(1.0) {

REAL draw(INT_32BIT& seed, realmat& theta_start,

realmat& theta_chain, realmat& stats_chain,

realmat& pi_chain);

void set_simulation_size(INTEGER n);

void set_temp(REAL temperature);

REAL get_temp() { return temp; }

realmat get_mode() { return mode; }

};

218

Proposal

The proposal is a group move normal. A group

is a subset of the parameters. They are moved

together as a group according to a multivariate

normal density. The vector prop_def contains

classes that define these normals and is used

to construct the group move proposal.

The proposal randomly selects one element of

the vector and then draws from the normal de-

scribed therein. If all groups have one element,

then the proposal is actually a single move nor-

mal.

The details are not important other than to

understand the reason for the way proposal in

habit_main.cpp is constructed.

219

habit main.h

• A primitive user interface.

• Everything is known at compile time.

• Polymorphism is implemented with typedefs.

• Go through code.

220

habit main.cpp

• Constructs objects in the following order.

⊲ prop def: def (default constructed, then initial-
ized)

⊲ objfun: criterion (default constructed, then ini-
tialized from data)

⊲ usrmod: economy (default constructed)

⊲ likehood: generic likelihood (constructed from
economy, criterion)

⊲ proposal: selectable proposal (constructed from
def)

⊲ mcmc: metrop hast (constucted from econ-
omy, selectable proposal, generic likehood fol-
lowed by initializations)

⊲ asymptotics: summary (constructed from data,
economy, criterion, metrop hast).

• Runs MCMC chain, calls asymptotics, which is an
accumulator for θ̂, I, J , and writes chain’s output
to files.

• Go through code.

221

aymptotics.cpp

• Initializes a vector of objective functions,

each constructed from a bootstrap sample.

• Numerically differentiates the vector of ob-

jective functions to get score vectors.

⊲ Discuss numerical differentiation (next

slide) here.

• Accumulates: mean θ, J , I.

• Go through code.

222

Two Sided Numerical Differ-
entiation
Reference: Press, William H., Brian P. Flannery, Saul A.
Teukolsky, and William T. Vetterling (1993), Numerical
Recipes in C, The Art of Scientific Computing, Second
Edition, Cambridge University Press. See for one-sided
and other formulas.

h = REAL EPSILON(1.0/3.0) max(|x|,1)

lo = x− h

hi = x+ h

hh = hi− lo

f ′(x) =
f(hi)− f(lo)

hh

h minimizes the sum of bounds on roundoff and Taylor
series truncation error. The odd way of computing 2h
as hh is to make sure that roundoff does not add addi-
tional errors. If REAL is double, then accuracy is about
11 digits. If f is a noisy function, accuracy might not
even be 1 digit. There are special methods for noisy
functions.

223

Parallel Computing: Overview

• Clusters.

⊲ Memory is not shared among all CPUs.

⊲ Communication is via message passing.

⋄ MPI is the industry standard and is portable.

⊲ Most common coding strategy is master/slave
(aka. administrator/worker or leader/team) branches
within a single program.

• Symmetric Multi-Processor (SMP) machine.

⊲ Memory is shared among all CPUs; cores count
as CPUs.

⊲ MPI can be used.

⊲ Threads and OpenMP can be used.

• Graphics devices.

⊲ A graphics device is a massively parallel SMP
machine.

⊲ Uses threads that are automatically launched by
the device.

224

.

net

master

node 0

node 1 node 2

node 3 node 4hub

node 5 node 6✪
✪
✪
✪
✪
✪
✪
✪
✪
✪

❡
❡

❡
❡

❡
❡

❡
❡

❡
❡

❡
❡
❡
❡
❡
❡
❡
❡
❡
❡

✪
✪

✪
✪

✪
✪

✪
✪

✪
✪

Typical small cluster configuration

225

A serious cluster: NCAR’s bluefire
IBM Power 575: 128 nodes, 32 CPUs per node
Each CPU is 4.7GHz, 4096 CPUs in total

226

Classic Example

Solving a differential equation by dividing up

the boundaries.

227

x

Compute

Step 1

228

x

Done Compute

Compute

Step 2

229

x

Done Done

Done Compute

Compute

Compute

Step 3

230

Copyright: 1995
Publisher: Addison-Wesley Pub Co.
ISBN: 0-201-57594-9
Online at: http:://www.mcs.anl.gov/dbpp

231

Coding Strategies

• Shell Scripts. Some programs, such as nonlinear
optimizers that use multiple, random starts, are
so embarrassingly parallelizable, that parallelization
can be done with shell scripts alone.

• Message Passing Interface (MPI). The industry-
standard protocol for implementing parallel process-
ing. PVM is similar. Allows communication among
processes running on different processors. Archi-
tecture independent: Code written for a cluster
will run on multiple-processor, shared-memory ma-
chines. Mildly disruptive to serial code logic.

⊲ http://www.mpi-forum.org MPI reference

⊲ http://www.open-mpi.org software

⊲ http://ladon.iqfr.csic.es/docs/MPI ug in FORTRAN.pdf
Fortran

⊲ ftp://math.usfca.edu/pub/MPI/mpi.guide.ps C & C++

• POSIX Threads (Pthreads). Allows functions with
the same name but different instances of the same
argument to be run simultaneously. All functions
have full access to memory and other machine re-
sources. Can be disruptive to serial code logic and
may require care to avoid simultaneous use of the
same memory locations or other resources.

⊲ http://www.llnl.gov/computing/tutorials/pthreads

232

Coding Strategies (Continued)

• Parallelized Libraries. Allows sequential code to
have some of the benefits of parallelism. Works
best on SMP machines. Can actually impede per-
formance if coupled with MPI.

⊲ http://www.nag.co.uk/numberic/fd/FDdescription.asp

⊲ http://www.goguewave.com/products/imsl-numerical-libraries/c-

library.aspx

• High Performance Fortran. A sort of hybrid of the
strategies above, allows both threads and message
passing. Worked poorly for us.

⊲ http://hpff.rice.edu

• Open Multi-Processing (OpenMP) Implements mul-
tiprocessing programming in C/C++ and Fortran
on SMP machines. It is a set of compiler directives,
library routines, and environment variables that in-
fluence run-time behavior. Least disruptive to exist-
ing serial code. Similar to threads; easier to code.
Most compilers have it.

⊲ https://computing.llnl.gov/tutorials/openMP

⊲ http://www.openmp.org/mp-documents/spec30.pdf

233

Coding Strategies (Continued)

• Open Computing Language (OpenCL). A language
for programming GPU devices. Can be seriously
disruptive to serial logic; especially when it forces
dependencies among objects that would otherwise
be independent. CUDA is similar and simpler but
only works for Nvidia cards.

⊲ http://www.khronos.org

• ViennaCL. A scientific computing library that en-
capsulates OpenCL in the style of the C++ Stan-
dard Template Library. Hides all OpenCL unpleas-
antness from the user. Not disruptive to serial logic.
By far the easiest way to use graphics devices.

⊲ http://viennacl.sourceforge.net

• OpenACC. Similar to OpenMP but for use with
GPU devices. Uses compiler directives. Somewhat
disruptive to serial logic due to having to code to
compensate for slow GPU↔CPU memory copy. Not
yet widely available; semi Nvidia proprietary.

⊲ http://http://www.openacc.org

234

Introduction to MPI

• Pacheco, Peter S., A User’s Guide to MPI

(1995), Manuscript, Department of Math-

ematics, University of San Francisco.

Online at course website.

• http://www.open-mpi.org/doc

Online at course website.

235

A Simple MPMD Coded as
SPMD – 1
#include "libscl.h"

#include "mpi.h"

using namespace std;

using namespace scl;

namespace {

int my_rank; // Rank of process

void mpi_error (string msg) {

cout << msg << endl; MPI_Abort(MPI_COMM_WORLD, my_rank);

}

void mpi_warn (string msg) {

cout << msg << endl; MPI_Abort(MPI_COMM_WORLD, my_rank);

}

const int buflen = 100; // These lines here so fits on two slides.

char buffer[buflen]; // Buffer for messages

int no_procs; // Number of processes

int tag = 50; // Tag for messages

}

236

A Simple MPMD Coded as
SPMD – 2
int main(int argc, char *argp[], char *envp[])

{

MPI_Init(&argc, &argp);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &no_procs);

LIB_ERROR_HANDLER_PTR previous_error=set_lib_error_handler(&mpi_error);

LIB_WARN_HANDLER_PTR previous_warn=set_lib_warn_handler(&mpi_warn);

if (my_rank != 0) { // Slave

sprintf(buffer, "\tGreetings from process %d \n", my_rank);

int dest = 0;

MPI_Send (buffer, buflen, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}

else { // Master

for (int source = 1; source < no_procs; ++source) {

MPI_Status status;

MPI_Recv(buffer,buflen,MPI_CHAR,source,tag,MPI_COMM_WORLD,&status);

cout << buffer;

}

}

MPI_Finalize();

previous_error = set_lib_error_handler(previous_error);

previous_warn = set_lib_warn_handler(previous_warn);

}

237

MPI Makefile
CXX = /usr/lib64/openmpi/1.4-gcc/bin/mpic++

SDIR = ./

IMPI = /usr/lib64/openmpi/1.4-gcc/include

LMPI = /usr/lib64/openmpi/1.4-gcc/lib

ISCL = $(HOME)/lib/libscl/gpp

LSCL = $(HOME)/lib/libscl/gpp

IDIRS = -I. -I$(SDIR) -I$(IMPI) -I$(ISCL)

LDIRS = -L$(LMPI) -L$(LSCL)

CXXFLAGS = -O2 -Wall -c $(IDIRS)

LDFLAGS = $(LDIRS) -lscl -lm

hello : hello.o

$(CXX) -o hello hello.o $(LDFLAGS)

hello.o : $(SDIR)/hello.cpp

$(CXX) $(CXXFLAGS) $(SDIR)/hello.cpp

clean :

rm -f *.o

veryclean :

rm -f *.o

rm -f hello

238

MPI Shell Script
#! /bin/sh

Some 64 bit machines need this:

export PATH="$PATH:/usr/lib64/openmpi/1.4-gcc/bin/"

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/lib64/openmpi/1.4-gcc/lib"

export C_INCLUDE_PATH="$C_INCLUDE_PATH:/usr/lib64/openmpi/1.4-gcc/include"

echo "localhost cpu=48" > OpenMPIhosts

test -f hello.err && mv -f hello.err hello.err.bak

test -f hello.out && mv -f hello.out hello.out.bak

make -f makefile.mpi.OpenMPI_1.4 >hello.out 2>&1 && \

mpirun --hostfile OpenMPIhosts ${PWD}/hello >>hello.out 2>hello.err

RC=$?

case $RC in

0) exit 0 ;;

esac

exit 1;

239

Examples

• Compile and run hello on argux6

• Discuss case study: habit main mpi.h and

habit main mpi.cpp

240

MPI Init and MPI Finalize
#include "mpi.h"

main(int argc, char** argp)

{

//...

//No MPI functions called before this

//Passing these args allows system setup

MPI_Init(&argc, &argp);

//...

MPI_Finalize();

//No MPI functions called after this

//...

}

241

MPI Comm rank and MPI Comm

int MPI_Comm_rank(MPI_Comm comm, int* rank);

int MPI_Comm_size(MPI_Comm comm, int* size);

comm, a communicator or collection of pro-

cesses that can send messages to each other.

For simple programs the predefined

MPI COMM WORLD is enough. Usually a li-

brary would have its own communicator.

rank is the processor’s number: 0 is master

node.

size is the number of processors in a commu-

nicator

242

MPI Send and MPI Receive

int MPI_Send(void* buffer, int count,
MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Receive(void* buffer, int count,
MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Status* status)

message is a buffer of length count of type MPI datatype.
datatypes are MPI CHAR (signed char), MPI INT (signed
int), MPI DOUBLE (double), and some others. dest is
the rank of the recipient, source is the rank of the sender
(MPI ANY SOURCE allowed), tag is a user specified
message identifier (MPI ANY TAG allowed), comm is
the communicator; status.source gives rank of sender;
status.tag gives tag of message to allow resolution of
wildcards MPI ANY SOURCE and MPI ANY TAG.

243

MPI Bcast

int MPI_Bcast(void* buffer, int count,

MPI_Datatype datatype,

int root, MPI_Comm comm)

message is a buffer of length count of type

MPI datatype. root is the rank of the sender,

comm is the communicator. Sends the same

message to every process in communicator

comm. All processes in comm must call MPI Bcast

and must have root and comm the same.

MPI Recv cannot be used to receive a broad-

cast message.

244

Input/Output

The only process that can read or write a file

is the root (the process with rank=0). What

happens if another process tries to is indeter-

minate.

245

Posix Threads (Pthreads)

A threaded process has one or more processes

within it that can run independently and simul-

taneously.

A thread is one of these (sub) processes.

Reference: POSIX Threads Programming

http://www.llnl.gov/computing/tutorials/pthreads/

246

Pthread Warning

The material on pthreads is for an older C++

language standard such as the C++ compiler

on argux6. For the C++11 standard, such as

clang++ on a Mac, the code must be modi-

fied. See, e.g., compecon/src/hello pthread clang.

