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Characteristics of Models of
Specific Interest

e Likelihood not available.

e Prior information m1(6) on model parame-
ters may be available.

e Prior information m5(0,7) on functionals
of the model may be available, i.e., v =
W (Mp).

e Model can be simulated.

Example

e Habit persistence asset pricing model.

Has these four characteristics:
— Likelihood not available.

— Prior information m1(#) on model pa-
rameters is available.

— Prior information w>(6, ) on functionals
is available.

— Model can be simulated.

Habit Persistence Asset
Pricing Model

Driving Processes

Consumption: ¢t —c;—1 = g + v

Dividends: dy —d;_1 = g + w:

2
Random shocks: (Ut> ~ NID [<O>, < 7 pJgUJ)]
wy 0 ) \poow oF

The time increment is one month. Lower case denotes
logarithms of upper case quantities; i.e. ¢ = log(Cy),
di = log(D;). From Campbell and Cochrane (1999).




Habit Persistence Asset
Pricing Model

Utility function
50( i st (S0t -1 )

t=0 1-v
Habit persistence

Surplus ratio:

st —5=¢(sp—1 —5) + A(si—1)v

Sensitivity function:

)\(s)={ %\/1—2(5—5)—1 s < smax

0 s > Smax

& is conditional expectation with respect to S;, Si—1, ...
. Lower case denotes logarithms of upper case quanti-
ties: s; = log(S;). S and smax can be computed from
model parameters 6 = (g,0,p, 0w, ¢,6,7) as § = o ﬁ
and smax = 5+ 3(1—52). From Campbell and Cochrane
(1999).

Utility Function

Campbell and Cochrane write habit persistence
utility function as

£ i st (Ct— Xl -1
t=0 -~
where X; is habit.

They introduce the surplus ratio S; = (C; —
X;)/Cy much later in the development.

The surplus ratio form is more revealing of how
the habit model generates interesting returns;
i.e., it changes the consumption process from
Ct, which is tame, to CtSt, which is volatile.

Simulating Driving Processes
and the State

So far so good, Cy, D¢, and Sy are easy to sim-
ulate.

We generate a long simulation of consumption,
dividends, and surplus ratio in both logs and
levels

{eihiiy {(CH, N ~ 50,000

{shily S, N ~ 50,000

{di}y (D}, N ~ 50,000

Simulation

Go over model parameters, model variables,
and class habit in usrmod.h

Go over make_state in usrmod.cpp.




Returns Processes
Now comes the hard part: computing returns.

The agent desires to buy and sell assets to
transfer consumption from one period to an-
other. We must solve the agent’s optimization
problem to get the returns process this desire
generates.

Habit Persistence Asset
Pricing Model

Return on dividends
-
V(St) = 5t{6 (St+lct+1) (Dt+1> [1 + V(St—f-l)]}

SiCl Dy

1+V(St)< Dy )]
V(Si—1) \Di—1

rqt = 109 [

V(-) is defined as the solution of the Euler condition
above. It is the price dividend ratio; i.e. Pyu/Dy = V(S),
where Py is the price of the asset that pays the dividend
stream. rg is the logarithmic real return, i.e. ry4 =
log(Py~ D¢) —109(Pyt-1), where Py and D; are measured
in real (inflation adjusted) dollars. From Campbell and
Cochrane (1999).

Solution Method - 1

The computational problem is this: We must
find the policy function V(.) that solves

S 1C, (D
V(St)zst{5< tgltCZﬂ) ( S;l) [1+V(St+1)}}

and then evaluate V(-) over our simulated val-
ues {C’t,Dt,St}i\’:l to get the corresponding re-
turns process {ry}L; using the formula

14+ V(S ( Dy )}
V(Si—1) \Di—1

rqt = 109 [

Solution Method - 2

Campbell and Cochrane (1999) posit that the
log policy function

v(s) = log V(e*)

can be represented as a piecewise linear func-
tion.

Their join points are s, smax, Smax—0.01, smax—
0.02, smax — 0.03, smax — 0.04, and log[iS/(m +
1)] for + = 1,...,m = 10. My changes:
Used max of the simulated s; if larger than
smax.- Added the abscissae of the Gauss-
Hermite quadrature formula for integrating at
the maximum and minimum of the above join
points. Deleted all points closer than 0.001.