For the C++11 encapsulation of pthreads in a

thread class see

https://solarianprogrammer.com/2011/12/16/cpp-11-thread-

tutorial

247

Thread Properties

• The main program is a thread.

• A thread exists within the process that cre-

ates it and uses that process’s resources.

• A thread has its own independent flow of

control.

• A thread has its own stack and registers.

• A thread shares memory and files with the

process that creates it and with all other

threads.

248

Consequences of Thread Prop-
erties

• Changes made by one thread to shared re-

sources, such as closing a file, will be seen

by all other threads.

• Two pointers having the same value point

to the same data.

• Reading and writing to the same mem-

ory locations is possible and therefore re-

quires explicit synchronization by the pro-

grammer.

249

A Simple Threaded Program
– 1 of 2
// Compile with g++ -pthread in LDFLAGS

#include "libscl.h"

#include <pthread.h> // Header for pthread

#include <unistd.h> // Header for sysconf

namespace {

struct arg_type {

INTEGER threadid;

std::string message;

};

void* write_arg(void* arg_ptr)

{

arg_type* arg = (arg_type*)(arg_ptr);

arg->message += scl::fmt(’d’,2,arg->threadid)() + "\n";

std::cout << arg->message;

pthread_exit(NULL);

}

}

250

A Simple Threaded Program
– 2 of 2
int main(int argc, char** argp, char** envp)

{

#if defined _SC_NPROCESSORS_ONLN

INTEGER num_threads = sysconf(_SC_NPROCESSORS_ONLN);

#else

INTEGER num_threads = 2;

std::cerr << "The variable _SC_NPROCESSORS_ONLN is not defined, using

<< num_threads << " threads instead\n";

#endif

pthread_t threads[num_threads];

arg_type args[num_threads];

int rc, t;

for(t=0; t<num_threads; t++){

args[t].threadid = t;

args[t].message = "Hello from thread number ";

rc = pthread_create(&threads[t], NULL, write_arg, (void*)(&args[t]));

if (rc) scl::error("Cannot create thread");

}

pthread_exit(NULL);

}

251

Makefile
CC = g++

SDIR = .

IDIR = $(HOME)/lib/libscl/gpp

LDIR = $(HOME)/lib/libscl/gpp

CFLAGS = -O2 -Wall -c -I$(SDIR) -I$(IDIR)

LFLAGS = -pthread -lm -L$(LDIR) -lscl

hello : hello.o

$(CC) -o hello hello.o $(LFLAGS)

hello.o : $(SDIR)/hello.cpp

$(CC) $(CFLAGS) $(SDIR)/hello.cpp

clean :

rm -f *.o

rm -f core core.*

veryclean :

rm -f *.o

rm -f core core.*

rm -f hello

252

Function Naming Conventions

Function Prefix Functionality

pthread Threads themselves and thread management

pthread attr Thread attributes objects

pthread mutex Thread synchronization, mutual exclusion
pthread mutexattr Mutex attributes objects

pthread cond Condition variables

pthread condattr Condition attributes objects

pthread key Thread data keys

253

pthread create

int pthread_create(pthread_t* thread,

const pthread_attr_t* attr,

void* (*start_routine)(void*), void* arg)

pthread create creates a new thread that ex-

ecutes start routine, which is a pointer to a

function that takes a single void* argument

and returns a void*. arg is the argument

passed to pthread create. To pass more than

one argument, one must define a struct, con-

vert it to void*, and then convert it back to the

struct within start routine. NULL may be used

if no argument is to be passed. attr is an ob-

ject that defines attributes of the thread such

as stacksize; NULL may be used to specify the

default attributes. thread points to where the

thread id is stored on return. pthread create

returns zero on success.

254

pthread exit

void pthread_exit (void* value_ptr)

pthread exit terminates a thread’s execution.

The main program is a thread that must also

be terminated with pthread exit. If one fails to

do this, all threads will be terminated when the

main terminates even if their work is not fin-

ished. value ptr is a termination status for use

by a thread that joins the calling thread; NULL

may be used. pthread exit does not destroy

files created by the thread. Any file opened

and used only by the thread must be explicitly

destroyed before calling pthread exit.

255

Managing Attributes

int pthread_attr_init(pthread_attr_t* attr)

int pthread_attr_destroy(pthread_attr_t* attr)

pthread attr init allocates space for an at-

tribute object, initializes it to default values,

and puts its address in the location pointed

to by attr. pthread attr destroy destroys the

object and releases the space assigned to it.

Both return zero on success. Other routines

described later are used to query the attributes

and set them. pthread attr destroy has no ef-

fect on the threads previously created with the

destroyed object.

256

Joining Threads – 1 of 2

int pthread_attr_setdetachstate
(pthread_attr_t* attr, int detachstate)

int pthread_attr_getdetachstate
(const pthread_attr_t* attr, int* detachstate)

Joining is one way to set up a master/slave relationship
among threads. Joining makes the joined thread wait on
the termination of other threads. A thread created with
detach state set to PTHREAD CREATE DETACHED cannot be
waited upon. A thread created with detach state set to
PTHREAD CREATE JOINABLE can be waited upon. The latter
is supposed to be the default but not all implementations
conform. Set it yourself to be safe.

257

Joining Threads – 2 of 2

int pthread_join(pthread_t thread, void** status)

int pthread_detach(pthread_t thread)

The first argument is the thread to wait for,

which is called the target thread. The pthread join

function makes the thread that calls pthread join

wait until the target thread terminates. The

target thread’s termination status is returned

in the status parameter. If the target thread

is already terminated, but not yet detached,

pthread join returns immediately. It is impos-

sible to join a detached thread, even if it is

not yet terminated. The target thread is auto-

matically detached after all joined threads have

been woken up. pthread detach can be used to

explicitly detach a thread even though it was

created as joinable. There is no converse rou-

tine. Both functions return zero on success.

258

Pages and Caches

• Due to the way memory is managed by the

operating system (paging) and the CPU

(caching), one should write programs so

that data being accessed are in contigu-

ous areas of memory to the greatest extent

possible.

• In particular one should access the ele-

ments of an array in the order in which

they are stored.

• The elements of a realmat are ordered

columnwise in memory; i.e. the vec of the

matrix is stored. Therefore, in a double for

loop accessing elements A(i,j) of realmat

A, the index i should be fastest moving and

the index j slowest moving.

• The followng matrix multiplication exam-

ple (R = A∗B) showing how to join threads

reflects these memory management princi-

ples.

259

A Joined Threads Program – 1 of 3

#include "libscl.h"

#include <pthread.h> // Header for pthread

namespace {

struct arg_type {

INTEGER col;

realmat* r_ptr;

const realmat* a_ptr;

const realmat* b_ptr;

arg_type() { }

arg_type(INTEGER j,realmat* rp,const realmat* ap,const realmat* bp)

: col(j), r_ptr(rp), a_ptr(ap), b_ptr(bp) { }

};

void* mult(void* arg_ptr) {

arg_type* arg = (arg_type*)(arg_ptr);

INTEGER j = arg->col;

for (INTEGER k=1; k<=(*(arg->a_ptr)).ncol(); ++k) {

REAL b_kj = (*(arg->b_ptr))(k,j);

for (INTEGER i=1; i<=(*(arg->a_ptr)).nrow(); ++i) {

(*(arg->r_ptr))(i,j) += b_kj * (*(arg->a_ptr))(i,k);

}

}

pthread_exit((void*) 0);

}

}

260

A Joined Threads Program – 2 of 3

int main (int argc, char** argp)

{

realmat a,b;

if(!vecread("a.dat",a) || !vecread("b.dat",b)) error("Read failed");

if (a.ncol() != b.nrow()) error("Not conformable");

realmat r(a.nrow(),b.ncol(),0.0);

INTEGER num_threads = b.ncol();

pthread_t threads[num_threads];

arg_type args[num_threads];

pthread_attr_t attr;

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_JOINABLE);

for (INTEGER t=0; t<num_threads; ++t) {

args[t] = arg_type(t+1,&r,&a,&b);

int rc = pthread_create(&threads[t],&attr,&mult,(void*)(&args[t]));

if (rc) error("Cannot create threads");

}

261

A Joined Threads Program – 3 of 3

pthread_attr_destroy(&attr);

void* status;

for (INTEGER t=0; t<num_threads; ++t) {

int rc = pthread_join(threads[t], &status);

if (rc) error("Cannot join threads");

}

std::cout << a << b << r << ’\n’;

pthread_exit(NULL);

}

262

Stack Management

int pthread_attr_getstacksize
(const pthread_attr_t* attr, size_t* stacksize)

int pthread_attr_setstacksize
(pthread_attr_t *attr, size_t stacksize)

Stacksize is implementation dependent and exceeding
the default stack limit is easy to do. Exceeding it causes
program termination and/or corrupted data. Safe and
portable programs do not depend upon the default stack
limit, but instead, explicitly allocate enough stack for
each thread by using the pthread attr setstacksize rou-
tine. Both functions return zero on success. It is hard to
determine how much stack is needed. If the thread has
an array like double a[N*M] then the stack should be in-
creased from the default by at least sizeof(double)*N*M.
Allocating on the heap instead of the stack is a way
around this.

263

Miscellaneous Routines

pthread_t pthread_self(void)

int pthread_equal(pthread_t t1, pthread_t t2)

int pthread_once

(pthread_once_t* once_control, void (*init_routine)(void))

void pthread_yield(void)

pthread self returns the ID of the calling thread. pthread equal re-
turns a non-zero value if t1 and t2 refer to the same thread, or
zero if they do not. pthread once executes init routine once. The
first call by any thread executes init routine, without parameters.
Any subsequent call will have no effect. init routine is typically
an initialization routine. The once control parameter is a synchro-
nization control structure that requires initialization prior to calling
pthread once: pthread once t once control = PTHREAD ONCE INIT;. It
determines whether the associated initialization routine has been
called. The function pthread yield forces the calling thread to re-
linquish use of its processor, and to wait in the run queue before it
is scheduled again.

264

Mutex Variables

Mutex is an abbreviation for “mutual exclu-

sion”. Mutex variables are a another way to

implement thread synchronization and a way to

protect shared data when multiple writes oc-

cur. Usually the action performed by a thread

owning a mutex is the updating of global vari-

ables.

When several threads compete for a mutex,

the losers block at that call – an unblocking

call is available with “trylock” instead of the

“lock” call.

When protecting shared data, it is the pro-

grammer’s responsibility to make sure every

thread that needs to use a mutex does so. For

example, if four threads are updating the same

data, but only one uses a mutex, the data can

still be corrupted.

265

Mutex Coding

A typical sequence in the use of a mutex is as

follows:

• Create and initialize a mutex variable

• Several threads attempt to lock the mutex

• Only one succeeds and that thread owns

the mutex

• The owner thread performs some set of

actions

• The owner unlocks the mutex

• Another thread acquires the mutex and re-

peats the process

• Finally the mutex is destroyed

266

Creating and Destroying Mutexes

int pthread_mutex_init

(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr)

int pthread_mutex_destroy(pthread_mutex_t* mutex)

int pthread_mutexattr_init(pthread_mutexattr_t* attr)

int pthread_mutexattr_destroy(pthread_mutexattr_t* attr)

Mutex variables must be declared with type pthread mutex t and
must be initialized before they can be used. There are two ways
to initialize a mutex variable: statically, when it is declared, e.g.
pthread mutex t mymutex = PTHREAD MUTEX INITIALIZER; or dynamically,
using pthread mutex init() to set attributes as specified by the mu-
tex attibutes object attr, which may specified as NULL to accept
defaults. The mutex is initially unlocked.

pthread mutexattr init and pthread mutexattr destroy are used to
create and destroy mutex attribute objects. There are three mutex
attributes: (1) Protocol: Specifies the protocol used to prevent
priority inversions for a mutex. (2) Prioceiling: Specifies the pri-
ority ceiling of a mutex. (3) Process-shared: Specifies the process
sharing of a mutex. (4) Type: Enables deadlock detection. The
defaults are usually adequate so how to set them is not discussed
and not all implementations provide all mutex attributes anyway.

267

Locking and Unlocking Mutexes

int pthread_mutex_lock(pthread_mutex_t* mutex)
int pthread_mutex_trylock(pthread_mutex_t* mutex)
int pthread_mutex_unlock(pthread_mutex_t *mutex)

pthread mutex lock locks the mutex. If the mutex is al-
ready locked, the calling thread blocks until the mutex
becomes available. This operation returns with the mu-
tex in the locked state with the calling thread as its
owner. If a thread attempts to relock a mutex that it
has already locked a disaster called deadlock occurs.

pthread mutex trylock tries to lock the specified mutex.
If the mutex is already locked, an error is returned. Oth-
erwise, this operation returns with the mutex in the
locked state with the calling thread as its owner.

pthread mutex unlock attempts to unlock the specified
mutex. If there are threads blocked on the mutex ob-
ject when pthread mutex unlock is called, resulting in the
mutex becoming available, the scheduling policy is used
to determine which thread acquires the mutex.

268

A Mutex Program – 1 of 3

#include "libscl.h"

#include <pthread.h> // Header for pthread

#include <unistd.h> // Header for sysconf

using namespace scl;

namespace {

realmat a;

REAL fnorm;

pthread_mutex_t mutexsum;

void* mult(void* arg)

{

INTEGER* jptr = (INTEGER*)(arg);

INTEGER n = a.nrow();

REAL* t = &a(1,*jptr);

REAL* top = t + n;

REAL sum = 0.0;

while (t<top) sum += pow(*t++,2);

pthread_mutex_lock(&mutexsum);

fnorm += sum;

pthread_mutex_unlock(&mutexsum);

pthread_exit(NULL);

}

}

269

A Mutex Program – 2 of 3

int main (int argc, char** argp)

{

if(!vecread("a.dat",a)) error("Read failed");

INTEGER num_threads = a.ncol();

pthread_t threads[num_threads];

pthread_attr_t attr;

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_JOINABLE);

pthread_mutex_init(&mutexsum, NULL);

INTEGER arg[num_threads];

fnorm = 0.0;

for (INTEGER t=0; t<num_threads; ++t) {

arg[t] = t+1;

int rc = pthread_create(&threads[t], &attr, &mult, (void*)(&arg[t]));

if (rc) error("Cannot create threads");

}

pthread_attr_destroy(&attr);

270

A Mutex Program – 3 of 3

void* status;

for (INTEGER t=0; t<num_threads; ++t) {

int rc = pthread_join(threads[t], &status);

if (rc) error("Cannot join threads");

}

fnorm = sqrt(fnorm);

std::cout<<"The Frobenius norm of"<< a <<"\nis "<< fnorm <<’\n’;

pthread_mutex_destroy(&mutexsum);

pthread_exit(NULL);

}

271

Condition Variables

Condition variables provide yet another way for

threads to synchronize. While mutexes imple-

ment synchronization by controlling thread ac-

cess to data, condition variables allow threads

to synchronize based upon the actual value of

data.

Without condition variables, the programmer

would need to have threads continually polling

(possibly in a critical section), to check if the

condition is met. This can be very resource

consuming since the thread would be contin-

uously busy in this activity. A condition vari-

able is a way to achieve the same goal without

polling.

A condition variable is always used in conjunc-

tion with a mutex lock.

272

Condition Variable Coding – 1 of 4

Main Thread

• Declare and initialize global data/variables

which require synchronization (such as ”count”)

• Declare and initialize a condition variable

object

• Declare and initialize an associated mutex

• Create threads A and B to do work

273

Condition Variable Coding – 2 of 4

Thread A

• Do work up to the point where a cer-

tain condition must occur (such as ”count”

must reach a specified value)

• Lock associated mutex and check value of

a global variable

• Call pthread cond wait to perform a block-

ing wait for signal from Thread B. Note

that a call to pthread cond wait automati-

cally and atomically unlocks the associated

mutex variable so that it can be used by

Thread B.

• When signalled, wake up. Mutex is auto-

matically and atomically locked.

• Explicitly unlock mutex

• Continue

274

Condition Variable Coding – 3 of 4

Thread A

• Do work

• Lock associated mutex

• Change the value of the global variable that

Thread A is waiting upon.

• Check value of the global Thread A wait

variable. If it fulfills the desired condition,

signal Thread A.

• Unlock mutex.

• Continue

275

Condition Variable Coding – 4 of 4

Main Thread

• Join

• Continue

276

Creating and Destroying Condition Vari-
ables

int pthread_cond_init

(pthread_cond_t* cond, const pthread_condattr_t* attr)

int pthread_cond_destroy(pthread_cond_t* cond)

int pthread_condattr_init(pthread_condattr_t* attr)

int pthread_condattr_destroy(pthread_condattr_t* attr)

Condition variables must be declared with type pthread cond t,
and must be initialized before they can be used. There are
two ways to initialize a condition variable: Statically, when it is
declared; i.e. pthread cond t myconvar = PTHREAD COND INITIALIZER;

Dynamically, with pthread cond init. The ID of the created condi-
tion variable is returned to the calling thread through the condition
parameter. This method permits setting condition variable object
attributes, attr.

The optional attr object is used to set condition variable at-
tributes. There is only one attribute defined for condition variables:
process-shared, which allows the condition variable to be seen by
threads in other processes. The attribute object, if used, must
be of type pthread condattr t, which may be specified as NULL to
accept defaults.

Note that not all implementations may provide the process-shared

attribute.

pthread condattr init and pthread condattr destroy create and de-
stroy condition variable attribute objects.

277

Waiting and Signaling on Condition
Variables

int pthread_cond_wait(pthread_cond_t* cond, pthread_mutex_t* mutex)
int pthread_cond_signal(pthread_cond_t* cond)
int pthread_cond_broadcast(pthread_cond_t* cond)

pthread cond wait blocks the calling thread until the
specified condition is signalled. This routine should be
called while mutex is locked, and it will automatically
release the mutex while it waits. After signal is received
and thread is awakened, mutex will be automatically
locked for use by the thread. The programmer is then
responsible for unlocking mutex when the thread is fin-
ished with it.

pthread cond signal signals (or wakes up) another thread
which is waiting on the condition variable. It should be
called after mutex is locked, and must unlock mutex in
order for pthread cond wait routine to complete.

pthread cond broadcast should be used instead of pthread cond signal
if more than one thread is in a blocking wait state.

It is a logical error to call pthread cond signal before
calling pthread cond wait.

Proper locking and unlocking of the associated mutex
variable is essential when using these routines. For ex-
ample: Failing to lock the mutex before calling pthread cond wait
may cause it noT to block. Failing to unlock the mutex
after calling pthread cond signal may not allow a match-
ing pthread cond wait routine to complete (it will remain
blocked).

278

OpenMP

The references for the slides that follow are

• http://en.wikipedia.org/wiki/OpenMP

• https://computing.llnl.gov/tutorials/openMP

• https://computing.llnl.gov/tutorials/openMP/exercise.html

• http://www.openmp.org/mp-documents/spec30.pdf

• http://www.openmp.org/mp-documents/OpenMP3.0-SummarySpec.pdf

279

OpenMP

• SPMD multithreading master/slave paral-

lelization for SMP machines.

• The code that runs in parallel is marked

with a preprocessor directive, i.e. a pragma.

• Pragmas are controlled by data sharing,

synchronization, and scheduling clauses.

• Library functions provide environment in-

formation

• After the execution of the parallelized code,

the threads ”join” back into the master

thread.

280

Plan

• We will look at these pragmas.

⊲ pragma omp parallel

⊲ pragma omp for

⊲ pragma omp critical

• these clauses

⊲ private

⊲ shared

⊲ default

⊲ schedule

• and these functions

⊲ omp get thread num()

⊲ omp get num threads()

⊲ omp in parallel()

• There are others.

281

First Some Examples

We will look at the three examples we used for

pthreads

• Hello world

• Matrix multiply

• Frobenius norm

282

Makefile

CXX = g++

SDIR = .

ISCl = $(HOME)/lib/libscl/gpp

LSCl = $(HOME)/lib/libscl/gpp

CXXFLAGS = -fopenmp -O2 -Wall -c -I$(SDIR) -I$(ISCl)

LDFLAGS = -fopenmp -lm -L$(LSCl) -lscl

all : hello mult frobnorm

hello : hello.o

$(CXX) -o hello hello.o $(LDFLAGS)

hello.o : $(SDIR)/hello.cpp

$(CXX) $(CXXFLAGS) $(SDIR)/hello.cpp

mult : mult.o

$(CXX) -o mult mult.o $(LDFLAGS)

mult.o : $(SDIR)/mult.cpp

$(CXX) $(CXXFLAGS) $(SDIR)/mult.cpp

frobnorm : frobnorm.o

$(CXX) -o frobnorm frobnorm.o $(LDFLAGS)

frobnorm.o : $(SDIR)/frobnorm.cpp

$(CXX) $(CXXFLAGS) $(SDIR)/frobnorm.cpp

283

Hello World

// Compile with g++ -fopenmp flag in both CXXFLAGS & LDFLAGS

#include "libscl.h"

#include <omp.h>

using namespace std; using namespace scl;

int main(int argc, char** argp, char** envp)

{

INTEGER tid, nthreads;

string msg;

#pragma omp parallel private(nthreads, tid, msg)

{

tid = omp_get_thread_num();

msg = "Hello from thread =" + fmt(’d’,3,tid)() + "\n";

cout << msg;

if (tid == 0) {

bool inpar = omp_in_parallel();

msg = "\n";

if (inpar) msg += "Code block running in parallel\n";

else msg += "Code block running serial\n";

nthreads = omp_get_num_threads();

msg += "Number of threads =" + fmt(’d’,3,nthreads)();

msg += "\n\n";

cout << msg;

}

}

return 0;

}

284

Matrix Multiply – 1

#include "libscl.h"

#include <omp.h>

using namespace std;

using namespace scl;

int main(int argc, char** argp, char** envp)

{

realmat a, b;

if(!vecread("a.dat",a) || !vecread("b.dat",b)) error("Read failed");

if (a.ncol() != b.nrow()) error("Not conformable");

const INTEGER arows = a.nrow();

const INTEGER acols = b.nrow();

const INTEGER bcols = b.ncol();

285

Matrix Multiply – 2

realmat r(arows,bcols,0.0);

INTEGER chunk = 2;

INTEGER tid;

string msg;

#pragma omp parallel shared(chunk) private(tid, msg)

{

tid = omp_get_thread_num();

#pragma omp for schedule(static, chunk)

for (INTEGER j=1; j<=bcols; ++j) {

msg = "Thread" + fmt(’d’,3,tid)();

msg += " did col" + fmt(’d’,3,j)() + "\n";

cout << msg;

for (INTEGER k=1; k<=acols; ++k) {

for (INTEGER i=1; i<=arows; ++i) {

r(i,j) += a(i,k)*b(k,j);

}

}

}

}

std::cout << a << b << r << ’\n’;

return 0;

}

286

Frobenius Norm – 1

#include "libscl.h"

#include <omp.h>

using namespace scl;

using namespace std;

int main (int argc, char** argp, char** envp)

{

realmat a;

if(!vecread("a.dat",a)) error("Read failed");

a = T(a);

cout << a << ’\n’;

INTEGER arows = a.nrow();

INTEGER acols = a.ncol();

string msg;

287

Frobenius Norm – 2

INTEGER chunk = 2;

INTEGER tid;

REAL fnorm = 0.0;

REAL sum;

#pragma omp parallel shared(chunk, fnorm) private(tid, msg, sum)

{

tid = omp_get_thread_num();

#pragma omp for schedule (static, chunk)

for (INTEGER j=1; j<=acols; ++j) {

msg = "Thread" + fmt(’d’,3,tid)();

msg += " did col" + fmt(’d’,3,j)() + "\n";

cout << msg;

sum = 0.0;

for (INTEGER i=1; i<=arows; ++i) {

sum += pow(a(i,j),2);

}

#pragma omp critical

{ fnorm += sum; }

}

}

fnorm = sqrt(fnorm);

cout << "\nFrobenius norm = " << fnorm << ’\n’;

return 0;

}

288

Parallel Pragma

#pragma parallel [clause[[,]clause] ...] new-line
structured-block
clause: private(list)

shared(list)
default(shared | none)

The parallel pragma forms a team of threads and starts
parallel execution of a structured-block, which is a block
of code enclosed in braces. No jumps into or out of a
structured block are allowed. Within a parallel region,
thread numbers uniquely identify each thread. There is
an implied barrier at the end of a parallel region. After
the end of a parallel region, only the master thread of
the team resumes execution. If execution of a thread
terminates while inside a parallel region, execution of all
threads in all teams terminates. Variables in the pri-
vate (comma separated) list are local to each thread.
Variables in the shared list are global to all threads. Pri-
vate and shared clauses override a default clause. Using
default(none) forces explicit declaration of all variables
in the structured-block as private or shared. A backslash
is used to continue a pragma line.

289

For Pragma

#pragma omp for [clause[[,]clause] ...] new-line
structured-block
clause: shared(list)

private(list)
schedule(kind[, chunk_size])

The for pragma must appear within the structured block
of a parallel pragma. It specifies that the iterations
of one or more associated loops are distributed across
threads that already exist in the team executing the par-
allel pragma. The static form of the schedule clause is
schedule(static,chunk) where chunk is an integer. static
specifies allocation of iterations to threads prior to exe-
cution of threads in a team, is the default, and may be
all that is available with some compilers. chunk specifies
how many iterations are allocated to each thread. It
must be smaller than the limit of the outermost loop
index or one thread will do all iterations. All loop limits
must be loop invariant. No default clause; private and
shared as above. If available, use schedule(dynamic)

290

Critical Pragma

#pragma omp critical [(name)] new-line
structured-block

The critical construct restricts execution of the associ-
ated structured block to a single thread at a time, where
name can optionally be used to identify the critical re-
gion. Identifiers naming a critical region have external
linkage and occupy a namespace distinct from that used
by ordinary identifiers.