Figure 1, next slide, plots the approximation at
the Campbell and Cochrane parameter values.
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Piecewise Linear Approximation

Annualized Log Policy Function v(s)

Implementing a Piecewise Linear Func-
tion - 1

class linear_function {
T T T T private:
-45 -4.0 -35 -3.0 : REAL a;
REAL b;
Annualized Policy Function V(S) REAL x0;
public:
void initialize(REAL intercept, REAL slope, REAL origin)
{ a = intercept; b = slope; x0 = origin; }
REAL operator() (REAL x) { return a + b*(x - x0); }
REAL intercept() { return a; }
REAL slope() { return b; }
REAL origin() { return x0; }

20 24 28 32

x's mark Campbell and Cochrane join points; o’s mark extra join
points from the quadrature rule.

Implementing a Piecewise Linear Func-
tion - 2 Implementing a Piecewise Linear Func-

class linear_interpolater { tlon -
private:
std::vector<linear_function> funcs; void update(scl::realmat& x, scl::realmat& y)
typedef std::vector<linear_function>::size_type 1lfst; {
REAL xmin; INTEGER n = x.size(); N = 1lfst(n);
REAL xmax; funcs.clear(); funcs.reserve(N);
1fst N; if (n<2)
1fst hash(REAL x) { return 1fst( REAL(N-2)*(x-xmin)/(xmax-xmin) ); } scl::error ("Error, linear_interpolater, x.size() < 2");
public: if (x.ncol() !'=1 || y.ncolO != 1)
linear_interpolater() scl::error("Error, linear_interpolater, x or y not a vector");
{ if (n != y.size())
scl::realmat grid(2,1) ; grid[1] 0.0; grid[2] = 1.0; scl::error ("Error, linear_interpolater, x and y sizes differ");
scl::realmat vals(2,1) ; vals[1] = 0.0; vals[2] .0; scl::intvec permutation_index = x.sort();
update (grid,vals) ; y = y(permutation_index,"");
xmin = x[1]; xmax = x[n];
linear_interpolater(scl::realmat& x, scl::realmat& y) { update(x,y); } linear_function f;
REAL operator() (REAL x) for (INTEGER i=1; i<n; ++i) {
{ f.initialize(y[il, (yli+1]1-y[il)/(x[i+1]1-x[i1), x[il);
if (x <= funcs[0].origin()) return funcs[0](x); funcs.push_back(f) ;
if (x >= funcs[N-1].origin()) return funcs[N-1](x); }
1fst i = hash(x); funcs.push_back(f);
if (x < funcs[il.origin()) while(x < funcs[--i].origin());
else if (x >= funcs[i+1].origin()) while(x >= funcs[++i+1].origin(
return funcs[i] (x);




Implementing a Piecewise Linear Func-
tion - 4

To get the linear interpolater v(s) plotted in
the upper panel of Figure 1, one would fill the
realmat grid with the abscissae of the points
marked with x's and o's and fill 2 realmat values
with the ordinates. Then

linear_interpolater v();

v.update(grid, values);

will be the policy function v(s). The calling
syntax is

REAL log_surplus_ratio = -4.0;
REAL log_stock_price_dividend_ratio

= v(log_surplus_ratio);

Solution Method - 3

Putting everything in logs, the conditional Euler condi-
tion is
e“(&) — gt{66_"/(A5'+1+A0e+1)eAdr+1(1 _|_ eU(Swl))}

where As;y1 = s;41— s, €tc. This is a contraction map-
ping so we can compute v(s) by iterating the equation
above.

Specifically, start the linear_interpolater either at v9(s)
of Figure 1 (better) or at v°(s) = 0. For i = 0, compute

EU'H(Sr) — 5[,{6677(A5‘+1+A6'“)6Ad‘“(1 + 6”’(51“))}
at each of the points s; in realmat grid of the previous
slide. Put the corresponding vit1(s;)) = loge’ " () in
realmat values. Cal

v.update(grid,values);

which overwrites ©vi(s) by v't1(s) . Continue for i =
1,2,....

Solution Method - 4

What remains is to compute the integral
gt{56—7(A5t+1+ACt+1)6Adt+1(1 + ev(8t+1))}
where
Aspyr = (1—¢)s5+ (¢ — 1)st + A(st)vpg1

Acgr1 = g+ vt
Adiyy = g+ wips

We can integrate out w;4 1 analytically to get
c9+3(1—p?)02
Xgt{56*7(A5t+1+Act+l)ep(0'w/0')“t+l(1 + ev(8t+1))}

We will have to integrate out v;4 1 numerically.

Sorry that v can mean either an error v; or a
policy function v(s).