A thread waits at the start of a critical region identified
by a given name until no other thread in the program is
executing a critical region with that same name. Critical
sections not specifically named by omp critical directive
invocation are mapped to the same unspecified name.

A typical example is

#pragma omp critical
{ sum += x; }

which makes sure that only one thread at a time updates
sum.

291

Advantages of OpenMP

• Simple: Need not deal with message pass-

ing as MPI does

• Data layout and decomposition is handled

automatically by directives.

• Incremental parallelism: Can work on one

portion of the program at a time, no dra-

matic change to code is needed.

• Unified code for both serial and parallel ap-

plications: OpenMP constructs are treated

as comments when sequential compilers

are used.

• Original (serial) code statements need not,

in general, be modified when parallelized

with OpenMP. This reduces the chance of

inadvertently introducing bugs.

292

Disadvantages of OpenMP

• Risk of introducing difficult to debug syn-

chronization bugs and race conditions

⊲ A race condition is two or more threads

trying to write to the same memory lo-

cation simultaneously

• Only runs in shared-memory multiprocessor

platforms

• Requires a compiler that supports OpenMP.

• Scalability is limited by memory architec-

ture.

• Reliable error handling is missing.

• Can’t be used on GPUs

293

Other Directives, Clauses, etc.

Review

http://www.openmp.org/mp-documents/OpenMP3.0-SummarySpec.pdf

294

Graphics Devices

295

Nvidia is the Dominant Firm

• CUDA (Compute Unified Device Architec-

ture) is Nvidia’s name for their software

support of the device.

• The CUDA runtime library and the CUBLAS

are the most useful to us.

⊲ CUDA runtime functions are prefixed

with cuda.

⊲ CUBLAS functions are prefixed with cublas.

• The CUDA Driver API gives finer control

of the device but is harder to use.

⊲ Driver API functions are prefixed with

cu.

• OpenCL is supported by Nvidia, Apple,

AMD, etc. and is similar to CUDA. We con-

sider it after CUDA.

296

Now to Determine Device Charac-
teristics – 1

CPUCC = g++

GPUCC = nvcc

SDIR = .

ISCL = ../libscl_float/gpp

LSCL = ../libscl_float/gpp

ICUDA = /usr/local/cuda/include

LCUDA = /usr/local/cuda/lib

CPUFLAGS = -O2 -Wall -c -I$(ICUDA) -I$(SDIR) -I$(ISCL)

GPUFLAGS = -O -c -I$(ICUDA) -I$(SDIR)

LFLAGS = -L$(LCUDA) -lcuda -lcudart -lcublas -L$(LSCL) -lscl -lm

PROGRAMS = device

LIBRARIES = libscl.a

all : $(LIBRARIES) $(PROGRAMS)

libscl.a :

make -C $(LSCL)

device : device.o $(LIBRARIES)

$(CPUCC) -o device device.o $(OBJECTS) $(LFLAGS)

device.o : $(SDIR)/device.cpp

$(CPUCC) $(CPUFLAGS) $(SDIR)/device.cpp

297

Now to Determine Device Charac-
teristics – 2

#include "libscl.h"

#include "cuda.h"

#include "cuda_runtime.h"

#include "cublas.h"

using namespace std;

int main(int argc, char** argp, char** envp)

{

cudaError_t err;

int deviceCount;

cudaGetDeviceCount(&deviceCount);

int device;

cudaDeviceProp deviceProp;

for (device = 0; device < deviceCount; ++device) {

cout << ’\n’;

cout << "Properties for device " << device << ’\n’;

err = cudaGetDeviceProperties(&deviceProp, device);

if (err == cudaSuccess) {

cout << "Device characteristics" << ’\n’;

cout << "\tname = " << deviceProp.name << ’\n’;

298

Now to Determine Device Charac-
teristics – 3

cout << "\ttotalGlobalMem = " << deviceProp.totalGlobalMem << ’\n’;

cout << "\tsharedMemPerBlock = " << deviceProp.sharedMemPerBlock <<

cout << "\tregsPerBlock = " << deviceProp.regsPerBlock << ’\n’;

cout << "\twarpSize = " << deviceProp.warpSize << ’\n’;

cout << "\tmemPitch = " << deviceProp.memPitch << ’\n’;

cout << "\tmaxThreadsPerBlock = " << deviceProp.maxThreadsPerBlock<<’\n’;

cout << "\tmaxThreadsDim = " << deviceProp.maxThreadsDim[0] << ’ ’

<< deviceProp.maxThreadsDim[1] <<’ ’<< deviceProp.maxThreadsDim[2]

cout << "\tmaxGridSize = " << deviceProp.maxGridSize[0] << ’ ’

<< deviceProp.maxGridSize[1] <<’ ’<< deviceProp.maxGridSize[2]

cout << "\ttotalConstMem = " << deviceProp.totalConstMem << ’\n’;

cout << "\tdeviceProp.major = " << deviceProp.major << ’\n’;

cout << "\tdeviceProp.minor = " << deviceProp.minor << ’\n’;

cout << "\tclockRate = " << deviceProp.clockRate << ’\n’;

cout << "\ttextureAlignment = " << deviceProp.textureAlignment << ’\n’;

cout << "\tdeviceOverlap = " << deviceProp.deviceOverlap << ’\n’;

cout << "\tmultiProcessorCount = " << deviceProp.multiProcessorCount

cout << "\tkernelExecTimeoutEnabled = "

<< deviceProp.kernelExecTimeoutEnabled << ’\n’;

cout << "\tintegrated = " << deviceProp.integrated << ’\n’;

cout << "\tcanMapHostMemory = " << deviceProp.canMapHostMemory << ’\n’;

cout << "\tcomputeMode = " << deviceProp.computeMode << ’\n’;

}

}

return 0;

}

299

Dell T7400 Device Characteristics
– 1

Properties for device 0

Device characteristics

name = Tesla C1060

totalGlobalMem = 4294705152

sharedMemPerBlock = 16384

regsPerBlock = 16384

warpSize = 32

memPitch = 262144

maxThreadsPerBlock = 512

maxThreadsDim = 512 512 64

maxGridSize = 65535 65535 1

totalConstMem = 65536

deviceProp.major = 1

deviceProp.minor = 3

clockRate = 1296000

textureAlignment = 256

deviceOverlap = 1

multiProcessorCount = 30

kernelExecTimeoutEnabled = 0

integrated = 0

canMapHostMemory = 1

computeMode = 0

300

Dell T7400 Device Characteristics
– 2

Properties for device 1

Device characteristics

name = Quadro NVS 290

totalGlobalMem = 267714560

sharedMemPerBlock = 16384

regsPerBlock = 8192

warpSize = 32

memPitch = 262144

maxThreadsPerBlock = 512

maxThreadsDim = 512 512 64

maxGridSize = 65535 65535 1

totalConstMem = 65536

deviceProp.major = 1

deviceProp.minor = 1

clockRate = 918000

textureAlignment = 256

deviceOverlap = 1

multiProcessorCount = 2

kernelExecTimeoutEnabled = 1

integrated = 0

canMapHostMemory = 0

computeMode = 0

301

MacBookPro Device Characteristics

Properties for device 0

Device characteristics

name = GeForce 8600M GT

totalGlobalMem = 536674304

sharedMemPerBlock = 16384

regsPerBlock = 8192

warpSize = 32

memPitch = 262144

maxThreadsPerBlock = 512

maxThreadsDim = 512 512 64

maxGridSize = 65535 65535 1

totalConstMem = 65536

deviceProp.major = 1

deviceProp.minor = 1

clockRate = 933330

textureAlignment = 256

deviceOverlap = 0

multiProcessorCount = 4

kernelExecTimeoutEnabled = 1

integrated = 0

canMapHostMemory = 0

computeMode = 0

302

Simple Cuda Code from the
Guide
A kernel is defined using the __global__ declaration specifier and the

number of CUDA threads for each call is specified using <<< >>>

syntax: Each of the threads that execute a kernel is given a unique

thread ID that is accessible within the kernel through the built-in

threadIdx variable. As an illustration, the following sample code adds

two vectors A and B of size N and stores the result into vector C:

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

// Kernel invocation

VecAdd<<<1, N>>>(A, B, C);

}

Each of the threads that execute VecAdd() performs one pair-wise

addition.

303

CUBLAS

• It is possible to use the CUBLAS directly

from C++ code in a style similar to the

the CBLAS.

• This involves device memory allocation and

host-to-device and device-to-host copies

that cannot be avoided.

• CUDA functions using the kernel are asym-

metric: threads are still executing after the

function returns.

⊲ One must explicitly synchronize after a

call.

• Go through the example at src/cuda/cublas.

304

THRUST

• Thrust is a template library patterned af-

ter the standard template library that im-

plements many template library algorithms

to execute on a GPU

⊲ http://code.google.com/p/thrust

⊲ Same design philosophy as boost: www.boost.o

• Mixes easily with CUDA.

⊲ Especially useful for handling memory

transfers for use with CUDA.

⊲ Alleviates many synchronization issues.

305

The Limit on the Number of
Threads - 1

• For performance reasons the number of

threads that can be executed simultane-

ously is limited.

⊲ This number is called the Block dimen-

sion.

⊲ To get enough threads, one divides the

number of threads needed by the Block

dimension to get a multiple called the

Grid.

⊲ One passes the Grid and Block sizes in

<<<dimGrid,dimBlock>>> syntax.

• The dim can be a one, two, or three di-

mensional concept.

306

The Limit on the Number of
Threads - 2

• I find the use of more than one dimen-

sion confusing and use column major in-

dexing, which is also that of realmat and

the CUBLAS.

• Column major indexing, where X has r

rows, c columns, and size s=r*c. i is the

row index; j is the column index, and k is

the location in the vec of the matrix

• i=0,...,r-1; j=0,...,c-1; k=0,...,s-1;

⊲ Locations in a C array: k = r*j + i; j =

k/r; i = k%r

• i=1,...,r; j=1,...,c; k=1,...,s;

⊲ Locations: k = r*(j-1) + i - 1; j = k/r

+ 1; i = (k-1)%r

• Go through the example at src/cuda/corrX.

307

OpenCL

OpenCL is similar to CUDA; some things are

harder than CUDA, some are easier. What

does make more sense is memory manage-

ment. The scientific template library Vien-

naCL contains a BLAS, link below.

The references for the OpenCL slides that fol-

low are

• http://www.khronos.org/opencl/registry/cl

⊲ OpenCL 1.2 Specification.pdf

⊲ OpenCL 1.1 C++ Bindings Specification.pdf

• https://www.marcusbannerman.co.uk/index.php/research/teaching-
resources

• http://developer.amd.com/sdks/AMDAPPSDK/documentation/Pages/devault.asp

• http://http://viennacl.sourceforge.net

• Scarpino, Matthew, (2011) OpenCL in Action, Manning Pub-
lications, Shelter Island, NY.

308

Now to Determine Device Charac-
teristics – 1

CXX = g++

SDIR = .

OCLDIR = /System/Library/Frameworks/OpenCL.framework/Versions/Current

IOCL = $(OCLDIR)/Headers

LOCL = $(OCLDIR)/Libraries

ISCL = ../libscl_float/gpp

LSCL = ../libscl_float/gpp

IVCL = ../viennacl

CXXFLAGS = -O2 -Wall -c -shared -I$(SDIR) -I$(ISCL) -I$(IOCL) -I$(IVCL)

LDFLAGS = -lm -L$(LSCL) -lscl -L$(LOCL) -framework OpenCL

devices : devices.o $(OBJECTS)

$(CXX) -o devices devices.o $(OBJECTS) $(LDFLAGS)

devices.o : $(SDIR)/devices.cpp

$(CXX) $(CXXFLAGS) $(SDIR)/devices.cpp

Above is for Max OS 10.7.3, for Linux use

CXX = g++

SDIR = .