Gaussian Quadrature - 1

A Gaussian quadrature formula has the form

[ r@weyde ~ 3 fau

=1

The theory of the subject is devoted to how
best to choose the abscissae z; and weights

wy.

Names such as Gauss-Laguerre or Gauss-Hermite
indicate what a, b, and W(z) are. For in-
stance, for Gauss-Laguerre a = 0, b =

and W(z) = e~ %; for Gauss-Hermite a = —oo,
b= oo, and W(z) = e




Gaussian Quadrature - 2

Construction:

1. Find coefficients for the polynomials pip(z) = axo +

aprz+- - Faga®, for k= 1,...,n, such that [ py(z)p;(z) W (z)

l1ifk=j and O it k#7; th|s is not hard.

. Find the zeros of the polynomial p,; this is hard.

e Golub, Gene H., John H. Welsch (1969), “Cal-
culation of Gauss Quadrature Rules”, Mathe-
matics of Computation 23, 221-230

. The zeros are the abscissae z; for the rule.

. Find the w; such that """ po(zi)w; = 1 and Y1, pr(zi)w; =

0; this is not hard.

This construction has the advantage that pp,(x)
will be integrated exactly by an n-point rule for
all m < 2n.

The function hquad in 1ibscl computes Gauss-
Hermite rules. The function guassq computes
just about every rule there is.

Gaussian Quadrature - 3

Using the change of variables

=5 (=)

/j:o flu+ \/50.%‘)\/1%6_Z2 dz

3 JGutVEor)
i=1

Thus, the abscissae and weights for E£f(U)

when U ~ N(u,02) are ¥ = p+ V20z; and

w} = w;//m, where z; and w; are the Gauss-

Hermite abscissae and weights.

Habit Persistence Asset
Pricing Model

Risk Free Rate

Si+1Ci+1) !
= —1o E |6 | ———=
Tft g{ t ( StCt

r IS the logarithmic return on an asset that pays one
real dollar one month hence with certainty. From Camp-
bell and Cochrane (1999).

Solution method is similar to the foregoing.

Model Output

For given model parameters

0 = (g,0,p,0w,9,6,7)

the model produces simulated consumption
and returns data at an annual frequency:

11
=Y Cioi
k=0

cf = log(C¢)

11
rh =D Td12t—k
k=0
11

rh= D TRk
k=0




Putting It All Together

Go over model parameters, model variables,
and class habit in habit_usrmod.h

Go over gen_sim in habit_usrmod.cpp.

Data

Annual observations 1929—-2001, 72 years, on
jt end-of-year per capita stock market value

Dy annual aggregate per capita dividend

Ccg annual per capita consumption

rgzt annual real geometric return

Q¢ annual quadratic variation

Data are real, i.e. inflation adjusted.

Source: Bansal, R., A. R. Gallant, and G. Tauchen
(2007). “Rational Pessimism, Rational Exuberance,
and Markets for Macro Risks,” Review of Economic
Studies 74, 1005—1033.

Fig 2. Data
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Cointegrating Relationships

Y — dff I(0) Well documented in
the literature

df — cf I(0) Verified with a
reduced rank regression

cf —cf 4 I(0) Well documented in
the literature




Jointly Stationary Data
for Estimation

Used by Gallant and McCulloch (2009) and in

case study:
( cf —cfq )
a
Tdt

Used by Bansal, Gallant, and Tauchen (2007):
di — cf
of =g
Pt o d
Tdt

Unconditional Moments of Annual Data

Mean Std Dev

Log dividend consumption ratio d} —cf -3.399 0.162
Consumption growth(% Per Year) 100 x (¢f — ¢! ;,) 1.95 2.24
Price dividend ratio exp(vy,) 28.24 12.08
Return(% Per Year), dividend 100 x 74, 6.02 19.29
100 x y/Quadratic variation 100 x stdf 16.69 09.32

Characteristics of the Monthly Data

Quantiles c/ci-1 i

99% 1.013425 1.121526
95% 1.009645 1.057568
90% 1.007642 1.048265
75% Q3 1.004783 1.030098
50% Med 1.002235 1.005685
25% Q1 0.999164 0.978847
10% 0.996466 0.948152

5% 0.994561 0.932595

1% 0.991563 0.890846

IQR Q3-Q1 0.005619 0.051251

Mean 1.002060 1.002851
Std. Dev. 0.004573 0.042095

Annualized
Med

IQR

Mean

Std. Dev.