ISCL = ../libscl_float/gpp

LSCL = ../libscl_float/gpp

IVCL = ../viennacl

CXXFLAGS = -O2 -Wall -c -shared -I$(SDIR) -I$(ISCL) -I$(IVCL)

LDFLAGS = -lm -L$(LSCL) -lscl -lOpenCL

309

Now to Determine Device Charac-
teristics – 2

#include "scltypes.h"

#include "sclerror.h"

#include "cl.hpp"

int main()

{

cl_int err;

std::vector<cl::Platform> platformList;

err = cl::Platform::get(&platformList);

if (err != CL_SUCCESS) scl::error("Error, cl::Platform::get failed");

std::vector<cl::Platform>::const_iterator plitr;

for (plitr=platformList.begin(); plitr!=platformList.end(); ++plitr) {

std::string platformVendor;

err = plitr->getInfo((cl_platform_info)CL_PLATFORM_VENDOR, &platformVendor);

if (err != CL_SUCCESS) scl::error("Error, cl::Platform::getInfo failed");

std::cout << platformVendor << ’\n’;

std::vector<cl::Device> deviceList;

err = plitr->getDevices((cl_device_type)CL_DEVICE_TYPE_ALL, &deviceList);

if (err != CL_SUCCESS) scl::error("Error, cl::Platform::getDevices failed");

310

Now to Determine Device Charac-
teristics – 3

std::vector<cl::Device>::const_iterator dlitr;

for (dlitr=deviceList.begin(); dlitr!=deviceList.end(); ++dlitr) {

std::string deviceName;

err = dlitr->getInfo((cl_device_info)CL_DEVICE_NAME, &deviceName);

if (err != CL_SUCCESS) scl::error("Error, cl::Device::getInfo failed");

std::cout << deviceName << ’\n’;

std::vector<size_t> deviceSizes;

cl_device_info work_item_sizes = CL_DEVICE_MAX_WORK_ITEM_SIZES;

err = dlitr->getInfo(work_item_sizes, &deviceSizes);

if (err != CL_SUCCESS) scl::error("Error, cl::Device::getInfo failed");

std::vector<size_t>::const_iterator dsitr;

std::cout << " Max work item sizes: " << ’\n’;;

for(dsitr=deviceSizes.begin(); dsitr!=deviceSizes.end(); ++dsitr) {

std::cout << " " << *dsitr << ’\n’;

}

cl_device_info work_group_size = CL_DEVICE_MAX_WORK_GROUP_SIZE;

size_t groupSize;

err = dlitr->getInfo(work_group_size, &groupSize);

if (err != CL_SUCCESS) scl::error("Error, cl::Device::getInfo failed");

std::cout << " Max work group size = " << groupSize << ’\n’;

311

Now to Determine Device Charac-
teristics – 4

cl_device_info compute_units = CL_DEVICE_MAX_COMPUTE_UNITS;

cl_uint computeSize;

err = dlitr->getInfo(compute_units, &computeSize);

if (err != CL_SUCCESS) scl::error("Error, cl::Device::getInfo failed");

std::cout << " Max compute units = " << computeSize << ’\n’;

cl_device_info double_info = CL_DEVICE_DOUBLE_FP_CONFIG;

cl_device_fp_config double_conf;

err = dlitr->getInfo(double_info, &double_conf);

if (err != CL_SUCCESS) scl::error("Error, cl::Device::getInfo failed");

std::cout << std::boolalpha;

std::cout << " Has double = " << bool(double_conf) << ’\n’;

}

}

return 0;

}

312

Now to Determine Device Charac-
teristics – 5

Apple

Intel(R) Core(TM) i7-2860QM CPU @ 2.50GHz

Device type = 2

Max work item sizes:

1024

1

1

Max work group size = 1024

Max compute units = 8

Has double = true

ATI Radeon HD 6770M

Device type = 4

Max work item sizes:

1024

1024

1024

Max work group size = 1024

Max compute units = 6

Has double = false

313

A Kernel

__kernel void squareArray(__global float* input, __global float* output)"

{

output[get_global_id(0)] = input[get_global_id(0)]*input[get_global_id(0)];

};

Go through the rest of the hello.cpp example

to illustrate context, building the kernel, run-

ning the kernel, copying memory, etc.

314

Fig 2. Work Items, Work Groups, and

Memory

315

OpenCL Addresses – 1

Indexes, called work-items, index PEs and can

also index memory. There can be up to three

such indexes: (x, y, z). I will use two, x and y,

for illustration.

There are two indexing schemes, global and

group:

Global Indexing: There are Gx × Gy PEs

available. PEs are indexed by global-ids gx =

0, · · · , Gx − 1 and gy = 0, · · · , Gy − 1.

Group Indexing: The PEs are divided into

work-groups of sizes Sx and Sy. PEs within

a work-group are indexed by local-ids sx =

0, · · · , Sx − 1 and sy = 0, · · · , Sy − 1.

There are, therefore, Wx × Wy = Gx/Sx ×

Gy/Sy work-groups. Work-groups are indexed

by group-ids wx = 0, · · · ,Wx − 1 and wy =

0, · · · ,Wy − 1.

316

OpenCL Addresses – 2
The relationship between global and group indexing is

gx = wx ∗ Sx + sx
gy = wy ∗ Sx + sy

If there are offsets Fx and Fy then

gx = wx ∗ Sx + sx + Fx

gy = wy ∗ Sx + sy + Fy

Within a kernel, these calls provide the indexes

gx = get global id(0)

gy = get global id(1)

wx = get group id(0)

wy = get group id(1)

sx = get local id(0)

sy = get local id(1)

with similar calls to get Gx, Wx, Sx, Fx etc.

Typically one uses global-ids to index global memory and

local-ids to index local memory.

317

Fig 3. OpenCL Addresses – 3

318

OpenCL Speed

The speed of OpenCL code is governed by the

same rules we have already discussed. More-

over, there is no optimizing compiler to help

you. The rules are

• Access memory sequentially.

• Localize computations so that all fetchs are

from the cache.

There is no cache on a graphics card so one has to

make one’s own from local memory. Local memory

is fast; global memory is slow.

• Avoid if statements.

If you must use them, arrange code so that they

evaluate to true more frequently than false because

pipelines usually make that assumption.

319

Warps

An instruction is executed on a contiguous set

of PEs simultaneously. Nvidia calls this set a

warp; ATI a wavefront. An Nvidia warp has

32 PEs in it; an ATI wavefront has 64. Work-

group sizes Sx, Sy should be a multiple of the

warp or wavefront.

If a computation only uses, e.g., 16 PEs with

a warp of 32, then 32 will be launched, 16 of

which will compute nothing.

This makes branching especially deadly:

if (get_local_id(0) < 16) {

// Do something

// Work-items 16 through 31 are disabled but still run.

}

else {

// Do something

// Work-items 0 through 15 are disabled but still run.

}

If branch you must, branch on warp boundaries.

320

OpenCL Examples

We will next examine some code from matrixvecmult.cpp

and matrixvecmult.cl to illustrate addressing

and memory management.

• The kernels we will look at compute

W = MV

where M is a matrix and V is a vector.

• M is stored row-wise.

⊲ To access memory sequentially,

⊲ increment the column index.

321

A CPU Implementation
void MatrixVectorMul(const float* M, const float* V, float* W,

uint width, uint height)
{

for (uint y = 0; y < height; ++y) { // y is the row index

const float* row = M + y * width; // row points to row y

float dotProduct = 0;
for (uint x = 0; x < width; ++x) { // x is the column index

dotProduct += row[x] * V[x];
}

W[y] = dotProduct;
}

}

322

The GPU Analog
__kernel void MatrixVectorMul1(const __global float* M,

const __global float* V,
__global float* W,
uint width, uint height)

{
// Each work-item computes one element of W
uint y = get_global_id(0);
if (y >= height) return;

const __global float* row = M + y * width;

float dotProduct = 0;
for (uint x = 0; x < width; ++x)

dotProduct += row[x] * V[x];

W[y] = dotProduct;
}

Problem: height could exceed the global size

limit.

323

GPU Analog with Size Prob-
lem Fixed
__kernel void MatrixVectorMul2(const __global float* M,

const __global float* V,
__global float* W,
uint width, uint height)

{
// Each work-item computes multiple elements of W
for (uint y = get_global_id(0); y < height; y += get_global_size(0))

{
const __global float* row = M + y * width;

float dotProduct = 0;
for (uint x = 0; x < width; ++x)

dotProduct += row[x] * V[x];

W[y] = dotProduct;
}

}

Problem: We are jumping though memory.

Each work-item read is separated by width. We

are not using local memory at all.

324

Jump Problem Fix – 1
__kernel void MatrixVectorMul3(const __global float* M,

const __global float* V,

__global float* W,

uint width, uint height,

__local float* partialDotProduct)

{

// Each work-group computes multiple elements of W

for (uint y = get_group_id(0); y < height; y += get_num_groups(0))

{

const __global float* row = M + y * width;

float sum = 0;

for (uint x = get_local_id(0); x < width; x += get_local_size(0))

sum += row[x] * V[x];

partialDotProduct[get_local_id(0)] = sum;

barrier(CLK_LOCAL_MEM_FENCE);

The barrier guarantees that y cannot be incre-

mented until all reads from global memory at

row[x] and V[x] and writes to local memory

at partialDotProduc[x] have finished. Indexing

along x is contiguous because of execution by

warps.

325

Jump Problem Fix – 2
if (get_local_id(0) == 0)

{

float dotProduct = 0;

for (uint t = 0; t < get_local_size(0); ++t)

dotProduct += partialDotProduct[t];

W[y] = dotProduct;

}

barrier(CLK_LOCAL_MEM_FENCE);

}

}

Problem: The whole work-group must wait for

the partial dot products to be accumulated.

326

Accumulation Problem Fix –
1
__kernel void MatrixVectorMul4(const __global float* M,

const __global float* V,

__global float* W,

uint width, uint height,

__local float* partialDotProduct)

{

// Each work-group computes multiple elements of W

for (uint y = get_group_id(0); y < height; y += get_num_groups(0))

{

const __global float* row = M + y * width;

float sum = 0;

for (uint x = get_local_id(0); x < width; x += get_local_size(0))

sum += row[x] * V[x];

partialDotProduct[get_local_id(0)] = sum;

Up to here is the same as before except the

barrier statement is moved to within the loop

on the next slide.

Note that partialDotProduct is local memory.

327

Accumulation Problem Fix –
2

for (uint stride = 1; stride < get_local_size(0); stride *= 2)

{

barrier(CLK_LOCAL_MEM_FENCE);

uint index = 2 * stride * get_local_id(0);

if (index < get_local_size(0))

partialDotProduct[index] +=

partialDotProduct[index + stride];

}

if (get_local_id(0) == 0)

W[y] = partialDotProduct[0];

barrier(CLK_LOCAL_MEM_FENCE);

}

}

On entry to the loop, the barrier blocks exe-

cution until all work-items in the group have

finished updating local memory. After that,

stride cannot increment until all work-items

have once again updated local memory.

The next slide shows what the stride loop

does.

328

Fig 4. Stride Loop

329

A Better Accumulation Loop
for (uint stride = get_local_size(0)/2; stride > 0; stride /= 2)

{

barrier(CLK_LOCAL_MEM_FENCE);

if (get_local_id(0) < stride)

partialDotProduct[get_local_id(0)] +=

partialDotProduct[get_local_id(0) + stride];

}

if (get_local_id(0) == 0) W[y] = partialDotProduct[0];

barrier(CLK_LOCAL_MEM_FENCE);

}

}

This loop accesses local memory in separated

chunks, which is a bit faster.

The next slide shows what the stride loop

does.

330

Fig 5. Better Loop

331

Telsa C1060 Timing
Tesla C1060

CPU took 0.168037 sec

Testing MatrixVectorMul1

WorkGroupSize = 64 GlobalSize 100032

Average kernel execution time 0.137472

Testing MatrixVectorMul2

WorkGroupSize = 64 GlobalSize 3840

Average kernel execution time 0.132226

Testing MatrixVectorMul3

WorkGroupSize = 64 GlobalSize 3840

Average kernel execution time 0.0278443

Testing MatrixVectorMul4

WorkGroupSize = 64 GlobalSize 3840

Average kernel execution time 0.0219479

Testing MatrixVectorMul5

WorkGroupSize = 64 GlobalSize 3840

Average kernel execution time 0.0206547

332

OpenCL Demo

Compile and run matrixvecmult on argux2’s

Telsa C1060 and on the laptop’s ATI Radeon

HD 6770M.

333

ViennaCL

• A scientific computing library

• Includes a BLAS

• Exceptionally easy to use.