Notes: The sampling frequency is monthly. 1959-1978. Med is
the median and IQR is the inter quartile range. From Hansen
and Singleton (1982).

Prior Information

Support: Reasonable bounds on all parameters
to include positivity restrictions on positive val-
ued parameters and non-explosive restrictions
on autoregressive parameters.

Numerical: Existence of solution to Euler con-
dition.

Used by methods proposed here (annualized,
iid normal prior)

P (|e(r) - 0.89%| < 1%) = 0.95
P(lp—0.2 <0.1) = 0.95
P (|¢ — 0.9884| < 0.01) = 0.95

Used by estimates compared with (annualized,
uniform prior)

P (|e(r§) - 0.89%| < 0.5%) = 1.00




Prior Information Grouped
by Cost

1. Support condition can be determined cheaply
knowing model parameters 6 alone

7'('1(9) 0= (ga a’,p,aw,d), 577)

. Simulation failure is a function of 6 only
but is costly to determine.

7T2(9) 0= (ga 0-7p70-’w7¢a 6a’7)

. Requires a simulation to determine

73(0,) ¥ =(ECF) 0 9))

The difference in cost of these three sources
of prior information will be taken into account
in designing computational strategies.

Estimation Options Available

e Asymptotic Equivalent of MLE
Gallant and Tauchen (2001)

e Bayesian with Synthesized Likelihood
Gallant and McCulloch (2009)

e Simulated Method of Moments
Duffie and Singleton (1993)

e Bayesian GMM
Gallant (2015)

Cites are to the most closely related papers.
They are not attributions.

SMM with GMM Criterion

We will illustrate the ideas using SMM with a
GMM criterion.

e The GMM objective function is denoted by

e Output and parameters of the habit per-
sistence asset pricing model are

gt = (f—cf_q, %) € R?
0= (g,a,p,aw,qﬁ,(s,’y) € éR?

e Data are denoted as {7}}-_, simulations as
{7

GMM Criterion — Notation

vech(S)

my denotes evaluation at data

my denotes evaluation at a simulation




GMM Criterion
— Moment Functions

Moment function for data:

1 n
T = — )
Ny=1

Moment function for a simulation:
1 N

mN(Q) = N my
t=1

GMM Cross Sectional
Weight Function

W, is an estimate of the variance of /n iy,

- 12 - ~ ~
Wn=— >~ (i — i) (M — 1)’
i=1

GMM Time Series
Weight Function

W, is an estimate of the variance of \/nmn,
[n*/3]

M= 3w () Vo

r=—[nl/5]

1-6uf+6[u® fo<u<i
w(u) =9 2(1 - |u|)? ifi<u<l1

Wnr

_ %z;l:l-i--r (fht — m7l) (mt*T - ﬁln), 720
w! T<0

n,—T

GMM Criterion Function

5n(0) = 3 lin — i @) (Wa) ™" [in — s (9)




Inference Styles

Frequentist The estimator is 8, = argming s, (6);

equivalently one can put 4(0) = e—nsn(9) and
compute argmaxg £(0). In frequentist inference
one would usually take support conditions into
account and compute argmaxg £(0)w1(0)m>(0).
Because £(0) will increase with n and w3(6,)
will not, the asymptotics would not change if
one also multiplied by w3(0,%). This is easier
to see by taking logs.

Bayesian £(0) = e="n(9) is an acceptable like-
lihood for Bayesian inference (Gallant, 2015).
w1(0)m(0)7w3(0,v) is an acceptable prior for
Bayesian inference (Gallant and McCulloch,
2009). Strictly speaking, one should use the
continuously updated version of s,(0) here. l.e.
compute the weighting matrix from m; from
the simulation rather than m; from the data.

Asymptotics

Under weak regularity conditions that accom-
modate both time series and cross sectional
data (Gallant, 1987) 8, tends to the parame-
ter value 6° that minimizes

5°(0) = Jim sn(6)

and /n(0, — 6°) is asymptotically normal with
mean zero and variance J1Z7~1, where J is
the Hessian
8 o
= 9°
T = Z0am 97
and Z is Fisher’s information

Z = Var {%\/nsnwo)]

- <[ ][]

In some cases 7 = J so that only one of the

two has to be computed; e.g. correctly speci-
fied mle or GMM with correct weight matrix.