⊲ http://http://viennacl.sourceforge.net

334

ViennaCL C = AB Example –
1

• To interface with a realmat use a vclmat in
libscl

class vclmat {

public:

vclmat(); \\ default constructor

vclmat(scl::realmat& a); \\ construct vclmat wrapper

vclmat(const vclmat& cpu_a); \\ copy constructor, not wrapper

vclmat& operator=(const vclmat& cpu_a); \\ assignment, lhs not wrapper

operator scl::realmat() const; \\ conversion operator

bool is(const scl::realmat& a) const; \\ test if vclmat is a wrapper

unsigned int size() const; \\ viennacl interface method

unsigned int size1() const; \\ viennacl interface method

unsigned int size2() const; \\ viennacl interface method

REAL* begin(); \\ viennacl interface method

REAL* end(); \\ viennacl interface method

REAL operator()(uint i, uint j); \\ viennacl interface method

REAL& operator()(uint i, uint j); \\ viennacl interface method

};

• To define a ViennaCL matrices from realmat
A, B, C

viennacl::matrix<float,viennacl::column_major> gpu_A(A.nrow(),A.ncol());

viennacl::matrix<float,viennacl::column_major> gpu_B(B.nrow(),B.ncol());

viennacl::matrix<float,viennacl::column_major> gpu_C(A.nrow(),B.ncol());

335

ViennaCL C = AB Example –
2

• To copy realmat A, B from CPU to GPU

vclmat cpu_A(A);

vclmat cpu_B(B);

viennacl::copy(cpu_A,gpu_A);

viennacl::copy(cpu_B,gpu_B);

• To compute C = A * B on the GPU

gpu_C = viennacl::linalg::prod(gpu_A, gpu_B);

• To copy from GPU to CPU to realmat C

realmat C(A.nrow(),B.ncol());

vclmat cpu_C(C);

viennacl::copy(gpu_C,cpu_C);

if (!cpu_C.is(C)) C = cpu_C;

336

ViennaCL C = AB Timing,
Linux
Arows = 1000

Acols = 10000

Bcols = 1000;

Linux 2.6.18, Intel Xeon 3.16GHz 6144 KB cache (unified),

Telsa C1060, libscl

libscl_float mult time = 14.9863 <----

viennacl A & B copy time = 0.661133i compare

viennacl mult time = 0.001064 <----

viennacl C copy time = 0.632763

viennacl total time = 1.29496

GPU/CPU time = 8.64098 per cent

Linux 2.6.18, Intel Xeon 3.16GHz 6144 KB cache (unified),

Telsa C1060, libsclcb

libscl_float mult time = 1.68685 <----

viennacl A & B copy time = 0.660871 compare

viennacl mult time = 0.001028 <----

viennacl C copy time = 0.633325

viennacl total time = 1.29522

GPU/CPU time = 76.7837 per cent

Moral: Minimize copies between CPU and

GPU

Better: Use pthreads to do something simul-

taneously

337

ViennaCL C = AB Timing,
Apple
Arows = 1000

Acols = 10000

Bcols = 1000;

Mac OS X 10.6.8, Intel i7 2.66GHz 256 KB L2 (per core), 4MB L3

GeForce GT 330M libscl

libscl_float mult time = 10.8579 <----

viennacl A & B copy time = 0.68326 compare

viennacl mult time = 0.063123 <----

viennacl C copy time = 3.37502

viennacl total time = 4.1214

GPU/CPU time = 37.9576 per cent

Mac OS X 10.6.8, Intel i7 2.66GHz 256 KB L2 (per core), 4MB L3

GeForce GT 330M libsclcb

libscl_float mult time = 3.85385 <----

viennacl A & B copy time = 0.643956 compare

viennacl mult time = 0.064301 <----

viennacl C copy time = 3.39043

viennacl total time = 4.09868

GPU/CPU time = 106.353 per cent

Moral: Minimize CPU↔GPU copies, esp. GPU→CPU

Better: Use pthreads to do something simul-

taneously

338

ViennaCL Regression Exam-
ple – 1

• using libscl

realmat X(n,p);

realmat y(n,1);

realmat C = T(X)*X;

realmat b = invpsd(C)*(T(X)*y);

• memory layout is same as realmat if tag =
column major

viennacl::matrix<float,viennacl::column_major> gpu_X(n,p);

viennacl::matrix<float,viennacl::column_major> gpu_C(p,p);

viennacl::vector<float> gpu_y(n);

viennacl::vector<float> gpu_b(p);

339

ViennaCL Regression Exam-
ple – 1

• fast copy

viennacl::fast_copy(X.begin(), X.end(), gpu_X);

viennacl::fast_copy(y.begin(), y.end(), gpu_y.begin());

• compute b = invpsd(T(X)*X)*(T(X)*y) on the
GPU

gpu_C = viennacl::linalg::prod(trans(gpu_X), gpu_X);

gpu_b = viennacl::linalg::prod(trans(gpu_X), gpu_y);

viennacl::linalg::lu_factorize(gpu_C);

viennacl::linalg::lu_substitute(gpu_C, gpu_b);

• copy b from GPU to CPU

viennacl::fast_copy(gpu_b.begin(),gpu_b.end(),b.begin());

Notice that there is no need for a wrapper when

fast copy is used

340

ViennaCL Timing, Linux, lib-
scl
const INTEGER p = 30;

const INTEGER n = 100000;

Linux 2.6.18, Intel Xeon 3.16GHz 6144 KB cache (unified),

Telsa C1060, libscl

regr is not using fast_copy

ilibscl least squares time = 0.207739

viennacl X & y copy time = 0.095376

viennacl least squares time = 0.001063

viennacl b copy time = 0.085818 <-- GPU to CPU expensive

viennacl total time = 0.182257

GPU/CPU total time = 87.7337 per cent

GPU/CPU least squares time = 0.5117 per cent

regr is using fast_copy

libscl least squares time = 0.205742

viennacl X & y copy time = 0.013628

viennacl least squares time = 0.001215

viennacl b copy time = 0.085871 <-- GPU to CPU expensive

viennacl total time = 0.100714

GPU/CPU total time = 48.9516 per cent

GPU/CPU least squares time = 0.5905 per cent

341

ViennaCL Timing, Linux, lib-
sclcb
const INTEGER p = 30;

const INTEGER n = 100000;

Linux 2.6.18, Intel Xeon 3.16GHz 6144 KB cache (unified),

Telsa C1060, libsclcb

regr is not using fast_copy

libscl least squares time = 0.04383

viennacl X & y copy time = 0.095083

viennacl least squares time = 0.001313

viennacl b copy time = 0.085606 <-- GPU to CPU expensive

viennacl total time = 0.182002

GPU/CPU total time = 415.2453 per cent

GPU/CPU least squares time = 2.9957 per cent

regr is using fast_copy

libscl least squares time = 0.043693

viennacl X & y copy time = 0.013632

viennacl least squares time = 0.001202

viennacl b copy time = 0.08596 <-- GPU to CPU expensive

viennacl total time = 0.100794

GPU/CPU total time = 230.6868 per cent

GPU/CPU least squares time = 2.7510 per cent

342

ViennaCL Summary

• ViennaCL is exceptionally easy to use.

⊲ http://http://viennacl.sourceforge.net

• No need to use the OpenCL classes

1. Platform,

2. Device,

3. Context,

4. Program,

5. CommandQueue,

6. Buffer,

7. KernelFunctor,

• But you can to get more control or to run

your own kernels

⊲ A ViennaCL device can be an SMP ma-

chine’s CPU’s

⊲ There can be more than one device

343

We Are Finished!

We are finished with parallel computing.

We’ll move on to optimization.

344

Nonlinear Optimization and Equa-
tion Solving

• For many statistical objective functions we have
seen that MCMC can be used as an optimizer.

• We will now study methods that can be used for
smooth functions.

• We will be discussing the ideas behind four classes
in libscl:

⊲ nleqns base – Interface that defines a nonlinear
function

⊲ nlsolve – Implements Newton’s method with line
search

⊲ nlopt – Implements the BFGS quasi Newton
method

⊲ linesrch – Implements Fletcher’s line search method

• Go through declaration in libscl.h

345

Optimization of Smooth Func-
tions

Smooth functions f(x), x ∈ Rn, either have an-

alytic derivatives or have derivatives that can

be well approximated numerically.

We are trying to find x∗ that minimizes f(x)

...

... by constructing a sequence x(0), x(1), ...

that converges to x∗, where we must choose

x(0).

Reference: Fletcher, Roger (1987), Practical

Methods of Optimization, Second Edition Wi-

ley, New York, ISBN 0 471 91547 5.

346

Basic Strategy

If at x(k), approximate f(x) by a quadratic

f(x(k) + δ)
.
= f(x(k)) + g(k)T δ +

1

2
δTG(k)δ

The value of δ that minimizes f(x(k) + δ) is

s(k) = −
(

G(k)
)−1

g(k)

Rather than accept x(k) + s(k) as our next ap-

proximation we only accept s(k) as a search

direction: We seek to find α(k) that approxi-

mately minimizes

f(α) = f(x(k) + αs(k))

and put x(k+1) = x(k) + α(k)s(k)

347

Basic Strategy

In the approximation, g(k) is usually the gradi-

ent (∂/∂x)f(x).

Numerical schemes that are cheap to compute

and guarantee positive definiteness are used to

approximate H(k) =
(

G(k)
)−1

because the ex-

act Hessian is often a poor choice for G(k).

What is most important to do well is to find

α(k) that approximately minimizes

f(α) = f(x(k) + αs(k))

or at least find values for α(k) that do not tend

to zero as iterations progress and that satisfy

f(x(k) + α(k)s(k)) < f(x(k))

348

Wolfe-Powell Conditions

f(α) ≤ f(0) + αρf ′(0) ρ
.
=

1

2

f ′(α) ≥ σf ′(0) σ ∈ (ρ,1)

349

Fletcher’s Line Search
Strategy

Best method I’ve ever used!

First it brackets, trying to find an interval

[ai, bi] that contains the interval [a, b] of ac-

ceptable points.

Next it sections to get a sequence of brackets

[ai, bi] containing a(k) whose length tends to

zero.

What follows describes my implementation (class

linesrch in libscl) and corrects two errors in

Fletcher’s book.

350

Definitions and Tuning Parameters

Terminate means terminate line search and accept cur-
rent αi as α(k).

Terminate B means terminate bracketing and accept
current [ai, bi].

Intervals written [ai, bi] can have ai > bi and must be
checked before use.

f̄ is a lower bound; use 0 for a minimum norm problem;
use current value less an optimistic decrease for other
problems;

µ = [f̄ − f(0)]/[ρf ′(0)] µ is where the ρ-line equals f̄

Initialize α0 at 0 and α1 at either min(µ,1) or a good
guess at α(k)

σ = 0.1 for an accurate estimate of α(k); use σ = 0.9 for
speed.

τ1 = 9.0; τ2 = 0.1; τ3 = 0.5; ρ = 0.01; but τ2 ≤ σ; ρ < σ

Use a cubic polynomial to interpolate the four points
given.

Actual code has defenses against NaNs, Infs, etc. and
provides diagnostics.

To use the code only f̄ must be specified; α1 and
σ may be specified

351

Bracketing

for i := 1,2, . . . do

begin evaluate f(αi)

if f(αi) ≤ f̄ then terminate

if f(αi) > f(0) + ραif
′
(0) or f(αi) ≥ f(αi−1)

then begin ai := αi−1; bi := αi; terminate B;

evaluate f
′
(αi);

if |f
′
(αi)| ≤ −σf

′
(0) then terminate;

if f
′
(αi) ≥ 0

then begin ai := αi; bi := αi−1; terminate B;

if µ ≤ 2αi − αi−1

then ai+1 := µ;

else use f(αi−1), f
′
(αi−1), f(αi), f

′
(αi) to interp

best αi+1 ∈ [2αi − αi−1, min(µ, αi + τ1(αi − α

end;

352

State at Terminate B

On exiting the bracketing algorithm, the fol-

lowing are true:

1. ai is the current best trial point (least f)

that satisfies f(α) ≤ f(0) + αρf ′(0).

2. f ′(ai) has been evaluated and satisfies (bi−

ai)f
′(ai) < 0 but not |f ′(ai)| ≤ −σf

′(0).

3. bi satisfies either f(bi) > f(0) + αρf ′(0) or

f(bi) > f(ai) or both.

Fletcher proves that a bracket that satisfies

these conditions contains an interval of accept-

able points.

353

Sectioning

for j := i, i+1, . . . do

begin use f(αi−1), f
′
(αi−1), f(αi), f

′
(αi) to interpolate

best αj ∈ [aj + τ2(bj − aj), bj − τ3(bj − aj)];

evaluate f(αj);

if |(aj − αj)f
′
(aj)| < solution tolerance then terminate;

if f(αj) > f(0) + ραjf
′
(0) or f(αj) ≥ f(aj);

then begin aj+1 := aj; bj+1 := αj; end;

else begin

evaluate f
′
(αj);

if |f
′
(αj)| ≤ −σf

′
(0) or f(αj) ≤ f̄ then terminate;

aj+1 := αj;

if (bj − aj)f
′
(αj) ≥ 0 then bj+1 := aj else

end;

end;

354

Recall the Basic Strategy

If at x(k), approximate f(x) by a quadratic

f(x(k) + δ)
.
= f(x(k)) + g(k)T δ +

1

2
δTG(k)δ

The value of δ that minimizes f(x(k) + δ) is

s(k) = −
(

G(k)
)−1

g(k)

Find α(k) that approximately minimizes

f(α) = f(x(k) + αs(k))

and put x(k+1) = x(k) + α(k)s(k)

355

The Liner Term

The best choice of g(k) is (∂/∂x)f(x(k)) com-

puted analytically.

Avoid numerical approximation if at all possi-

ble. If forced to use numerical approximation,

at least use two sided differences (see class

nleqns in libscl). You may have to use higher

order polynomials to get sufficient accuracy.

356

The Quadratic Term

The best choice for H(k) =
(

G(k)
)−1

is the

BFGS (Broyden, Fletcher, Goldfarb, Shanno)

formula

H(k+1) = H+

(

1+
γ ′Hγ

γ ′δ

)

δδ ′

γ ′δ
−

(

δγ ′H +Hγδ ′

γ ′δ

)

where H = H(k), δ = x(k) − x(k−1), γ = g(k) −

g(k−1), H(0) = I

The theory supporting this formula is tedious. The main
idea is that one wants an update formula of the form
H(k+1) = H + aa′ + bb′ that satisfies the quasi Newton
condition H(k+1)γ = δ, which says that Taylor’s theorem
γ = Gδ + o(‖δ‖) holds exactly. H(k+1) converges to the
Hessian at the optimum.