Computations
For  su(0) = L [ — mn (0] (Wa) " [tn — n(6)]
e must compute the estimator
9, = argmin s,(9)
0
e an estimate of the Hessian
0
= °(9
a0 ° 9
e an estimate of the information

J

o . g o [ 2 N
7= var [% nsu(0 )} —¢ [% 56 )} [% NTHG )}
e and an estimate of the variance of /n(8, — 6°)

Vo = Var [yn(0, —0°)] =7 27!

Computational Strategy — 0
& 771

e Chernozhukov, Victor, and Han Hong (2003),
“An MCMC Approach to Classical Estima-
tion,"” Journal of Econometrics 115, 293—
346.

Put £(0) = e "sn(®) . Apply Bayesian MCMC
methods with ¢(0) as the likelihood and
w(0,v) = w1 (0)7m2(0)73(0,1) as the prior.

From the resulting MCMC chain {6;}/%,
put

_ - 1 &
0n, = argmax £(0,)mw(0;,9") or 0, = 0p = = >0

(2

i.e. the mode or the mean, and put
R

()5 (0 5) (0 )

t=1




Metropolis-Hastings
MCMC Chain

Proposal density: T(0jere, Othere)

Proposal: Oprop drawn from T'(6,4,0)

Simulate: Get sn(Oprop), Yprop, and w(Oprop, Yprop)
Likelihood: Put £(9) = e~ sn(0)

Put Opew to Oprop With probability

7T(9pr0pa "‘Ppmp)g(@proz))T(eprozb eold)
T(Ootd> Yo1d)€(O01a) T (Ooids Oprop)
Put Onew to 6,4 with probability 1 — c.

a = min |1,

Why Does This Work?

Let = be the old and y the new and let f(-)
be the product of the prior and the likelihood
of the previous slide. The proposal density is
T(xz,y) and the transition density determined
by the chain is

FT(y, ) }

A(z,y) = T(z,y) min {1’ f(@)T(z,y)

for y # z and
Aw,2) =1~ [ 1(,9) A(w,y) dy,

where

H%w={é a

Detailed Balance
For x =y

f@)A(z,y) = min{f(z)T(z,y), f(y)T(y,z)}

which implies that f(z)A(z,y) is symmetric,
i.e. that

FWA(y, z) = f(2)A(z,y).

Symmetry holds trivially for z = y.

This symmetry condition is called the detailed
balance condition and implies, among other
things, that the chain defined by A(x,y) is re-
versible.

Conditional Expectation

Let

H%w={é vz

y=x

Then

Elg(Mlel = [9()1(2,1) A, ) dy+9(2) Az, )




Unconditional Expectation
Stationary Density of the Chain

[els)lalf (@) do
The fact that the equation

= [[9@ 1@ ) A, @) dody+ [9(2) A, 2) f(2)da
= /s Ay, ) () dedy+ [9@) A, 2)f @)da [elaMlelf)ds = [o 1) dy

- /g(y)f(y)/l(x’y)A(y’x)dxdy_l_/g(xm(x’x)ﬂx)dx holds for all integrable g(y) implies that f(y)

=/g(y)f(y)[l —A(y,y)]dy-l-/g(a?)A(x,:c)f(x) dx is the stationary density of the MCMC chain
_ /g(y)f(y) dy with transition density A(z,v).

EMM Enhancements
ComDUtatlonal Strategy -1 Nearly all of the computational cost of the

MCMC chain is due to solving the asset pricing
equations and computing the criterion function

For 6 set to 0y, simulate the model and ) T
sp(0). This cost can be minimized as follows:

generate I independent data sets {7;;}}—1,
i =1,...,I, each of exactly the same size
n of the original data.

Reject immediately if 71(0) = 0.

Put 6 on a grid. Grid increments deter-
mined by sensitivity of {@t}i\le to 6 ele-
ments. E.g. 0.001 for g and 6, and 0.5
for ~.

Let 5,;(0) denote the criterion function
corresponding to data set {g;;};—;. (Store
in C++4+ STL vector indexed by i.)

Store sn(0), ¢, m(0), 73(0,¢) in a C++
Compute %\/n 5n.i(On). STL associative map indexed by 6.

Use table lookup to avoid all recomputa-
An estimate of the information is tion.

1L 7o o o R . .
71 [ Jn Sn,i(en):| {? 8 (Bn) e The longer the chain, the faster it runs.

I : 00’
i=1
The EMM code does all of this; the case study

the first only.




Comments

e Sp(0) = 7sp(0) is a valid criterion accord-
ing to the theory. This gives one a tem-
perature parameter v to use for tuning the
chain. It can be used to adjust the rela-
tive importance of the prior and to scale
proposal increments.