357

Example

Illustrate with code in compecon/src/nlopt

358

Solving Smooth Systems

Smooth functions f(x), x ∈ Rn, either have an-

alytic derivatives or have derivatives that can

be well approximated numerically.

We are trying to find x∗ that solves f(x) = 0.

359

Basic Strategy

If at x(k), approximate f(x) by a linear system

f(x(k) + δ)
.
= f(x(k)) + F (k)δ

The value of δ that solves f(x(k) + δ) is

s(k) = −
(

F (k)
)−1

f(x(k))

Rather than accept x(k) + s(k) as our next ap-

proximation we only accept s(k) as a search

direction: We line search using our previous

algorithm to find α(k) that approximately min-

imizes

f(α) = ‖f(x(k) + αs(k))‖

and put x(k+1) = x(k) + α(k)s(k)

Note that s(k) is the steepest descent direc-

tion for minimizing ‖f(x)‖. Method is called

Newton’s method with line search.

360

Examples

• Illustrate interface and numerical differen-

tiation with abstract function object nle-

qns base in libscl.h and nleqns.cpp.

• Illustrate BFGS with examples in src/nlopt

src/logistic/mle.

• Illustrate Newton’s method with example

in src/nlsolve.

• Illustrate BFGS from libscl with SNP.

• Illustrate BFGS from GSL (General Scien-

tific Library) with SNP.

361

Timing

We have studied various methods to time code

to learn what methods are more efficient and

to find where the most time is spent.

The next topic, profiling, is another way to find

where time is being spent.

362

Profiling

• Add -pg flag to compiler flags and linker

flags.

• Do this for libraries that are to be included

in the profile.

• Make the libraries, make the program, run

the program, and then type: gprof progname gmon.out

• Profile.out is a self annotated file with tim-

ing information.

• Illustrate with nlreg profile example.

• Recompile everything without -pg flag when

finished because code compiled with the -

pg runs about 30% longer.

363

Particle Filters

In time series models that have latent variables

(i.e. have unobservable variables), particle fil-

ters are used to

• Estimate the path of the latent variables

using all the data; called smoothing.

• Estimate the path of the latent variables up

to time t using only information available

at time t; called filtering.

• Integrate the unobservable variables out of

the joint density of observable and unob-

servable variables to get the marginal den-

sity of the observable variables, which is

the likelihood.

364

Particle Filters – Sources

• Douced, Arnaud, Nando de Freitas, Neil

Gordon, Editors (2001), Sequential Monte

Carlo Methods in Practice, Springer, New

York, ISBN 0 387 95146 6.

• Durham, Garland B. (2006), ”Monte Carlo

Methods for Estimating, Smoothing, and

Filtering One and Two-Factor Stochastic

Volatility Models”. Journal of Economet-

rics 133, 273–305.

• Gallant, A. Ronald, Han Hong, Ahmed

Khwaga (2011), “Bayesian Estimation of

a Dynamic Game with Endogenous, Par-

tially Observed, Serially Correlated State,”

Link on course web site.

365

Particle Filters – Plan

• Introduce ideas with the simplest stochas-

tic volatility model

⊲ Introduce algorithms

⊲ Sample code

• Present the general theory

366

Stochastic Volatility Model –
Shephard form

xt = φxt−1 + σet

yt = β exp(xt−1)ut

et ∼ N(0,1)

ut ∼ N(0,1)

x0 ∼ N [0, σ2/(1− φ2)]

(et, ut) ∼ iid

E(etut) = ρ

• Compatible with Euler discretization of continuous
time models but does not agree with the notational
conventions of the particle filter literature.

• Claimed to be better empirically by Yu, Jun, (2005),
”On Leverage in a Stochastic Volatility Model,”
Journal of Econometrics 127, 165–178.

• In my view Yu’s evidence is not persuasive.

367

Stochastic Volatility Model –
Polson form

xt = φxt−1 + σet

yt = β exp(xt)ut

et ∼ N(0,1)

ut ∼ N(0,1)

x0 ∼ N [0, σ2/(1− φ2)]

(et, ut) ∼ iid

E(etut) = ρ

• Agrees with the notational conventions of the par-
ticle filter literature.

• When ρ = 0, the case of no leverage, it makes no
difference whether one uses the Shephard or Polson
forms.

• I will assume ρ = 0 for simplicity, which is a reason-
able assumption for exchange rate data.

368

Stochastic Volatility Model –
Densities

x0 ∼ n[0, σ2/(1− φ2)]

xt ∼ n[φxt−1, σ
2]

yt ∼ n{0, [β exp(xt)]
2}

θ = (φ, σ, β)

369

Generic The Abstraction

x0 ∼ p(x0|θ) marginal density

xt ∼ p(xt|xt−1, θ) transition density

yt ∼ p(yt|xt, θ) measurement density

y1:t = {y1, . . . , yt} observed data

x0:t = {x0, . . . , xt} unobsered variables

In many of the slides that follow we will sup-

press θ to save space.

370

Generic Particle Filter Prob-
lem

x0 ∼ p(x0)

xt ∼ p(xt|xt−1)

yt ∼ p(yt|xt)

y1:t = {y1, . . . , yt}

x0:t = {x0, . . . , xt}

Goals:

• Estimate the posterior p(x0:t|y1:t) recur-

sively.

• Estimate the filtering distribution p(xt|y1:t)

recursively.

• Approximate integrals of the form
∫

p(y1:t|x0:t) ft(x0:

371

Particle Filter Algorithm

1. Initialization, t = 0.

(a) For i = 1, . . . , N sample x
(i)
0 from p(x0)

and set t to 1.

2. Importance sampling step.

(a) For i = 1, . . . , N sample x̃
(i)
t from p(xt|x

(i)
t−1)

and set

x̃
(i)
0:t = (x

(i)
0:t−1, x̃

(i)
t)

(b) For i = 1, . . . , N compute weights w̃
(i)
t =

p(yt|x̃
(i)
t)

(c) Normalize the weights.

3. Selection step

(a) For i = 1, . . . , N sample with replace-

ment the particles

x
(i)
0:t from the set {x̃

(i)
0:t} according to the

weights.

(b) Increment t and go to step 2

372

Filtering and Smoothing

Smoothing conditions on all the data y1:n. In

smoothing one plots, integrates, etc. using

draws x1:t from p(x1:t|y1:n).

Filtering conditions only on the data y1:t avail-

able at time t. In filtering, one plots, inte-

grates, etc. using draws x1:t from p(x1:t|y1:t).

Sometimes one needs draws x0:t from p(x0:t|y1:t−1).

Because p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1) dx

one can draw x0:t−1 from p(x0:t−1|y1:t−1)

and then draw x̃t from p(xt|xt−1) to

get a draw x̃0:t = (x0:t−1, x̃t) from

p(x0:t|y1:t−1).

Note that one has this draw at step 2a of the

algorithm.

373

Pointwise Likelihood

Approximation

p(y1:t|θ) =
n
∏

t=2

p(yt|y1:t−1, θ)

=
n
∏

t=2

∫

p(yt|xt, θ) p(xt|y1:t−1, θ) dxt

.
=

n
∏

t=2

1

N

N
∑

i=1

p(yt|x̃
(i)
t , θ)

=
n
∏

t=2

1

N

N
∑

i=1

w̃
(i)
t

where the particles are {x̃
(i)
1:t} from step 2a and

the weights are from step 2b.

The conditioning is on y1:t−1, not y1:t, see pre-

vious slide.

374

Local Likelihood

Approximation

p(y1:t|θ)

=
n
∏

t=2

p(yt|y1:t−1, θ)

=
n
∏

t=2

∫

p(yt|xt, θ)
p(xt|y1:t−1, θ)

p(xt|y1:t−1, θo)
p(xt|y1:t−1, θ

o) dxt

.
=

n
∏

t=2

1

N

N
∑

i=1

p(yt|x̃
(i)
t , θ)

p(x̃
(i)
t |y1:t−1, θ)

p(x̃
(i)
t |y1:t−1, θ

o)

.
=

n
∏

t=2

1

N

N
∑

i=1

p(yt|x̃
(i)
t , θ) hopefully

where the particles {x̃
(i)
1:t} are from p(x1:t|y1:t−1, θ

o);

i.e., step 2a.

To compute a mle, cycle between hill climbing

with respect to θ and shifting θo closer to the

current putative optimum.

375

SV Particle Filter – 1 of 8

#ifndef __FILE_SVMOD_H_SEEN__

#define __FILE_SVMOD_H_SEEN__

#include "libscl.h"

struct sample {

REAL x0;

scl::realmat x;

scl::realmat y;

sample(INTEGER n) : x0(0.0), x(1,n), y(1,n) {}

};

class svmod {

private:

REAL phi;

REAL sigma;

REAL beta;

public:

svmod() : phi(0.9),sigma(0.5),beta(0.01) { }

void set_parms(const scl::realmat& theta);

scl::realmat get_parms() const;

REAL draw_x0(INT_32BIT& seed) const;

REAL draw_xt(REAL xlag, INT_32BIT& seed) const;

REAL prob_yt(REAL yt, REAL xt) const;

sample draw_sample(INTEGER n, INT_32BIT& seed) const;

};

#endif

376

SV Particle Filter – 2 of 8

#include "libscl.h"

#include "svmod.h"

using namespace std;

using namespace scl;

REAL svmod::draw_x0(INT_32BIT& seed) const

{

return (sigma/sqrt(1.0-phi*phi))*unsk(seed);

}

REAL svmod::draw_xt(REAL xlag, INT_32BIT& seed) const

{

return phi*xlag + sigma*unsk(seed);

}

REAL svmod::prob_yt(REAL yt, REAL xt) const

{

const REAL roottwopi = sqrt(6.283195307179587);

REAL sd = beta*exp(xt);

REAL z = yt/sd;

return exp(-0.5*z*z)/(roottwopi*sd);

}

377

SV Particle Filter – 3 of 8

sample svmod::draw_sample(INTEGER n, INT_32BIT& seed) const

{

sample s(n);

s.x0 = draw_x0(seed);

REAL xlag = s.x0;

for(INTEGER t=1; t<=n; ++t) {

s.x[t] = draw_xt(xlag, seed);

s.y[t] = beta*exp(s.x[t])*unsk(seed);

xlag = s.x[t];

}

return s;

}

378

SV Particle Filter – 4 of 8

#include "libscl.h"

#include "svmod.h"

using namespace scl;

using namespace std;

int main(int argc, char** argp, char** envp)

{

INTEGER n = 100;

INTEGER N = 5000;

INT_32BIT seed = 780695;

svmod m;

sample s = m.draw_sample(n,seed);

379

SV Particle Filter – 5 of 8

vector<realmat> smooth(N);

vector<realmat> filter(N);

vector<realmat> draws(N);

REAL weights[N];

REAL log_likelihood = 0.0;

380

SV Particle Filter – 6 of 8

// Initialization

realmat y(n+1,1);

y[1] = 0.0;

for (INTEGER t=2; t<=n+1; t++) {

y[t] = s.y[t-1];

}

REAL sum = 0.0;

realmat x(n+1,1);

for (INTEGER i=0; i<N; ++i) {

x[1] = m.draw_x0(seed);

smooth[i] = filter[i] = draws[i] = x;

}

381

SV Particle Filter – 7 of 8
for (INTEGER t=2; t<=n+1; ++t) {

// Importance sampling step

sum = 0.0;

for (INTEGER i=0; i<N; ++i) {

draws[i][t] = m.draw_xt(draws[i][t-1],seed);

sum += weights[i] = m.prob_yt(y[t],draws[i][t]);

}

log_likelihood += log(sum/REAL(N));

for (INTEGER i=1; i<N; ++i) weights[i] += weights[i-1];

for (INTEGER i=0; i<N; ++i) weights[i] /= sum;

// Selection step

for (INTEGER i=0; i<N; ++i) {

REAL u = ran(seed);

INTEGER j = 0; while(weights[j] <= u) ++j;

smooth[i] = draws[j];

filter[i][t] = draws[j][t];

}

draws = smooth;

}

382

Comment on Previous Slide

The assignment

draws = smooth

in the last line of the previous slide is costly

and can be avoided using pointers.

See particle_fast.cpp at the course website.