It would have been better to write the per
parameter rejection rates to a file rather
than just the overall. The EMM code does
this. However, looking at plots of the chain
is the best approach.

Comments

e It would have been better to write the like-
lihood, the prior, and the posterior to a file
rather than just the posterior. The EMM
code does this.

The justification for using a prior and Bayesian
methods with the GMM criterion function

is in Gallant, A. Ronald (2015), “Reflec-
tions on the Probability Space Induced by
Moment Conditions with Implications for
Bayesian Inference,” Journal of Financial
Econometrics, forthcoming.

Computational Strategy
— EMM MCMC

. Propose: Draw 0Oprop from T (6,14, 0)-

. Check support: Check w1(0). If w1(0) = 0,
Comments then put Opew to 6, Go to 1.

. Check map: If Oprop in map, a can be com-
puted cheaply. Put Opew tO Oprop With prob-
ability a. Put Opew to 6,4 with probability
1—-a. Goto 1.

e In the case study, objfun returns ns,(0) not

e Similarly, in the EMM code, objfun returns

nsn(0) not sp(6). . Simulate: Check m5(0). If m5(6) = 0, then
add results to map, put Opew to 6,4, and
go to 1.

. Evaluate:  sp(Oprop), Yprop, ™(Oprop, Yprop)
and put in map. Compute a. Put Opew
to Oprop With probability a. Put Onew to 8,54
with probability 1 — a. Go to 1.




Simple Example, )
Simulated Data Simple Example,
Simulated Data

Before applying the code to the habit economy,
we shall first test it with a simple model using But the model as written is very hard to tune.
simulated data. The model is the VAR The following is easier to tune and will be fit-

ted to the generated data
(y1t> _ (0.1)+<o.5 O.2><y1’t_1>

Y1t
Y2t

0.1 0.2 0.5

Yot Y2t—-1

L (0001 0.0001 (2,
0.0 0.001 2ot

The data are n=1000 observations simulated
from this VAR.

b1 + B11 B2 Yyi1-1— b1
b Bs1 Byo Y2,4—1 — b

+ R11 Rpq Z1¢
0.0 Ros ) \ 2o

MCMC Chain Tuning Parameters

const INTEGER prop_def_spec = 0; //Single move uniform

0001;

0001;
.001;
.001;

Estimation commences with tuning parameters o by onge —
0
0
0.001;
0
0
0
0

const REAL b2_range

set as shown next. const REAL Bll_range
const REAL B21_range
const REAL B12_range
. L . . const REAL B22_range
Obviously there was some preliminary fiddling, const REAL R11_range

. [} . const REAL R12_range
but I didn’t save the earliest runs. const REAL R22.range

.001;

.0001;
.0001;
.0001;

const REAL bl_start
Notice the hill climbing early on. const REAL b2_start
const REAL B11_start
const REAL B21_start
. . . . const REAL B12_start
The rejection rate on the following is 4%. const REAL B22_start
const REAL R11_start
const REAL R12_start

The code has been modified since these runs. const REAL R22_start

Results will not reproduce exactly. const REAL range_factor = (1.0/16.0);
const REAL temperature 1.0;

.9900297408326275e-02;
.0008597254455662e-01;
.0002840588321151e-01;
.9932501881833248e-01;
.0150085914184437e-01;
.0060666133809983e-01;
.2667359071247835e-04;
.1881183967790337e-04;
.0317855295544479e-03;
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Fig 3. VAR MCMC Chain

MCMC Chain

This is the hill climbing or simulated annealing
phase of the iterations.

The values from the end of the chain are used
to restart the chain and tuning parameters are
adjusted as seems appropriate.

The following is the best that I could do with
a single move proposal.

Rejection rate on what follows is 8%.

8

Fig 4. VAR MCMC Chain

Tuning Parameters

const INTEGER prop_def_spec = 0; //Single move uniform

009985

const REAL bl_range
const REAL b2_range
const REAL B1l_range .015;
const REAL B21_range .015;

0.0001;
0.
0
0
const REAL B12_range = 0.015;
0
0
0
0

0001;

0498 0503

const REAL B22_range .015;
const REAL R11_range .0001;
const REAL R12_range .0001;
const REAL R22_range .0001;

const REAL bl_start
const REAL b2_start
const REAL B11_start
const REAL B21_start
const REAL B12_start
const REAL B22_start
const REAL R11_start
const REAL R12_start
const REAL R22_start

.9954984183242251e-02;
.0001128385572358e-01;
.0004171603170977e-01;
.9593909758070538e-01;
.0404597457467594e-01;
.0156398756554943e-01;
.0238303908475348e-03;
.6994725445393879e-04;
.0212344683387820e-03;

047 053

B RPN OO

const REAL range_factor = (1.0/8.0);
const REAL temperature 1.0;




Fig 5. VAR MCMC Autocorrelations Fig 6. VAR MCMC Scatter Plots
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Fig 7. VAR MCMC Density Plots

MCMC Chain

Went to group move proposal. The parame-
ters B11, Bo1, B1o, B> were moved as a group.