383

SV Particle Filter – 8 of 8

realmat mean(n+1,1,0.0);

for (INTEGER i=0; i<N; ++i) {

mean += smooth[i];

}

mean = mean/N;

realmat sdev(n+1,1,0.0);

for (INTEGER i=0; i<N; ++i) {

realmat z = smooth[i] - mean;

for (INTEGER t=1; t<=n+1; ++t) sdev[t] += z[t]*z[t];

}

for (INTEGER t=1; t<=n+1; ++t) sdev[t] = sqrt(sdev[t]/REAL(N-1));

ofstream fout("smooth.csv");

if (!fout) error("Error, particle, cannot open fout");

fout << "mean, sdev, x, y" << ’\n’;

fout << mean[1] <<’,’<< sdev[1] <<’,’<< s.x0 <<’,’<< 0 <<’\n’;

for (INTEGER t=2; t<=n+1; ++t) {

fout<<mean[t]<<’,’<<sdev[t]<<’,’<<s.x[t-1]<<’,’<<s.y[t-1]<<’\n’;

}

\\ similar code for filter

cout << "The log likelihood is " << log_likelihood << ’\n’;

return 0;

}

384

SV Particle Filter Results – 1 of 2

0 20 40 60 80 100

−4
−2

0
2

4

0 20 40 60 80 100

−4
−2

0
2

4

The top panel is a smooth, the bottom a filter. The solid red line is the

mean of the volatility particles. The dashed black lines are plus and minus

two standard deviations of the particles.

385

SV Particle Filter Results – 2 of 2

0 20 40 60 80 100

−3
−2

−1
0

1
2

3

0 20 40 60 80 100

−3
−2

−1
0

1
2

3

The top panel is a smooth, the bottom a filter. The red line is the mean

of the volatility particles. The blue line is the true volatility path.

386

Why Does This Work?

• It is an application of importance sampling

applied sequentially with a particular choice

of importance function that simplifies the

algebra.

• The selection step corrects for a defect in

importance sampling that arises when it is

applied sequentially.

• Details follow.

• In what follows, the hidden Markov state x

can be either scalar or vector and the same

for the observation y.

387

Importance Sampling

We want to compute the integral
∫

f(x)p(x) dx,

where p(x) is a density function with support

X ⊂ ℜd .

Suppose we can find a density function π(x)

whose support includes X from which we can

draw a sample x(1), . . . , x(N).

Then
∫

f(x)p(x) dx =
∫

f(x)w(x)π(x) dx

where

w(x) =
p(x)

π(x)

whence

∫

f(x)p(x) dx
.
=

1

N

N
∑

i=1

f(x(i))w(x(i))

388

For Importance Sampling to Work Well

• The variance with respect to π(x) of f(x)w(x)

must be small.

⊲ To satisfy this requirement for general

f(x) one tries to make the variance of

w(x) small.

⊲ Making the variance of w(x) small is

usually accomplished by making sure

that π(x) has fatter tails than p(x) .

⊲ For example, if p(x) has exponential

tails like exp−x
′
Σ−1x/2, then choose π(x)

to be a density with polynomial tails like

the multivariate t-distribution.

• Importance sampling is hard to get to work

well when the dimension of x is large be-

cause it is hard to draw a sample that lands

where f(x)w(x) is large.

⊲ This is also the reason that move-one-

at-a-time MCMC often works better than

independence MCMC or Gibbs or group-

move.

389

Normalized Weights

Let

ŵ(i) =
w(x(i))

∑N
t=iw(x(i))

then
∫

f(x) p(x) dx =

∫

f(x)w(x)π(x) dx
∫

w(x)π(x) dx

.
=

1
N

∑N
i=1 f(x

(i))w(x(i))
1
N

∑N
i=1w(x(i))

=
N
∑

i=1

ŵ(i)f(x(i))

390

Why are Normalized Weights
Relevant?
N
∑

i=1

ŵ(i) = 1 &
∫

f(x) p(x) dx
.
=

N
∑

i=1

ŵ(i)f(x(i)),

imply that we are integrating f(x) with respect

to a discrete distribution that puts probability

ŵ(i) on the point x(i).

That means we could alternatively generate a

random sample {x̂(i)} from this discrete distri-

bution and use the formula

∫

f(x)p(x) dx
.
=

1

N

N
∑

i=1

f(x̂(i))

A random sample can be generated by sam-

pling the points {x̂(i)} with replacement with

probability ŵ(i).

391

What Are We Trying to Compute?

For the density

p(x0:t|y1:t) =
p(y1:t|x0:t)p(x0:t)

∫

p(y1:t|x0:t)p(x0:t) dx0:t

we want to compute importance weights w̃
(i)
t

and particles {x̃
(i)
0:t} recursively.

Recursively means that one has available at

time t the weights w
(i)
t−1 (usually = 1/N due to

resampling) and particles {x
(i)
0:t−1} from time t−

1 and the observed yt and uses cheap updating

formulas to compute the time t weights w̃
(i)
t

and particles {x̃
(i)
0:t}.

392

Recursive Importance Sampling
Theorem

If the importance function π(x0:t|y1:t) for p(x0:t|y1:t)

factors as

π(x0:t|y1:t) = π(xt|x0:t−1, y1:t)π(x0:t−1|y1:t−1)

then one can draw x
(i)
t from π(xt|x

(i)
0:t−1, y1:t),

put

x
(i)
1:t = (x

(i)
0:t−1, x

(i)
t),

and use weights

w̃
(i)
t ∝ w̃

(i)
t−1

p(yt|x
(i)
t)p(x

(i)
t |x

(i)
t−1)

π(x
(i)
t |x

(i)
0:t−1, y1:t)

A special case of this is the “blind sampler”

π(x0:t|y1:t) = p(x0:t) = p(x0)
t
∏

k=1

p(xk|xk−1),

which is the choice in the particle filter algo-

rithm.

393

Why Follow It with a Selection Step?

When importance sampling is done recursively

what happens as t increases is that a few of

the weights w̃
(i)
t increasingly dominate so that

most particles effectively die out.

What resampling does is eliminate some of the

particles that have negligible weight, replace

them with particles that have larger weight,

and adjust the weights. The result is more

equal weights.

We described what is called bootstrap or multi-

nomial selection. After completing a bootstrap

selection, each particle has weight 1/N .

Other resampling schemes such as stratified

sampling or systematic sampling are some-

times used.

394

Recursion Verification – 1 of 3

Factorization of the importance function as

π(x0:t|y1:t) = π(xt|x0:t−1, y1:t)π(x0:t−1|y1:t−1)

implies the recursion

π(x0:t|y1:t) = π(x0)
t
∏

k=1

π(xk|x0:k−1, y1:k)

and conversely. Factorization (or the recur-

sion) implies that one can draw x
(i)
t from

π(xt|x
(i)
0:t−1, y1:t) and put x

(i)
1:t = (x

(i)
0:t−1, x

(i)
t).

The following fact, verified next slide, is needed

to establish the recursion for w̃(i)

p(x0:t|y1:t) = p(x0:t−1|y1:t−1)
p(yt|xt)p(xt|xt−1)

p(yt|y1:t−1)

395

Recursion Verification – 2 of 3

p(x0:t|y1:t)

=
p(x0:t−1, y1:t−1)p(xt, yt|x0:t−1, y1:t−1)

p(y1:t)

=
p(x0:t−1, y1:t−1)p(xt, yt|x0:t−1)

p(y1:t)

=
p(x0:t−1, y1:t−1)p(x0:t, yt)

p(y1:t)p(x0:t−1)

=
p(x0:t−1, y1:t−1)p(x0:t, yt)p(y1:t−1)p(x0:t)

p(y1:t)p(x0:t−1)p(y1:t−1)p(x0:t)

=
p(x0:t−1|y1:t−1)p(yt|x0:t)p(xt|x0:t−1)

p(yt|y1:t−1)

= p(x0:t−1|y1:t−1)
p(yt|xt)p(xt|xt−1)

p(yt|y1:t−1)

The second step is because the distribution of (yt, xt)
depends only on xt. The last is because xt is Markovian.

396

Recursion Verification – 3 of 3

w̃t =
p(x0:t|y1:t)

π(x0:t|y1:t)

=
p(x0:t|y1:t)

π(x0:t−1|y1:t−1)π(xt|x0:t−1, y1:t)

= w̃t−1
p(x0:t|y1:t)

p(x0:t−1|y1:t−1)π(xt|x0:t−1, y1:t)

= w̃t−1
p(x0:t−1|y1:t−1)p(yt|xt)p(xt|xt−1)

p(x0:t−1|y1:t−1)π(xt|x0:t−1, y1:t)p(yt|y1:t−1)

= w̃t−1
p(yt|xt)p(xt|xt−1)

π(xt|x0:t−1, y1:t)p(yt|y1:t−1)

The second step uses the factorization assumption. The
fourth step uses the result from the previous slide. The
term p(yt|y1:t−1) in the denominator of the last equation
does not involve x and therefore drops out when the
weights are normalized.

397

The Particle Filter Algorithm
Once Again

1. Initialization, t = 0.

• For i = 1, . . . , N sample x
(i)
0 from p(x0)

and set t to 1.

2. Importance sampling step.

• For i = 1, . . . , N sample x̃
(i)
t from p(xt|x

(i)
t−1)

and set

x̃
(i)
0:t = (x

(i)
0:t−1, x̃

(i)
t) .

• For i = 1, . . . , N compute weights w̃
(i)
t =

p(yt|x̃
(i)
t) .

• Normalize the weights.

3. Selection step

• For i = 1, . . . , N sample with replace-

ment the particles

x
(i)
0:t from the set {x̃

(i)
0:t} according to the

weights.

• Increment t and go to step 2

398

Two Factor SV Model with

Leverage

A two factor Shephard timing SV model with

leverage.

yt = α0

+ exp(v1,t−1 + v2,t−1)(r31e1t + r32e2t + r33e3t)

v1t = β0 + β11v1,t−1 + r11e1t

v2t = β0 + β22v2,t−1 + r21e1t + r22e2t

399

Two Factor SV Model in

State Space Form

This is the Shephard timing two factor SV

model with leverage put into the form required

for a particle filter.

x1t = β0 + β11x1,t−1 + r11e1t

x2t = β0 + β22x2,t−1 + r21e1t + r22e2t

x3t = x1,t−1

x4t = x2,t−1

yt = α0 + exp(x3t + x4t)(r31e1t + r32e2t + r33e3t)

Run example in src/sv2fac.

400

2F SV Particle Filter Results – 1 of
2

0 50 100 150 200

−
0.

5
0.

0
0.

5

0 50 100 150 200

−
1.

5
0.

0
1.

0
2.

0

The solid red line is the mean of the volatility particles. The dashed black

lines are plus and minus two standard deviations of the particles.

401

2F SV Particle Filter Results – 2 of
2

0 50 100 150 200

−
0.

6
−

0.
2

0.
2

0.
6

0 50 100 150 200

−
1.

0
0.

0
1.

0

The red line is the mean of the volatility particles. The blue line is the

true volatility path.

402

Generalizations and Extensions

Durham, Garland B. (2006) “Monte Carlo Meth-

ods for Estimating, Smoothing, and Filter-

ing One and Two-Factor Stochastic Volatility

Models”. Journal of Econometrics 133, 273–

305.

Easy to read general discussion of how to es-

timate stochastic volatility models that are far

more general than discussed here.

Also includes a discussion of how to implement

particle filters for problems that do not fit eas-

ily within the “cannonical form” of the problem

as discussed here.

A preprint is at the course website. This cor-

rects an error on page 17.

w(s) ∝ p(xt+1|v
(s)
t+1, v

(s)
t ,Ft)

403

One Lag, Two Factor SV Model

A one lag, two factor, Shephard timing SV

model with leverage.

yt = α0 + α1yt−1

+ exp(v1,t−1 + v2,t−1)(r31e1t + r32e2t + r33e3t)

v1t = β0 + β11v1,t−1 + r11e1t

v2t = β0 + β22v2,t−1 + r21e1t + r22e2t

The Durham version of particle filtering does

not presume state space form. Lags are explic-

itly expressed in the densities instead. Specifi-

cally, for this model, vt = (v1t, v2t), vt depends

on vt−1, and yt depends on (yt−1, vt, vt−1).

Sample code is in svlag2fac.

404

Algorithm for One Lag, Two Factor
SV Model

1. Initialization, t = 0.

• For i = 1, . . . , N sample (y
(i)
0 , v

(i)
1 , v

(i)
0)

and set t to 1.

2. Importance sampling step.

• For i = 1, . . . , N sample ṽ
(i)
t from p(vt|v

(i)
t−1)

and set

ṽ
(i)
0:t = (v

(i)
0:t−1, ṽ

(i)
t) .

• For i = 1, . . . , N compute weights w̃
(i)
t =

p(yt|yt−1, ṽ
(i)
t−1).

• Normalize the weights.

3. Selection step

• For i = 1, . . . , N sample with replace-

ment the particles

v
(i)
0:t from the set {ṽ

(i)
0:t} according to the

weights.

• Increment t and go to step 2

405

2F 1L SV Particle Filter Results –
1 of 2

0 50 100 150 200

−
0.

5
0.

0
0.

5

0 50 100 150 200

−
1.

0
0.

0
1.

0

The solid red line is the mean of the volatility particles. The dashed black

lines are plus and minus two standard deviations of the particles.

406

2F 1L SV Particle Filter Results –
2 of 2

0 50 100 150 200

−
0.

5
0.

0
0.

5

0 50 100 150 200

−
1.

0
0.

0
0.

5
1.

0

The red line is the mean of the volatility particles. The blue line is the

true volatility path.

407

Debugging

Illustrate use of cerr in debugging.

408