The rejection rate was 20%.




Fig 8. VAR MCMC Chain

Tuning Parameters

const INTEGER prop_def_spec = 4; //Group move normal

0.09980

const REAL bl_range
const REAL b2_range
const REAL B1l1l_range .001;
const REAL B21_range .01;

0.0001;
0.
0
0
const REAL B12_range = 0.02;
0
0
0
0

0001;

042 054

-010 020

const REAL B22_range .001;
const REAL R11_range .0001;
const REAL R12_range .0001;
const REAL R22_range .0001;

015 040

const REAL bil_start
const REAL b2_start
const REAL B11_start
const REAL B21_start
const REAL B12_start
const REAL B22_start
const REAL R11_start
const REAL R12_start
const REAL R22_start

.9954984183242251e-02;
.0001128385572358e-01;
.0004171603170977e-01;
.9593909758070538e-01;
.0404597457467594e-01;
.0156398756554943e-01;
.0238303908475348e-03;
.6994725445393879e-04;
.0212344683387820e-03;

B RPN OO

const REAL range_factor = (1.0/8.0);
const REAL temperature 1.0;

Fig 9. VAR MCMC Autocorrelations Fig 10. VAR MCMC Scatter Plots




VAR MCMC Density Plots

Parameter Estimates

OLS Estimates MCMC-GMM Estimates

Parameter Estimate Std. Err. Estimate Std. Err.

0.1 0.08427 0.00958 0.09989 0.0000328
. 0.10404 0.00980 0.09990 0.0000391

0.48892 0.02701 0.49461 0.019511
0.18108 0.02762 0.17448 0.040587
0.25827 0.02734 0.25797 0.029000
0.50675 0.02797 0.50470 0.032414

R;1 0.0010 0.00098833 0.0000267
Ry 0.0001 0.00015640 0.0000368
R2> 0.0010 0.00098587 0.0000249

MCMC estimates based on a chain of length 12,000.

Habit Model

We will now consider results for the habit
model.

The process is the same as the VAR example.
There is a hill climbing stage and then a tuning
stage.

Finally the parallel (MPI) version of the code
was used on a machine with 8 CPU'’s for the fi-
nal run. R =2500x 6 x7 = 105000, stride=25
in plots.

Results follow.

Prior Information

Support: Reasonable bounds on all parameters
to include positivity restrictions on positive val-
ued parameters and non-explosive restrictions
on autoregressive parameters.

Numerical: Existence of solution to Euler con-
dition.

Used by methods proposed here (annualized,
iid normal prior)

P (|e(r) - 0.89%| < 1%) = 0.95
P(lp—0.2 <0.1) = 0.95
P (|¢ — 0.9884| < 0.01) = 0.95

Used by estimates compared with (annualized,
uniform prior)

P (|e(r§) - 0.89%| < 0.5%) = 1.00




Results Will Be Compared to EMM
Estimates

EMM Heuristics: For any QMLE estimator

fin = arg;nax%i log f(§il&-1,7), Tuning Parameters
t=1

const INTEGER prop_def_spec = 0; //Single move normal
a sample average satisfies
REAL g_range = 0.001;
I - REAL R11_range = 0.01;
0=-— Z 87 log f(yt‘xtfla nn) REAL R12_range = 0.05;

ni= o REAL R22_range = 0.05;
. s . REAL phi_range = 0.01;
because these are the first order conditions of the opti- REAL delta_range = 0.006;
mization problem. REAL gamma_range .10;

n

Therefore a large simulation from a putative DGP p(y¢|zi—1,6) REAL g_start = 1.976079088512222668e-03;

will satisfy REAL R11_start .289677322278638245¢-04;

REAL R12_start .078692952608877541e-04;

1 Mg REAL R22_start .759089089812089474e-03;

0=m(6,7,) = — Z — log f(Ge|Zt—1,7n), REAL phi_start = 9.886147326276307767e-01;

N = on REAL delta_start .940743738336396129¢-01;

REAL gamma_start = 1.404090722074126996e+00;

except for sampling variation in 7,. The equality holds

exactly in the limit as n and N tend to infinity. const REAL range_factor = (1.0/16.0);
const REAL temperature 5.0;

The EMM estimator attempts to find 6 that solves these

estimating equations as nearly as possible:

0, = argmin m/ (0, 7)) (Z,.) "tm (0, 7i,)
0

Fig 13. Habit Model MCMC Autocorrela-

Fig 12. Habit Model MCMC Chain i
tions
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Fig 14. Habit Model Scatter Plots

Fig 15. Habit Model Density Plots
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Fig 16. Habit Model Functionals Density
Plots

Histogram of bond mean

Table 2. Parameter Estimates (Monthly Frequency)

EMM Estimates MCMC-GMM

500 1000 1500 2000

Std. Err.
0.000085

Std. Err. Estimate

0.000250

0.000896
0

0.007716
0.015449

Parameter Estimate

g 0.002116

Histogram of bond variance P11 0.006151
0

P12

P22 0.036503
Ps

R

Rio

Roo

0.971900

1.2e-19

4

0.0019963

[ T T T T
0.0002 0.0004 0.0006 0.0008 0.0010

0.0010254
0.0001982
0.0300096

0.001125
0.000224
0.009592

0.0010

0.9853 0.0026 0.9898

0.0005
0.2462

0.0380

T
0.0e+00 2.0e-20 4.0e-20 6.0e-20 8.0e-20 1.0e-19

0.0012
0.4522

0.9916
2.4850

0.9939
0.8386

-3.3587

Histogram of stock mean

x2(4) = 7.109 (0.7894) R = 105,000

T
0.0045

T
0.0055

Note: ¢ and d are cointegrated for EMM estimates; W and R
are upper triangular matrices related as follows

T T
0.0050 0.0060

Histogram of stock variance

il

’

ver(@ i) = o= [(0 62300 VI3 G2-5007)Y]




Table 3. Parameter Estimates(Annual Frequency)

Data

EMM Estimates

MCMC-GMM

Parameter Estimate Std Dev Estimate Std Dev Estimate Std Dev

-3.40
1.95

28.24
6.02

16.69

0.16
2.24
12.08
19.29

09.32

2.539

1.7626
0.2062
9.5965

0.8372

0.9292
0.8386

-3.3587

-3.37
2.52

27.75
6.54

14.41
1.07
5.46

0.0087

2.239
0.3618
0.1898
10.4254
0.8844

0.9039
2.4854

0.1021
0.3971
0.0226
3.2228
0.0101

0.0187
0.4522

Results for Bayesian
Estimation

Results for Bayesian estimation are next. The
prior used was

P (|e(r§) - 0.89%| < 1%) = 0.95

P(lp—0.2] <0.1) =0.95

P (¢ —0.9884| < 0.02) = 0.95

which is the same as the foregoing.

Table 4. Parameter Estimates (Monthly Frequency)

EMM Estimates Bayesian

Table 5. Parameter Estimates(Annual Frequency)

Parameter

g

P11
P12
22
ps
R

Ri2
Roo

@

)
y

Hdc

Estimate

0.002116

0.006151
0

0.036503
0.971900

0.9853

0.9939
0.8386

-3.3587

Std. Err.

0.000250

0.000896
0

0.007716
0.015449

0.0026

0.0005
0.2462

0.0380

Estimate

0.001803

0.007254
0.001350
0.003125

0.9804

0.9898
1.0744

Std. Err.
0.000684

0.001903
0.001068
0.034435

0.0095

0.0070
1.7638

x2(4) = 7.109 (0.7894)

R = 800,000

Data

EMM Estimates

Bayesian

Parameter Estimate Std Dev Estimate Std Dev Estimate Std Dev

-3.40 0.16
1.95 2.24

2.539
1.7626
0.2062
9.5965
0.8372

0.9292
0.8386

-3.3587

-3.37
2.52

0.0087

2.164
2.5589
0.1830
1.0825
0.7890

0.8845
1.0744

0.2300

Note: ¢ and d are cointegrated for EMM estimates; W and R
are upper triangular matrices related as follows

’

ver(@ i) = o = [(0 62300 VI3 G2-5007)Y]

28.24 12.08 27.75
6.02 19.29 6.54
16.69 09.32 14.41
1.07
5.46




